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ABSTRACT. We consider the following Volterra intergral equation

u(t) = µ

∫ t

0

g(t, s)f(s, u(s))ds, t ∈ [0, T ]

where µ > 0. Here, the function f may take ‘negative’ values, i.e., the ‘semipositone’ case. Criteria

are offered for the existence of one and more fixed-sign solutions u of the equation in C[0, T ]. We

say u is of fixed sign if u(t) ≥ 0 or u(t) ≤ 0 for all t ∈ [0, T ].
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1. INTRODUCTION

In this paper we shall consider the Volterra integral equation

u(t) = µ

∫ t

0

g(t, s)f(s, u(s))ds, t ∈ [0, T ], (1.1)

where µ is a positive constant. The nonlinearity f need not be ‘positive’ in the sense

that θf can take negative values, where θ ∈ {1,−1} is fixed.

The Volterra integral equation (1.1) has received a lot of attention in the literature

[9–12, 17, 18, 22, 24], since it arises in real-world problems. For example, astrophysical

problems (e.g., the study of the density of stars) give rise to the Thomas-Fermi

equation

u′′ − tpuq = 0, t ∈ [0, T ], u(0) = u′(0) = 0 where p ≥ 0 and 0 < q < 1

which reduces to (1.1) when g(t, s) = (t − s)sp and f(t, u) = uq. Other examples

occur in nonlinear diffusion and percolation problems (see [10, 11] and the references

cited therein) such as

u(t) =

∫ t

0

(t − s)γ−1f(u(s))ds, t ∈ [0, T ],

where γ > 1.
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For the special case θ = 1, the fact that in (1.1) we allow θf = f to take negative

values is referred to as the semipositone case, which arises naturally in chemical reactor

theory [13]. The constant µ in (1.1) is called the Thiele modulus. It is of physical

interest to examine the existence of positive solutions when µ is small. Most results in

the literature are devoted to positone problems, i.e., when f is nonnegative, see [14–16,

19, 21, 23] and the references cited therein. Only a few results (see [1, Chapter 4] and

[5, 6, 8]) are available for semipositone Fredholm integral equations, but as far as we

know no results are available for semipositone Volterra integral equations. Therefore,

in the present work we shall establish the existence of one and more solutions u of the

semipositone problem (1.1) in C[0, T ]. Moreover, we are concerned with fixed-sign

solutions u, by which we mean θu(t) ≥ 0 for all t ∈ [0, T ], where θ ∈ {1,−1} is

fixed. Note that positive solution is a special case of fixed-sign solution when θ = 1.

Recently, Agarwal, O’Regan and Wong [2–8] have been interested in the existence of

fixed-sign solutions of Fredholm integral equations. We shall tackle the existence of

fixed-sign solutions of the semipositone Volterra integral equation (1.1) in Section 2.

2. EXISTENCE RESULTS

Our main tool is Krasnosel’skii’s fixed point theorem which we state as follows.

Theorem A. [20] Let B = (B, ‖ · ‖) be a Banach space, and let C ⊂ B be a cone

in B. Assume Ω1, Ω2 are bounded open subsets of B with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let

S : C ∩ (Ω2\Ω1) → C be a continuous and completely continuous operator such that,

either

(a) ‖Su‖ ≤ ‖u‖, u ∈ C ∩ ∂Ω1, and ‖Su‖ ≥ ‖u‖, u ∈ C ∩ ∂Ω2, or

(b) ‖Su‖ ≥ ‖u‖, u ∈ C ∩ ∂Ω1, and ‖Su‖ ≤ ‖u‖, u ∈ C ∩ ∂Ω2.

Then, S has a fixed point in C ∩ (Ω2\Ω1).

Let the Banach space B = C[0, T ] be equipped with the norm ‖u‖ = supt∈[0,T ] |u(t)|.

