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1. INTRODUCTION

In this paper we discuss the existence of positive solutions for the second order

differential equation

u′′(t) + g(t)f(t, u(t)) = 0, t ∈ (0, 1), (1.1)

subject to some nonlinear boundary conditions (BCs). Problems of this type have

been studied recently by several authors, see for example [2, 6, 8, 13, 14, 24, 25].

In particular we deal with the BCs

u′(0) + H1(α[u]) = 0, σu′(1) + u(η) = H2(β[u]), η ∈ [0, 1], (1.2)

where H1, H2 are continuous functions such that there exist h11, h12, h21, h22 ∈ [0,∞)

with

h11v ≤ H1(v) ≤ h12v and h21v ≤ H2(v) ≤ h22v, (1.3)

for every v ≥ 0. Here α[u], β[u] are linear functionals given by

α[u] =

∫ 1

0

u(s) dA(s), β[u] =

∫ 1

0

u(s) dB(s), (1.4)

involving Lebesgue-Stieltjes integrals.

When H1(v) = H2(v) = v, this type of BCs includes, as special cases, the so-

called m-point problems

α[u] =
m
∑

i=1

αiu(ξi), β[u] =
m
∑

i=1

βiu(τi),
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and integral BCs

α[u] =

∫ 1

0

α(s)u(s) ds, β[u] =

∫ 1

0

β(s)u(s) ds.

Multi-point and integral BCs are widely studied objects, see for example [3, 10,

11, 12, 17, 21, 23, 26] and the reference therein.

One motivation for studying this type of BVP is that it occurs in some heat flow

problems. For example, the special case α[u] = u(ξ), β[u] = u(τ), namely,

u′(0) + H1(u(ξ)) = 0, σu′(1) + u(η) = H2(u(τ)), ξ, η, τ ∈ [0, 1], (1.5)

arises in the study of the steady states of a heated bar of length 1. Here two controllers

at t = 0 and t = 1 add or remove heat according to the temperatures detected by

three sensors at t = ξ, t = η and t = τ .

Heat flow problems of this type have been investigated recently in [7, 8, 9, 18,

19, 20]. In particular Infante and Webb [9], motivated by an earlier work of Guidotti

and Merino [5], studied the existence of positive solutions of the BVP

−u′′(t) = f(t, u(t)), t ∈ (0, 1), u′(0) = 0, σu′(1) + u(η) = 0, (1.6)

that models a bar, insulated at t = 0, with a controller in t = 1 adding or removing

heat depending on the temperature detected by a sensor at t = η.

The approach in [9] is to find the Green’s function k corresponding to the BVP

(1.6) and seek solutions as fixed points of an Hammerstein integral operator of the

type

Fu(t) :=

∫ 1

0

k(t, s)g(s)f(s, u(s)) ds. (1.7)

Our idea is to rewrite the BVP (1.1)–(1.2) as a perturbation of the integral

equation u(t) = Fu(t), that is

u(t) = γ(t)H1(α[u]) + δ(t)H2(β[u]) +

∫ 1

0

k(t, s)g(s)f(s, u(s)) ds, (1.8)

and seek fixed points of the perturbed Hammerstein operator

Tu(t) := γ(t)H1(α[u]) + δ(t)H2(β[u]) + Fu(t).

Our main ingredient is the classical theory of fixed poind index, that we utilize

on a suitable cone of continuous functions, combined with some results from the

paper [22].
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2. FIXED POINT INDEX CALCULATIONS

We make the following assumptions on the terms that occur in (1.8):

• f : [0, 1] × [0,∞) → [0,∞) is continuous.

• k : [0, 1] × [0, 1] → [0,∞) is continuous.

• There exist a subinterval [a, b] ⊆ [0, 1], a function Φ ∈ L∞[0, 1], and a constant

c1 ∈ (0, 1] such that

k(t, s) ≤ Φ(s) for t ∈ [0, 1] and almost every s ∈ [0, 1],

k(t, s) ≥ c1Φ(s) for t ∈ [a, b] and almost every s ∈ [0, 1].

