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ABSTRACT. The present paper studies the existence results for the second order hyperbolic

partial differential inclusions in the nonconvex case and without assuming any kind of the continuity

conditions on the multi-valued functions. The existence of the extremal solutions is also established

under certain monotonicity conditions.
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1. STATEMENT OF THE PROBLEMS

Let R denote the real line and let Ja = [0, a] and Jb = [0, b] be two closed and

bounded intervals in R for some real numbers a > 0 and b > 0. By Pp(R) we denote

the class of all non-empty subsets of R with property p. Now consider the second

order hyperbolic partial differential inclusion (in short HPDI)

∂2u(x, y)

∂x∂y
∈ F (x, y, u(x, y)) a.e. (x, y) ∈ Ja × Jb,

u(x, 0) = φ(x), u(0, y) = ψ(y),







(1.1)

where, F : Ja × Jb × R → Pp(R) and the functions φ : Ja → R and ψ : Jb → R are

continuous with φ(0) = ψ(0).

By a solution of the HPDI (1.1) we mean a function u ∈ AC(Ja × Jb,R) such

that there exists a function v ∈ L1(Ja ×Jb,R) such that v(x, y) ∈ G(x, y, u(x, y)) a.e.

(x, y) ∈ Ja × Jb satisfying

∂2u(x, y)

∂x∂y
= v(x, y),

u(x, 0) = φ(x), u(0, y) = ψ(y),

where AC(Ja × Jb,R) is the space of absolutely continuous real-valued functions on

Ja×Jb and the functions φ : Ja → R and ψ : Jb → R are continuous with φ(0) = ψ(0).
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The HPDI (1.1) has been discussed in the literature by several authors for the

existence theorems under different continuity conditions on the multi-valued functions

F . The details may be found in Dawidowski and Kubiaczyk [4] and the references

therein. In this paper we discuss the HPDI (1.1) for the existence of solutions as well

as the existence of extremal solutions under certain monotonicity conditions without

assuming any kind of continuity conditions on the multi-valued functions F .

Later, we consider the perturbed second order hyperbolic partial differential in-

clusions (in short HPDI)

∂2u(x, y)

∂x∂y
∈ F (x, y, u(x, y)) +G(x, y, u(x, y)) a.e. (x, y) ∈ Ja × Jb,

u(x, 0) = φ(x), u(0, y) = ψ(y),







(1.2)

where, F,G : Ja × Jb × R → Pp(R) and the functions φ : Ja → R and ψ : Jb → R are

continuous with φ(0) = ψ(0).

By a solution of the HPDI (1.2) we mean a function u ∈ AC(Ja × Jb,R) such

that there exist functions v1, v2 ∈ L1(Ja × Jb,R) such that v1(x, y) ∈ F (x, y, u(x, y))

and v2(x, y) ∈ G(x, y, u(x, y)) almost everywhere for (x, y) ∈ Ja × Jb satisfying

∂2u(x, y)

∂x∂y
= v1(x, y) + v2(x, y),

u(x, 0) = φ(x), u(0, y) = ψ(y),

where AC(Ja × Jb,R) is the space of absolutely continuous real-valued functions on

Ja×Jb and the functions φ : Ja → R and ψ : Jb → R are continuous with φ(0) = ψ(0).

The HPDI (1.2) has been discussed in Belarbi and Benchohra [1] for the existence

results under the mixed Lipschitz and Carathéodory conditions on the multi-valued

functions. Here, we prove the existence of solutions as well as the existence of the

extremal solutions for the HPDI (1.2) under different monotonicity conditions on the

multi-valued functions. Here, we do not require any kind of continuity condition on

one of the multi-valued functions F and G.

2. PRELIMINARIES

In this section, we introduce notations, definitions, and some basic results from

multi-valued analysis which are used in the remaining part of this paper.

Let C(Ja × Jb,R) be the Banach space of all continuous functions from Ja × Jb

into R with the norm

‖u‖∞ = sup{|u(x, y)| : (x, y) ∈ Ja × Jb} , (2.1)

for each u ∈ C(Ja × Jb,R).
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Let L1(Ja×Jb,R) denote the Banach space of measurable functions u : Ja×Jb →

R which are Lebesgue integrable normed by

‖u‖L1 =

∫ a

0

∫ b

0

|u(x, y)| dx dy (2.2)

for each u ∈ L1(Ja × Jb,R).