Theorem 2.1. Let 1 ≤ p < ∞ be a constant and q be such that 1
p

+ 1
q

= 1. Let

θ ∈ {1,−1} be fixed. Assume

(C1)

g(t, s) ≥ 0, t ∈ [0, T ], a.e. s ∈ [0, t],

g(t, s) > 0, t ∈ (0, T ], a.e. s ∈ [0, t],

gt(s) ≡ g(t, s) ∈ Lp[0, t] for each t ∈ [0, T ],

sup
t∈[0,T ]

∫ t

0

[gt(s)]pds < ∞;
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(C2) for any t, t′ ∈ [0, T ],
∫ t∗

0

|g(t, s)− g(t′, s)|pds → 0 as t → t′

where t∗ = min{t, t′};

(C3) for any t1, t2 satisfying 0 < t1 ≤ t2 ≤ T ,

g(t2, s) − g(t1, s) ≥ 0, a.e. s ∈ [0, t1];

(C4) f : [0, T ] × [0,∞)∗ → R is a Carathéodory function, and there exists constant

M > 0 such that

θf(t, x) + M ≥ 0, (t, x) ∈ [0, T ] × [0,∞)∗

where

[0,∞)∗ =

{

[0,∞), θ = 1,

(−∞, 0], θ = −1,

(note that (0,∞)∗ is similarly defined);

(C5)

b(t, x) ≤ θf(t, x) + M ≤ c(t, x), (t, x) ∈ [0, T ] × [0,∞)∗

where b, c : [0, T ] × [0,∞)∗ → [0,∞) are continuous, and

b(t, x) > 0, (t, x) ∈ (0, T ] × (0,∞)∗ ;

moreover, b and c are ‘nondecreasing’ in the sense that if θx ≤ y, then

b(t, x) ≤ b(t, θy), t ∈ [0, T ]

c(t, x) ≤ c(t, θy), t ∈ [0, T ];

(C6) there exists a constant L > 0, and a function a ∈ C[0, T ] with a(0) = 0 and

0 < a(t) ≤ 1, t ∈ (0, T ] such that
∫ t

0

g(t, s)ds ≤ La(t), t ∈ [0, T ];

(C7) for any R > µML > 0,
∫ t

0

g(t, s)b (s, θ(R − µML)a(s)) ds ≥ a(t) ·

∫ T

0

g(T, s)c(s, θR)ds, t ∈ [0, T ];

(C8) for any R > 0, if p > 1 then
∫ T

0

|c(s, θR)|qds < ∞;

if p = 1, then

ess sup
t∈[0,T ]

|c(t, θR)| < ∞;

(C9) there exists α > µML > 0 such that

µ

∫ T

0

g(T, s)c(s, θα)ds ≤ α;
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(C10) there exists β > µML > 0, β 6= α, such that

µ

∫ T

0

g(T, s)b (s, θ(β − µML)a(s)) ds ≥ β.

Then, (1.1) has at least one fixed-sign solution u ∈ C[0, T ] such that

θu(t) ≥ 0, t ∈ [0, T ] and θu(t) > 0, t ∈ (0, T ]. (2.1)

Moreover, we have

(a) 0 < α−‖φ‖ ≤ ‖u‖ ≤ β and θu(t) ≥ a(t)α−µM
∫ t

0
g(t, s)ds, t ∈ [0, T ] if α < β;

(b) 0 < β −‖φ‖ ≤ ‖u‖ ≤ α and θu(t) ≥ a(t)β −µM
∫ t

0
g(t, s)ds, t ∈ [0, T ] if β < α;

where ‖φ‖ = µM
∫ T

0
g(T, s)ds.

Proof. To show that (1.1) has a fixed-sign solution, we consider the system

y(t) = µ

∫ t

0

g(t, s)f ∗(s, y(s) − φ(s))ds, t ∈ [0, T ], (2.2)

where

φ(t) = θµM

∫ t

0

g(t, s)ds, t ∈ [0, T ] (2.3)

and

f ∗(t, x) = f(t, x) + θM, (t, x) ∈ [0, T ] × [0,∞)∗. (2.4)

We shall show that (2.2) has a fixed-sign solution y∗ satisfying

θy∗(t) ≥ θφ(t), t ∈ [0, T ] and θy∗(t) > θφ(t), t ∈ (0, T ]. (2.5)

Then, it is easy to see that u = y∗−φ is a fixed-sign solution of (1.1) satisfying (2.1).