• g Φ ∈ L1[0, 1], g ≥ 0 a.e., and
∫ b

a
Φ(s)g(s) ds > 0.

• A, B are functions of bounded variation. Here dA and dB are positive measures

and we use the notation

KA(s) :=

∫ 1

0

k(t, s) dA(t) and KB(s) :=

∫ 1

0

k(t, s) dB(t).

• γ ∈ C[0, 1], γ(t) ≥ 0, h12α[γ] < 1. There exists c2 ∈ (0, 1] such that

γ(t) ≥ c2‖γ‖ for t ∈ [a, b].

• δ ∈ C[0, 1], δ(t) ≥ 0, h22β[δ] < 1. There exists c3 ∈ (0, 1] such that

δ(t) ≥ c3‖δ‖ for t ∈ [a, b].

• D2 := (1 − h12α[γ])(1 − h22β[δ]) − h12h22α[δ]β[γ] > 0.

Under the hypotheses above, we can work in the cone

K = {u ∈ C[0, 1], u ≥ 0 : min
t∈[a,b]

u(t) ≥ c‖u‖}, (2.1)

where c = min{c1, c2, c3}. This type of cone has been used firstly by Krasnosel’skĭı,

see e.g. [15], and D. Guo, see e.g. [4], and later by several authors.

A routine check shows that, under the above hypotheses, T maps K into K and

is compact.

Remark 2.1. In [22] the authors work with linear BCs and are able to handle

sign-changing measures. Here, since we want our functionals α, β to be inequality

preserving, we deal with positive measures only.

Before our index calculations, we recall some useful facts concerning real 2 × 2

matrices:

Definition 2.2 ([22]). A 2× 2 matrix M is said to be order preserving (or positive)

if p1 ≥ p0, q1 ≥ q0 imply

M

(

p1

q1

)

≥ M

(

p0

q0

)

,

in the sense of components.



282 G. INFANTE

Lemma 2.3. ([22]) Let

M =

(

a −b

−c d

)

with a, b, c, d ≥ 0 and detM > 0. Then M−1 is order preserving.

Lemma 2.4. ([22]) Let M satisfy the hypotheses of Lemma 2.3. Suppose p ≥ 0, q ≥ 0

and

M

(

x

y

)

=

(

p

q

)

and Mµ

(

xµ

yµ

)

=

(

p

q

)

,

where Mµ = µI + M with µ ≥ 0. Then xµ ≤ x and yµ ≤ y.

We make use of the following open bounded sets (relative to K):

Kρ = {u ∈ K : ‖u‖ < ρ}, Vρ = {u ∈ K : min
t∈[a,b]

u(t) < ρ}.

The set Vρ is equal to the set called Ωρ/c in [16] (c here is from (2.1)). Note that

Kρ ⊂ Vρ ⊂ Kρ/c.

We also utilize the quantity

D1 := (1 − h11α[γ])(1 − h21β[δ]) − h11h21α[δ]β[γ].

The condition D2 > 0 implies D1 > 0.

The following Lemma shows that the index is 0 on the set Vρ.

Lemma 2.5. Assume that there exists ρ > 0 such that

fρ,ρ/c

(

(c2‖γ‖

D1
(1 − h21β[δ]) +

c3‖δ‖

D1
h11β[γ]

)

∫ b

a

KA(s)g(s) ds

+
(c2‖γ‖

D1
h21α[δ] +

c3‖δ‖

D1
(1 − h11α[γ])

)

∫ b

a

KB(s)g(s) ds +
1

M

)

> 1, (2.2)

where

fρ,ρ/c = inf
{f(t, u)

ρ
: (t, u) ∈ [a, b]× [ρ, ρ/c]

}

and
1

M
= inf

t∈[a,b]

∫ b

a

k(t, s)g(s) ds. (2.3)

Then iK(T, Vρ) = 0.