We equip the space X = C(Ja × Jb,R) with the order relation ≤ defined by the

cone K in X, that is,

K = {u ∈ X : u(x, y) ≥ 0, ∀ (x, y) ∈ Ja × Jb}. (2.3)

It is known that the cone K is normal in X. Details on cones and their properties

may be found in Heikkilä and Lakshmikantham [12]. Let a, b ∈ X be such that a ≤ b.

Then, by an order interval [a, b], we mean the set of points in X given by

[a, b] = {u ∈ X : a ≤ u ≤ b}.

Let A,B ∈ Pp(X). Denote

A± B = {a± b : a ∈ A and b ∈ B},

λA = {λa : λ ∈ R and a ∈ A}.

Also denote

‖A‖ = {‖a‖ : a ∈ A}

and

‖A‖P = sup{‖a‖ : a ∈ A}.

Let the Banach space X be equipped with the order relation ≤ and define the order

relation in Pp(X) as follows.

Let A,B ∈ Pp(X). Then by A
i

≤ B we mean “ for every a ∈ A there exists a

b ∈ B such that a ≤ b ”. Again A
d

≤ B means for each b ∈ B there exists a a ∈ A

such that a ≤ b. Further, we have A
id

≤ B ⇐⇒ A
i

≤ B and A
d

≤ B. Finally A ≤ B

implies that a ≤ b for all a ∈ A and b ∈ B. Note that if A ≤ A, then it follows that

A is a singleton set. See Dhage [6] and references therein.

Definition 2.1. A mapping Q : X → Pp(X) is called right monotone increasing

(resp. left monotone increasing) if Qx
i

≤ Qy (resp. Qx
d

≤ Qy) for all x, y ∈ X for

which x ≤ y. Similarly, Q is called monotone increasing if it is left as well as right

monotone increasing on X. Finally, Q is strict monotone increasing if Qx ≤ Qy for

all x, y ∈ X for which x ≤ y, x 6= y.

Remark 2.2. Note that every strict monotone increasing multi-valued mapping is

right monotone increasing, but the converse may not be true.
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It is known that the monotone technique is a very useful tool for proving the

existence of the extremal solutions for differential equations and inclusions. The

exhaustive treatment of this method for discontinuous differential equations may be

found in Heikkila and Lakshmikantham [12]. The monotone method blended with the

lower and upper solutions method has been employed in Lashmikantham and Pandit

[13] and Pandit [15] for proving existence results for hyperbolic partial differential

equations under continuity and certain compactness type conditions. The method of

lower and upper solutions has been discussed in Halidias and Papageorgiou [11] for

proving the existence results for second order ordinary differential inclusions under

upper semi-continuity of the multi-valued functions. But the use of the monotone

technique in the theory of differential inclusions involving discontinuous multi-valued

functions is relatively new to the literature. Some recent results in this direction

appear in Dhage [5, 6, 7, 9]. In the methods of monotone technique for differential

inclusions, the operator in question is required to satisfy certain monotonicity condi-

tion with respect to certain order relation on the domains of definition. The following

two fixed point theorems are fundamental in the monotone theory for discontinu-

ous differential inclusions involving right or strict monotone increasing multi-valued

functions.

Theorem 2.3 (Dhage [5]). Let [a, b] be an order interval in a subset Y of an ordered

Banach space X and let Q : [a, b] → Pcp([a, b]) be a right monotone increasing multi-

valued mapping. If every sequence {yn} ⊂
⋃

Q([a, b]) defined by yn ∈ Qxn, n ∈ N

has a cluster point, whenever {xn} is a monotone increasing sequence in [a, b], then

Q has a fixed point.

Theorem 2.4 (Dhage [7]). Let [a, b] be an order interval in a subset Y of an ordered

Banach space X and let Q : [a, b] → Pcp([a, b]) be a strict monotone increasing multi-

valued mapping. If every sequence {yn} ⊂
⋃

Q([a, b]) defined by yn ∈ Qxn, n ∈ N has

a cluster point, whenever {xn} is a monotone sequence in [a, b], then Q has a least

fixed point x∗ and a greatest fixed point x∗ in [a, b]. Moreover,

x∗ = min{y ∈ [a, b] | Qy ≤ y} and x∗ = max{y ∈ [a, b] | y ≤ Qy}.