We shall employ Theorem A. Without any loss of generality, let β < α. To

proceed, we define a cone Ca and open subsets Ωα, Ωβ in B as

Ca =

{

y ∈ B

∣

∣

∣

∣

θy is nondecreasing on [0, T ], and θy(t) ≥ a(t)‖y‖ for t ∈ [0, T ]

}

,

(2.6)

Ωα = {y ∈ B | ‖y‖ < α} and Ωβ = {y ∈ B | ‖y‖ < β}. (2.7)

Note that for y ∈ Ca, we have

‖y‖ = θy(T ). (2.8)

Let the operator S : Ca ∩ (Ωα\Ωβ) → B be defined by

Sy(t) = µ

∫ t

0

g(t, s)f ∗(s, y(s)− φ(s))ds, t ∈ [0, T ]. (2.9)

Clearly, a fixed point of the operator S is a solution of (2.2). Indeed, a fixed point

of S obtained in Ca will be a fixed-sign solution of (2.2). Since a solution y∗ of (2.2)

satisfies y∗(0) = 0, from (2.6) we must have a(0) = 0 if we require y∗ to be in Ca.

Moreover, from the definition of Ca, we should have a(t) ∈ [0, 1] for t ∈ [0, T ]. All

these are fulfilled noting (C6).
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We shall show that the operator S : Ca ∩ (Ωα\Ωβ) → Ca is continuous and

completely continuous. First, we shall prove that

S : Ca ∩ (Ωα\Ωβ) → C[0, T ] is well defined. (2.10)

Let y ∈ Ca ∩ (Ωα\Ωβ). Then, ‖y‖ = R ∈ [β, α] and so

0 ≤ a(t)β ≤ a(t)R ≤ θy(t) ≤ R ≤ α, t ∈ [0, T ],

and

θy(t) ≥ a(t)R ≥ a(t)β > 0, t ∈ (0, T ].

Thus, together with (C6), we obtain for t ∈ (0, T ],

θ[y(t) − φ(t)] = θy(t) − µM

∫ t

0

g(t, s)ds ≥ a(t)R − µMLa(t) ≥ (β − µML)a(t) > 0.

(2.11)

Moreover, it is obvious that

0 ≤ θ[y(t) − φ(t)] ≤ θy(t) ≤ ‖y‖ = R ≤ α, t ∈ [0, T ]. (2.12)

It follows from (C4) and (C5) that for t ∈ (0, T ],

0 < |f ∗(t, y(t) − φ(t))| = θf(t, y(t) − φ(t)) + M ≤ c(t, y(t) − φ(t)) ≤ c(t, θR) (2.13)

and
|f ∗(t, y(t) − φ(t))| = θf(t, y(t) − φ(t)) + M

≥ b(t, y(t) − φ(t))

≥ b(t, θ(R − µML)a(t)).

(2.14)

Now, for t, t′ ∈ [0, T ] and t′ < t, we employ Hölder’s inequality and (2.13) to

obtain

|Sy(t)− Sy(t′)|

≤ µ

∫ t′

0

|g(t, s) − g(t′, s)| · |f ∗(s, y(s) − φ(s))|ds + µ

∫ t

t′
|g(t, s)| · |f ∗(s, y(s) − φ(s))|ds

≤ µ





(

∫ t′

0

|g(t, s) − g(t′, s)|pds

)
1

p

+

(
∫ t

t′
|g(t, s)|pds

)

1

p





(
∫ T

0

|f ∗(s, y(s) − φ(s))|qds

)

1

q

≤ µ





(

∫ t′

0

|g(t, s) − g(t′, s)|pds

)
1

p

+

(
∫ t

t′
|g(t, s)|pds

)

1

p





(
∫ T

0

[c(s, θR)]qds

)

1

q

.