Proof. Let e(t) ≡ 1 for t ∈ [0, 1]. Then e ∈ K. We prove that

u 6= Tu + λe for u ∈ ∂Vρ and λ ≥ 0,

which ensures that the index is 0 on the set Vρ. In fact, if this is not so, there exist

u ∈ ∂Vρ and λ ≥ 0 such that u = Tu + λe. Then we have

u(t) = γ(t)H1(α[u]) + δ(t)H2(β[u]) + Fu(t) + λ

and therefore

u(t) ≥ h11γ(t)α[u] + h21δ(t)β[u] + Fu(t) + λ. (2.4)
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Applying α and β to both sides of (2.4) gives

α[u] ≥ h11α[γ]α[u] + h21α[δ]β[u] + α[Fu] + λα[1],

β[u] ≥ h11β[γ]α[u] + h21β[δ]β[u] + β[Fu] + λβ[1].

This can be written in the form
(

1 − h11α[γ] −h21α[δ]

−h11β[γ] 1 − h21β[δ]

)(

α[u]

β[u]

)

≥

(

α[Fu] + λα[1]

β[Fu] + λβ[1]

)

≥

(

α[Fu]

β[Fu]

)

. (2.5)

Setting

M =

(

1 − h11α[γ] −h21α[δ]

−h11β[γ] 1 − h21β[δ]

)

gives

M−1 =
1

D1

(

1 − h21β[δ] h21α[δ]

h11β[γ] 1 − h11α[γ]

)

.

Note that M−1 is order preserving by Lemma 2.3. Thus, if we apply M−1 to both

sides of the inequality (2.5), we obtain
(

α[u]

β[u]

)

≥
1

D1

(

1 − h21β[δ] h21α[δ]

h11β[γ] 1 − h11α[γ]

)(

α[Fu]

β[Fu]

)

and therefore

u(t) ≥
(γ(t)

D1

(1 − h21β[δ]) +
δ(t)

D1

h11β[γ]
)

α[Fu]

+
(γ(t)

D1

h21α[δ] +
δ(t)

D1

(1 − h11α[γ])
)

β[Fu] + Fu(t) + λ.

Then we have, for t ∈ [a, b],

u(t) ≥
(γ(t)

D1
(1 − h21β[δ]) +

δ(t)

D1
h11β[γ]

)

∫ 1

0

KA(s)g(s)f(s, u(s)) ds

+
(γ(t)

D1
h21α[δ] +

δ(t)

D1
(1 − h11α[γ])

)

∫ 1

0

KB(s)g(s)f(s, u(s)) ds

+

∫ 1

0

k(t, s)g(s)f(s, u(s)) ds + λ

≥
(c2‖γ‖

D1

(1 − h21β[δ]) +
c3‖δ‖

D1

h11β[γ]
)

∫ b

a

KA(s)g(s)f(s, u(s)) ds

+
(c2‖γ‖

D1

h21α[δ] +
c3‖δ‖

D1

(1 − h11α[γ])
)

∫ b

a

KB(s)g(s)f(s, u(s)) ds

+

∫ b

a

k(t, s)g(s)f(s, u(s)) ds + λ.

Using the hypothesis (2.2) we obtain mint∈[a,b] u(t) > ρ + λ ≥ ρ, contradicting

the fact that u ∈ ∂Vρ.

We now prove that the index is 1 on the set Kρ.
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Lemma 2.6. Assume that there exists ρ > 0 such that

f 0,ρ
(

(‖γ‖

D2
(1 − h22β[δ]) +

‖δ‖

D2
h12β[γ]

)

∫ 1

0

KA(s)g(s) ds

+
(‖γ‖

D2
h22α[δ] +

‖δ‖

D2
(1 − h12α[γ])

)

∫ 1

0

KB(s)g(s) ds +
1

m

)

< 1, (2.6)

where

f 0,ρ = sup
{f(t, u)

ρ
: (t, u) ∈ [0, 1] × [0, ρ]

}

and
1

m
= sup

t∈[0,1]

∫ 1

0

k(t, s)g(s) ds. (2.7)

Then iK(T, Kρ) = 1.