Let X be a metric space. A multi-valued operator T : X → P(X) is convex

(closed) valued if T (x) is convex (closed) for all x ∈ X. T is bounded on bounded sets

if T (S) = ∪x∈ST (x) is a bounded subset of X for all S ∈ Pbd(X) (i.e. supx∈S{sup{|y| :

y ∈ T (x)}} <∞). T is called upper semi-continuous (u.s.c.) on X if for each x0 ∈ X

the set T (x0) is a nonempty closed subset of X and if for each open set N of X

containing T (x0), there exists an open neighborhood N0 of x0 such that T (N0) ⊆ N .

T is called totally bounded if T (S) is a totally bounded subset of X for each

S ∈ Pbd(X). T is called compact if T (S) is a relatively compact subset of X for

each S ∈ Pbd(X). T is said to be completely continuous if it is continuous and compact
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on X. Note that every compact operator is totally bounded, but the converse may

not be true. However, these two notions are equivalent in a complete metric space X.

If the multi-valued map T is completely continuous with nonempty compact values,

then T is u.s.c. if and only if T has a closed graph (i.e. xn → x∗, yn → y∗, yn ∈ T (xn)

imply y∗ ∈ T (x∗)). Finally, T has a fixed point if there is x ∈ X such that x ∈ T (x).

The following hybrid fixed point theorems are useful in the sequel.

Theorem 2.5 (Dhage [10]). Let [a, b] be an order interval in an ordered Banach

space X. Let A,B : [a, b] → Pcp(X) be two right monotone increasing multi-valued

operators satisfying

(a) A is completely continuous,

(b) B is totally bounded, and

(c) Ax+By ⊂ [a, b] for all x, y ∈ [a, b].

Further, if the cone K in X is normal, then the operator inclusion x ∈ Ax+Bx has

a solution in [a, b].

Theorem 2.6 (Dhage [7]). Let [a, b] be an order interval in an ordered Banach space

X. Let A,B : [a, b] → Pcp(X) be two strict monotone increasing multi-valued opera-

tors satisfying

(a) A is completely continuous,

(b) B is totally bounded, and

(c) Ax+By ⊂ [a, b] for all x, y ∈ [a, b].

Further, if the cone K in X is normal, then the operator inclusion x ∈ Ax+Bx has

a least and a greatest solution in [a, b].

Let (X, d) be a metric space induced from the normed space (X, | · |). Consider

the function dH : Pp(X) × Pp(X) → R+ ∪ {∞} defined by

dH(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(A, b)
}

,

where d(A, b) = infa∈A d(a, b), d(a,B) = infb∈B d(a, b). Then (Pcl(X), dH) is a metric

space and (Pcl,bd(X), dH) is called a generalized metric space (see [4]).

Definition 2.7. A multi-valued operator T : X → Pcl(X) is called a multi-valued

contraction on X if exists a real number α < 1 such that

dH(T (x), T (y)) ≤ αd(x, y)

for all x, y ∈ X. The number α is called the contraction constant of T on X.

We also need the following two hybrid fixed point theorems in the sequel.
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Theorem 2.8 (Dhage [10]). Let [a, b] be an order interval in an ordered Banach

space X. Let A,B : [a, b] → Pcp(X) be two right monotone increasing multi-valued

operators satisfying

(a) A is multi-valued contraction,

(b) B is totally bounded, and

(c) Ax+By ⊂ [a, b] for all x, y ∈ [a, b].

Further, if the cone K in X is normal, then the operator inclusion x ∈ Ax+Bx has

a solution in [a, b].

Theorem 2.9 (Dhage [7]). Let [a, b] be an order interval in an ordered Banach space

X. Let A,B : [a, b] → Pcp(X) be two strict monotone increasing multi-valued opera-

tors satisfying

(a) A is multi-valued contraction,

(b) B is totally bounded, and

(c) Ax+By ⊂ [a, b] for all x, y ∈ [a, b].

Further, if the cone K in X is normal, then the operator inclusion x ∈ Ax+Bx has

a least and a greatest solution in [a, b].

Remark 2.10. Notice that hypothesis (c) of Theorems 2.3, 2.4, 2.5 and 2.6 hold if

the multi-valued operators A and B are right monotone increasing and the elements

a and b satisfy a ≤ Aa+Ba and Ab+Bb ≤ b.

3. EXISTENCE THEORY FOR THE PROBLEM (1.1)

Definition 3.1. A multi-valued map β : Ja × Jb → Pcl(R) is said to be measurable

if for every z ∈ R, the function (x, y) 7→ d(z, β(x, y)) = inf{|z − u| : u ∈ β(x, y)} is

measurable.