Then, in view of (C1), (C2) and (C8), it follows that

|Sy(t) − Sy(t′)| → 0 as t → t′. (2.15)

This proves (2.10).
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Next, we shall check that

S : Ca ∩ (Ωα\Ωβ) → Ca. (2.16)

Once again let y ∈ Ca ∩ (Ωα\Ωβ). Noting (C1) and (C4), we obtain

θ(Sy)(t) = µ

∫ t

0

g(t, s)[θf(s, y(s)− φ(s)) + M ]ds ≥ 0, t ∈ [0, T ]. (2.17)

Now, let t1, t2 ∈ [0, T ] with t1 ≤ t2. Then,

θ(Sy)(t2) − θ(Sy)(t1) =

∫ t1

0

[g(t2, s) − g(t1, s)] · [θf(s, y(s) − φ(s)) + M ]ds

+

∫ t2

t1

g(t2, s)[θf(s, y(s) − φ(s)) + M ]ds

≥ 0

where we have used (C3), (C1) and (C4) in the last inequality. Hence, θ(Sy) is

nondecreasing on [0, T ]. It remains to show that θ(Sy)(t) ≥ a(t)‖Sy‖ for t ∈ [0, T ].

Noting (2.14), it is clear that for t ∈ [0, T ],

θ(Sy)(t) ≥ µ

∫ t

0

g(t, s)b(s, θ(R − µML)a(s))ds (2.18)

where R = ‖y‖. On the other hand, using (2.13) we get

θ(Sy)(T ) ≤ µ

∫ T

0

g(T, s)c(s, θR)ds. (2.19)

Since θ(Sy) is nondecreasing, we obtain

‖Sy‖ = θ(Sy)(T ) ≤ µ

∫ T

0

g(T, s)c(s, θR)ds ≡ A. (2.20)

Applying (2.20) in (2.18), we get for t ∈ [0, T ],

θ(Sy)(t) ≥ µ

∫ t

0

g(t, s)b(s, θ(R − µML)a(s))ds ·
‖Sy‖

A
≥ a(t)‖Sy‖

where we have used (C7) in the last inequality. This completes the proof of (2.16).

Next, we shall show that

S : Ca ∩ (Ωα\Ωβ) → Ca is compact. (2.21)

Once again let y ∈ Ca ∩ (Ωα\Ωβ). Using the monotonicity of θ(Sy), (2.19), Hölder’s

inequality, (C1) and (C8), we obtain for t ∈ [0, T ],

θ(Sy)(t) ≤ θ(Sy)(T ) ≤ µ

∫ T

0

g(T, s)c(s, θR)ds

≤ µ‖gT‖p

(
∫ T

0

[c(s, θR)]qds

)

1

q

≡ A0 < ∞.
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Thus, S(Ca ∩ (Ωα\Ωβ)) is uniformly bounded. Moreover, (2.15) guarantees the con-

tinuity of Sy. Hence, the compactness of S : Ca ∩ (Ωα\Ωβ) → Ca follows from the

Arzéla-Ascoli theorem. Having established (2.10), (2.16) and (2.21), we have shown

that S : Ca ∩ (Ωα\Ωβ) → Ca is continuous and completely continuous.

We shall now show that (i) ‖Sy‖ ≤ ‖y‖ for y ∈ Ca ∩ ∂Ωα, and (ii) ‖Sy‖ ≥ ‖y‖

for y ∈ Ca ∩ ∂Ωβ . To verify (i), let u ∈ Ca ∩ ∂Ωα. Then, ‖y‖ = R = α. Applying

(2.20)|R=α and (C9), we obtain

‖Sy‖ ≤ µ

∫ T

0

g(T, s)c(s, θα)ds ≤ α = ‖y‖.

Next, to prove (ii), let y ∈ Ca ∩ ∂Ωβ . So ‖y‖ = R = β. Now ‖Sy‖ = θ(Sy)(T )

Thus, using (2.18)|R=β and (C10) we find

‖Sy‖ = θ(Sy)(T ) ≥ µ

∫ T

0

g(T, s)b(s, θ(β − µML)a(s))ds ≥ β = ‖y‖.

Having obtained (i) and (ii), it follows from Theorem A that S has a fixed point

y∗ ∈ Ca ∩ (Ωα\Ωβ). Thus,

β ≤ ‖y∗‖ ≤ α and θy∗(t) ≥ a(t)β, t ∈ [0, T ]. (2.22)

Using the fact that β > µML > 0, (C6) and (2.3), we find for t ∈ (0, T ],

θy∗(t) ≥ a(t)‖y∗‖ ≥ βa(t) > µMLa(t) ≥ µM

∫ t

0

g(t, s)ds = θφ(t).