Proof. (i) We show that Tu 6= λu for all λ ≥ 1 when u ∈ ∂Kρ, which implies that

iK(T, Kρ) = 1. In fact, if this does not happen, there exist u with ‖u‖ = ρ and λ ≥ 1

such that λu(t) = Tu(t). Then we have

λu(t) = γ(t)H1(α[u]) + δ(t)H2(β[u]) + Fu(t)

and therefore

λu(t) ≤ h12γ(t)α[u] + h22δ(t)β[u] + Fu(t). (2.8)

Applying α and β to both sides of (2.8) gives

λα[u] ≤ h12α[γ]α[u] + h22α[δ]β[u] + α[Fu],

λβ[u] ≤ h12β[γ]α[u] + h22β[δ]β[u] + β[Fu].

Thus we have
(

λ − h12α[γ] −h22α[δ]

−h12β[γ] λ − h22β[δ]

)(

α[u]

β[u]

)

≤

(

α[Fu]

β[Fu]

)

. (2.9)

Setting

Mλ =

(

λ − h12α[γ] −h22α[δ]

−h12β[γ] λ − h22β[δ]

)

,

we have

(Mλ)
−1 =

1

Dλ

(

λ − h22β[δ] h22α[δ]

h12β[γ] λ − h12α[γ]

)

,

where

Dλ := (λ − h12α[γ])(λ − h22β[δ]) − h22h12α[δ]β[γ] ≥ D2 > 0.

Note that (Mλ)
−1 is order preserving by Lemma 2.3. Thus, if we apply (Mλ)

−1

to both sides of the inequality (2.9) we obtain
(

α[u]

β[u]

)

≤
1

Dλ

(

λ − h22β[δ] h22α[δ]

h12β[γ] λ − h12α[γ]

)(

α[Fu]

β[Fu]

)

,
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and as a consequence of Lemma 2.4, we have
(

α[u]

β[u]

)

≤
1

D2

(

1 − h22β[δ] h22α[δ]

h12β[γ] 1 − h12α[γ]

)(

α[Fu]

β[Fu]

)

.

Hence we obtain

λu(t) ≤
γ(t)

D2

[

(1 − h22β[δ])α[Fu] + h22α[δ]β[Fu]
]

+
δ(t)

D2

[

(1 − h12α[γ])β[Fu]) + h12β[γ]α[Fu]
]

+ Fu(t).

Using the inequality f(s, u(s)) ≤ ρf 0,ρ and taking the supremum over [0, 1] gives

λρ ≤ ρf 0,ρ
((‖γ‖

D2
(1 − h22β[δ]) +

‖δ‖

D2
h12β[γ]

)

∫ 1

0

KA(s)g(s) ds

+
(‖γ‖

D2
h22α[δ] +

‖δ‖

D2
(1 − h12α[γ])

)

∫ 1

0

KB(s)g(s) ds +
1

m

)

,

contradicting (2.6).

3. THE BOUNDARY VALUE PROBLEM

We now turn our attention to the differential equation

u′′(t) + g(t)f(t, u(t)) = 0, t ∈ (0, 1), (3.1)

with the BCs

u′(0) + H1(α[u]) = 0, σu′(1) + u(η) = H2(β[u]). (3.2)

The solution of −u′′ = y under these BCs can be written in the form

u(t) =(σ + η − t)H1(α[u]) + H2(β[u])

+ σ

∫ 1

0

y(s)ds +

∫ η

0

(η − s)y(s)ds −

∫ t

0

(t − s)y(s)ds.

The solution of our BVP is

u(t) = γ(t)H1(α[u]) + δ(t)H2(β[u]) +

∫ 1

0

k(t, s)g(s)f(s, u(s))ds, (3.3)

where

γ(t) = σ + η − t, δ(t) = 1

and

k(t, s) = σ +







η − s, s ≤ η

0, s > η
−







t − s, s ≤ t

0, s > t.