Also, it is clear that θy∗(t) ≥ θφ(t) for t ∈ [0, T ]. Hence, y∗ satisfies (2.5).

Since the fixed-sign solution u of (1.1) is given by u = y∗ − φ, we have (2.1) and

also, in view of (2.22),

θu(t) = θy∗(t) − θφ(t) ≥ a(t)β − µM

∫ t

0

g(t, s)ds, t ∈ [0, T ]

and

β − ‖φ‖ ≤ ‖y∗‖ − ‖φ‖ ≤ ‖u‖ ≤ ‖y∗‖ ≤ α.

Now, noting (C3) we find

‖φ‖ = sup
t∈[0,T ]

µM

∫ t

0

g(t, s)ds ≤ sup
t∈[0,T ]

µM

∫ t

0

g(T, s)ds = µM

∫ T

0

g(T, s)ds.

Clearly,

‖φ‖ = sup
t∈[0,T ]

µM

∫ t

0

g(t, s)ds ≥ µM

∫ T

0

g(T, s)ds.

Thus, we get ‖φ‖ = µM
∫ T

0
g(T, s)ds. Finally, to see that β − ‖φ‖ > 0, using (C6)

we get

β > µML ≥ µMLa(t) ≥ µM

∫ t

0

g(t, s)ds = θφ(t), t ∈ [0, T ]
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and so β > ‖φ‖. Therefore, conclusion (b) follows immediately. The proof is complete.

Remark 2.1. If (C2) is changed to

(C2)′ for any t, t′ ∈ [0, T ],
∫ t∗

0

|g(t, s) − g(t′, s)|pds +

∫ t∗∗

t∗
[g(t∗∗, s)]pds → 0 as t → t′

where t∗ = min{t, t′} and t∗∗ = max{t, t′},

then automatically we have supt∈[0,T ]

(

∫ t

0
[gt(s)]pds

)

< ∞ which appears in (C1).

Remark 2.2. In (C9) if we have strict inequality instead, i.e.,

µ

∫ T

0

g(T, s)c(s, θα)ds < α,

then from the latter part of the proof of Theorem 2.1 we see that a fixed point y∗ of

S must satisfy ‖y∗‖ 6= α. Similarly, if the inequality in (C10) is strict, i.e.,

µ

∫ T

0

g(T, s)b (s, θ(β − µML)a(s)) ds > β,

then a fixed point y∗ of S must fulfill ‖y∗‖ 6= β. Hence, with strict inequalities in

(C9) and (C10), the conclusion of Theorem 2.1 becomes:

The system (1.1) has at least one fixed-sign solution u ∈ C[0, T ] such that (2.1) holds.

Moreover, we have

(a) 0 < α−‖φ‖ < ‖u‖ < β and θu(t) > a(t)α−µM
∫ t

0
g(t, s)ds, t ∈ [0, T ] if α < β;

(b) 0 < β −‖φ‖ < ‖u‖ < α and θu(t) > a(t)β − µM
∫ t

0
g(t, s)ds, t ∈ [0, T ] if β < α;

where ‖φ‖ = µM
∫ T

0
g(T, s)ds.

The next result generalizes Theorem 2.1 and gives the existence of multiple fixed-

sign solutions of (1.1).

Theorem 2.2. Let 1 ≤ p < ∞ be a constant and q be such that 1
p

+ 1
q

= 1.

Let θ ∈ {1,−1} be fixed. Assume (C1)–(C8) hold. Let (C9) be satisfied for α =

αℓ, ℓ = 1, 2, . . . , k, and (C10) be satisfied for β = βℓ, ℓ = 1, 2, . . . , m. Let ‖φ‖ =

µM
∫ T

0
g(T, s)ds.

(a) Let m = k + 1 and 0 < β1 < α1 < · · · < βk < αk < βk+1.

(i) If αi < βi+1 − ‖φ‖, 1 ≤ i ≤ k − 1, then (1.1) has (at least) k fixed-sign

solutions u1, . . . , uk ∈ C[0, T ] such that

βi − ‖φ‖ ≤ ‖ui‖ ≤ αi, 1 ≤ i ≤ k.

(ii) If βi < αi − ‖φ‖, 2 ≤ i ≤ k, then (1.1) has (at least) k fixed-sign solutions

u1, . . . , uk ∈ C[0, T ] such that

αi − ‖φ‖ ≤ ‖ui‖ ≤ βi+1, 1 ≤ i ≤ k.
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(b) Let m = k and 0 < β1 < α1 < · · · < βk < αk.

(i) If αi < βi+1 − ‖φ‖, 1 ≤ i ≤ k − 1, then (1.1) has (at least) k fixed-sign

solutions u1, . . . , uk ∈ C[0, T ] such that

βi − ‖φ‖ ≤ ‖ui‖ ≤ αi, 1 ≤ i ≤ k.

(ii) If βi < αi − ‖φ‖, 2 ≤ i ≤ k − 1, then (1.1) has (at least) k − 1 fixed-sign

solutions u1, . . . , uk−1 ∈ C[0, T ] such that

αi − ‖φ‖ ≤ ‖ui‖ ≤ βi+1, 1 ≤ i ≤ k − 1.

(c) Let k = m + 1 and 0 < α1 < β1 < · · · < αm < βm < αm+1.

(i) If βi < αi+1 − ‖φ‖, 1 ≤ i ≤ m − 1, then (1.1) has (at least) m fixed-sign

solutions u1, . . . , um ∈ C[0, T ] such that

αi − ‖φ‖ ≤ ‖ui‖ ≤ βi, 1 ≤ i ≤ m.

(ii) If αi < βi −‖φ‖, 2 ≤ i ≤ m, then (1.1) has (at least) m fixed-sign solutions

u1, . . . , um ∈ C[0, T ] such that

βi − ‖φ‖ ≤ ‖ui‖ ≤ αi+1, 1 ≤ i ≤ m.

(d) Let k = m and 0 < α1 < β1 < · · · < αm < βm.

(i) If βi < αi+1 − ‖φ‖, 1 ≤ i ≤ m − 1, then (1.1) has (at least) m fixed-sign

solutions u1, . . . , um ∈ C[0, T ] such that

αi − ‖φ‖ ≤ ‖ui‖ ≤ βi, 1 ≤ i ≤ m.

(ii) If αi < βi − ‖φ‖, 2 ≤ i ≤ m − 1, then (1.1) has (at least) m − 1 fixed-sign

solutions u1, . . . , um−1 ∈ C[0, T ] such that

βi − ‖φ‖ ≤ ‖ui‖ ≤ αi+1, 1 ≤ i ≤ m − 1.

Proof. In (a), by applying Theorem 2.1 repeatedly, we find that there are possibly 2k

(not necessarily distinct) fixed-sign solutions to (1.1), namely, u1, . . . , u2k ∈ C[0, T ]

such that
β1 − ‖φ‖ ≤ ‖u1‖ ≤ α1, α1 − ‖φ‖ ≤ ‖u2‖ ≤ β2,

β2 − ‖φ‖ ≤ ‖u3‖ ≤ α2, α2 − ‖φ‖ ≤ ‖u4‖ ≤ β3, . . . ,

βk − ‖φ‖ ≤ ‖u2k−1‖ ≤ αk, αk − ‖φ‖ ≤ ‖u2k‖ ≤ βk+1.

In case (i), we see that k of these solutions are distinct, namely, u1, u3, . . . , u2k−1

with

β1 − ‖φ‖ ≤ ‖u1‖ ≤ α1, β2 − ‖φ‖ ≤ ‖u3‖ ≤ α2, . . . , βk − ‖φ‖ ≤ ‖u2k−1‖ ≤ αk.

In case (ii), it is clear that the k solutions u2, u4, . . . , u2k are distinct with

α1 − ‖φ‖ ≤ ‖u2‖ ≤ β2, α2 − ‖φ‖ ≤ ‖u4‖ ≤ β3, . . . , αk − ‖φ‖ ≤ ‖u2k‖ ≤ βk+1.
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The proof of (b)–(d) is similar.