Here we focus on the case β > 0 and σ + η ≥ 1 that leads to the existence

of positive solutions. The case β > 0 and σ + η < 1, that leads to solutions that

are positive on a sub-interval has been investigated in the case of one nonlinear

perturbation in [8], and for the case of no perturbations in [9].
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Upper bounds for k(t, s) and γ(t) were given in [7, 9, 19] as follows:

‖γ‖ = σ + η, Φ(s) =







σ, s > η,

σ + η − s, s ≤ η.
(3.4)

In [9, 19] it has been shown that

k(t, s) ≥ c1Φ(s), for t ∈ [0, b],

where c1 = 1− b
σ+η

. Here b ∈ (0, 1) may be arbitrary and b = 1 is allowed if σ+η > 1.

A direct calculation shows that the inequality

γ(t) ≥ c2‖γ‖ for t ∈ [0, b],

is satisfied when c2 = c1. Note that δ(t) ≡ 1, so ‖δ‖ = 1 and one may take c3 = 1.

This leads to the choice

c = 1 −
b

σ + η
. (3.5)

Hence, we work on the cone

K = {u ∈ C[0, 1] : u(t) ≥ 0 for every t ∈ [0, 1] and min
t∈[0,b]

u(t) ≥ c‖u‖},

with c as in (3.5).

By means of the two Lemmas above, provided that the function f has a suitable

oscillatory behavior, one may establish the existence of multiple positive solutions

(we refer the reader to [16] to see the type of results that may be stated). Here, for

brevity, we state a result for the case of one positive solution.

Theorem 3.1. Let [a, b] = [0, b] and c be as in (3.5). Then the equation (3.3) has a

nonzero solution in K if either of the following conditions hold.

(S1) There exist ρ1, ρ2 ∈ (0,∞) with ρ1 < ρ2 such that (2.6) is satisfied for ρ1 and

(2.2) is satisfied for ρ2.

(S2) There exist ρ1, ρ2 ∈ (0,∞) with ρ1 < cρ2 such that (2.2) is satisfied for ρ1 and

(2.6) is satisfied for ρ2.

The next example sheds some light on the conditions that occur in our theory.

Example 3.2. Consider the BVP

−u′′(t) = f(t, u(t)), a.e. on [0, 1], (3.6)

u′(0) + H1(αu(ξ)) = 0, σu′(1) + u(η) = H2(βu(τ)), (3.7)

where ξ, η, τ ∈ [0, 1] and ξ < η < τ . In this case g ≡ 1 and we may take dA to be the

Dirac measure of weight α at ξ and dB the Dirac measure of weight β at τ .

We need

h12α[γ] < 1, h22β[δ] < 1, and D2 > 0.
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For our BVP we have

α[γ] = α(σ + η − ξ), α[δ] = α, β[γ] = β(σ + η − τ), β[δ] = β,

and therefore the total requirement is

h12α(σ + η − ξ) < 1, h22β < 1,

(1 − h12α(σ + η − ξ))(1 − h22β) − h12h22αβ > 0.

Furthermore, by direct computation, we have

1

m
= σ + η2/2,

and
∫ 1

0

KA(s) ds =
1

2
α(2σ + η2 − ξ2),

∫ 1

0

KB(s) ds =
1

2
β(2σ + η2 − τ 2).

Note that different choices of b affect the growth condition on f in (2.2). Webb

[19] computed the minimal M with the corresponding optimal interval [0, b], for the

special case

u′(0) = 0, σu′(1) + u(η) = 0,

as follows:

1

M
=



















(σ + η)2/4 (for b = (σ + η)/2), if σ < η,

(σ2 + η2)/2 (for b = σ), if η ≤ σ ≤ 1,

(2σ − 1 + η2)/2 (for b = 1), if σ > 1.

In order to illustrate the remaining terms in (2.2), we now suppose ξ < η < σ < τ

and set [a, b] = [0, σ]. This gives
∫ σ

0

KA(s) ds =
1

2
α(2σ2 + η2 − ξ2),

∫ σ

0

KB(s) ds =
1

2
β(3σ2 + η2 − 2τσ).

Thus all the ingredients that appear in (2.2) and (2.6) can be computed.
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