Remark 2.3. Suppose in Theorem 2.2 we have some strict inequalities in (C9) and

(C10), say, involving αi and βj for some i ∈ {1, 2, . . . , k} and some j ∈ {1, 2, . . . , m}.

Then, noting Remark 2.2, those inequalities in the conclusion involving αi and βj will

also be strict.

We are now ready to discuss more specific conditions concerning the existence of

a(t) in (C6).

Theorem 2.3. Let 1 ≤ p < ∞ be a constant and q be such that 1
p

+ 1
q

= 1. Let

θ ∈ {1,−1} be fixed. Suppose (C1)–(C5) and (C8) hold. Further, assume

(C11) there exists N > 0 such that

g(t, s) ≥ N > 0, t ∈ (0, T ], a.e. s ∈ [0, t];

(C12) for any (t, x) ∈ [0, T ] × [0,∞)∗,

b(t, x) ≥ r(t)w(|x|)

and

c(t, x) ≤ ρ(t)w(|x|)

where ρ, r : [0, T ] → [0,∞), r(t) > 0 for a.e. t ∈ [0, T ], r is continuous, w :

[0,∞) → [0,∞) is continuous, w(s) > 0 for s > 0, w(st) ≥ w(s)w(t) for

s, t > 0, and w(x)
w(y)

≥ ℓ > 0 for 0 < x < y;

(C13) the function J : [0,∞) → [0,∞) defined by

J(z) =

∫ z

0

dx

w(x)

satisfies

J−1

(

Nℓ

Q

∫ t

0

r(s)ds

)

≤ 1, t ∈ [0, T ],

where Q =
∫ T

0
g(T, s)ρ(s)ds.

Let

a(t) = J−1

(

Nℓ

Q

∫ t

0

r(s)ds

)

and L = max
t∈(0,T ]

1

a(t)

∫ t

0

g(t, s)ds. (2.23)

Further, let (C9) and (C10) hold. Then, the system (1.1) has at least one fixed-sign

solution u ∈ C[0, T ] satisfying (2.1) and conclusions (a) and (b) of Theorem 2.1 hold.

Proof. Clearly, (C6) is satisfied. Theorem 2.1 is applicable if we can show that (C7)

is fulfilled. To begin, notice the inequality in (C7) is the same as
∫ t

0
g(t, s)b(s, θ(R − µML)a(s))ds

∫ T

0
g(T, s)c(s, θR)ds

≥ a(t), t ∈ [0, T ]. (2.24)
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Now, applying (C12) and (C11), we find
∫ t

0
g(t, s)b(s, θ(R − µML)a(s))ds

∫ T

0
g(T, s)c(s, θR)ds

≥

∫ t

0
g(t, s)r(s)w(|R − µML|a(s))ds
∫ T

0
g(T, s)ρ(s)w(R)ds

≥
ℓ
∫ t

0
g(t, s)r(s)w(a(s))ds
∫ T

0
g(T, s)ρ(s)ds

≥
Nℓ

Q

∫ t

0

r(s)w(a(s))ds.

Thus, (2.24) is satisfied if we can find some a ∈ C[0, T ] with a(0) = 0 and 0 < a(t) ≤

1, t ∈ (0, T ], such that

a(t) =
Nℓ

Q

∫ t

0

r(s)w(a(s))ds. (2.25)

We claim that (2.25) is satisfied if

a(t) = J−1

(

Nℓ

Q

∫ t

0

r(s)ds

)

. (2.26)

In fact, from (2.26) we have J(a(t)) = Nℓ
Q

∫ t

0
r(s)ds, or

∫ a(t)

0

dx

w(x)
=

Nℓ

Q

∫ t

0

r(s)ds.

Next, the above equation is the same as
∫ t

0

a′(s)ds

w(a(s))
=

Nℓ

Q

∫ t

0

r(s)ds

which upon differentiation gives

a′(t) =
Nℓ

Q
r(t)w(a(t)).

Integrating the above from 0 to t then yields (2.25). Thus, (2.25) is satisfied if a(t)

is defined by (2.26), moreover this a ∈ C[0, T ] fulfills a(0) = 0 and 0 < a(t) ≤ 1, t ∈

(0, T ] (see (C13)).

We have shown that the condition (C7) is satisfied and so the conclusion follows

from Theorem 2.1.

By using Theorems 2.3 repeatedly, we obtain the existence of multiple fixed-sign

solutions of (1.1).

Theorem 2.4. Let 1 ≤ p < ∞ be a constant and q be such that 1
p

+ 1
q

= 1. Let

θ ∈ {1,−1} be fixed. Assume (C1)–(C5), (C8) and (C11)–(C13) hold. Let a(t) and

L be defined in (2.23). Let (C9) be satisfied for α = αℓ, ℓ = 1, 2, . . . , k, and (C10) be

satisfied for β = βℓ, ℓ = 1, 2, . . . , m. Let ‖φ‖ = µM
∫ T

0
g(T, s)ds. Then, conclusions

(a)–(d) of Theorem 2.2 hold.
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Remark 2.4. Remarks similar to those of Remarks 2.1–2.3 also hold for Theorems 2.3

and 2.4.

We shall now present an example to illustrate the results obtained.

Example 2.1. Consider the Volterra integral equation (1.1) with

g(t, s) = t − s + 1, f(t, u) = −t and T > 0. (2.27)

Suppose we are interested in positive solutions, thus we set θ = 1.

We shall apply Theorem 2.3. Clearly, the conditions (C1)–(C3) are satisfied.

Also, (C4) is satisfied if we choose M = 2T . Hence, in (C5) we have

T ≤ θf(t, u) + M = 2T − t ≤ 2T,

and we can choose b = T and c = 2T . The condition (C8) is clearly fulfilled. Also,

since

g(t, s) = t − s + 1 ≥ t − t + 1 = 1 ≡ N,

the condition (C11) is satisfied with N = 1.

Next, in (C12) we can pick

r = T, ρ = 2T and w = 1 (thus ℓ = 1).

Hence, we find

Q =

∫ T

0

g(T, s)ρ(s)ds =

∫ T

0

2T (T − s + 1)ds = T 2(T + 2),

J(z) =

∫ z

0

dx

w(x)
=

∫ z

0

dx = z and J−1(z) = z.

It follows that

J−1

(

Nℓ

Q

∫ t

0

r(s)ds

)

=
Nℓ

Q

∫ t

0

r(s)ds =
1

Q

∫ t

0

Tds =
t

T (T + 2)
< 1

and so the condition (C13) is satisfied. Further, as in (2.23) we let

a(t) = J−1

(

Nℓ

Q

∫ t

0

r(s)ds

)

=
t

T (T + 2)

and

L = max
t∈(0,T ]

1

a(t)

∫ t

0

g(t, s)ds = max
t∈(0,T ]

1

2
T (T + 2)(t + 2) =

1

2
T (T + 2)2.

The inequality in (C9) then reduces to

µ

∫ T

0

g(T, s)c(s, θα)ds = µT 2(T + 2) ≤ α

which is true for α > µML. Similarly, condition (C10) also holds for some β( 6= α).

We now conclude from Theorem 2.3 that the Volterra integral equation with

(2.27) has at least one positive solution u ∈ C[0, T ] such that

u(t) ≥ 0, t ∈ [0, T ] and u(t) > 0, t ∈ (0, T ]. (2.28)
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Moreover, we have

(a) 0 < α − ‖φ‖ ≤ ‖u‖ ≤ β and u(t) ≥ a(t)α − µM
∫ t

0
g(t, s)ds = t

T (T+2)
α −

2Tµ
(

t2

2
+ t
)

, t ∈ [0, T ] if α < β;

(b) 0 < β − ‖φ‖ ≤ ‖u‖ ≤ α and u(t) ≥ a(t)β − µM
∫ t

0
g(t, s)ds = t

T (T+2)
β −

2Tµ
(

t2

2
+ t
)

, t ∈ [0, T ] if β < α;

where ‖φ‖ = µM
∫ T

0
g(T, s)ds = µT 2(T + 2).
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