Let β : Ja × Jb × R → P(R) be a multi-valued map with nonempty compact

values. Assign to β, the multi-valued operator

S1
β : C(Ja × Jb,R) → P(L1(Ja × Jb,R))

defined by

S1
β(u) = {w ∈ L1(Ja × Jb,R) : w(x, y) ∈ β(x, y, u(x, y)) a.e. (x, y) ∈ Ja × Jb}. (3.1)

The operator S1
β is called the Niemytsky operator associated with the multi-valued

function β and S1
β(u) is called the selection set of functions of the multi-valued func-

tion β at u ∈ C(Ja × Jb,R).

The integral of the multi-valued function F is defined as
∫ x

0

∫ y

0

β(t, s, u(t, s)) dt ds =

{
∫ x

0

∫ y

0

v(t, s) ds dt : v ∈ S1
β(u)

}

.
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If S1
F (u) 6= ∅ for each u ∈ C(Ja × Jb,R), then the HPDI (1.1) is equivalent to the

integral inclusion

u(x, y) ∈ z0(x, y) +

∫ x

0

∫ y

0

F (t, s, u(t, s)) ds dt (3.2)

for all (x, y) ∈ Ja × Jb, where z0(x, y) = φ(x) + ψ(y) − φ(0). It is clear that z0 ∈

C(Ja × Jb,R).

Definition 3.2. A multi-valued function F (x, y, u) is called right monotone increas-

ing in u almost everywhere for (x, y) ∈ Ja × Jb if F (x, y, u1)
i

≤ F (x, y, u2) almost

everywhere for (x, y) ∈ Ja × Jb for all u1, u2 ∈ R with u1 ≤ u2.

3.1 Existence result. We need the following definition in the sequel.

Definition 3.3. A function u ∈ AC(Ja×Jb,R) is called a solution of the HPDI (1.1)

if there exists a function v ∈ L1(Ja × Jb,R) such that v(x, y) ∈ G(x, y, u(x, y)) a.e.

(x, y) ∈ Ja × Jb satisfying

∂2u(x, y)

∂x∂y
= v(x, y), (x, y) ∈ Ja × Jb,

u(x, 0) = φ(x), u(0, y) = ψ(y),

where AC(Ja × Jb,R) is the space of absolutely continuous real-valued functions on

Ja × Jb.

Definition 3.4. A function u(·, ·) ∈ AC(Ja×Jb,R) is said to be a strict lower solution

of the HPDI (1.1) if for all v ∈ S1
F (u), we have

∂2u(x, y)

∂x∂y
≤ v(x, y),

u(x, 0) ≤ φ(x), u(0, y) ≤ ψ(y),

for all (x, y) ∈ Ja × Jb. Similarly, a function u(·, ·) ∈ AC(Ja × Jb,R) is said to be a

strict upper solution of the HPDI (1.1) if for all v ∈ S1
F (u), one has

∂2u(x, y)

∂x∂y
≥ v(x, y),

u(x, 0) ≥ φ(x), u(0, y) ≥ ψ(y),

for all (x, y) ∈ Ja × Jb.

Definition 3.5. A solution uM of the problem (1.1) is said to be maximal if for any

other solution u to the problem (1.1), we have u(x, y) ≤ uM(x, y) for all (x, y) ∈ Ja ×

Jb. Again a solution um of the problem (1.1) is said to be minimal if um(x, y) ≤ u(x, y)

for all (x, y) ∈ Ja × Jb, where u is any solution of the problem (1.1) on Ja × Jb.

We consider the following set of hypotheses in the sequel.

(A1) F (x, y, u) is closed and bounded for each (x, y, u) ∈ Ja × Jb × R.
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(A2) The multi-valued function (x, y) 7→ F (x, y, u) is measurable for each u ∈ R and

right monotone increasing in u almost everywhere for (x, y) ∈ Ja × Jb.

(A3) S
1
F (u) 6= ∅ for all u ∈ C(Ja × Jb,R).

(A4) The multi-valued map u 7→ S1
F (u) is right monotone increasing in C(Ja ×Jb,R).

(A5) FDI (1.1) has a strict lower solution u and a strict upper solution u with u ≤ u.

(A6) The function h : Ja × Jb → R defined by

h(x, y) = ‖F (x, y, u)‖P + ‖F (x, y, u)‖P

is Lebesgue integrable.

Remark 3.6. Note that if (A2) and (A5)–(A6) hold, then we have

‖F (x, y, u(x, y))‖P ≤ h(x, y) a.e. (x, y) ∈ Ja × Jb

for all u ∈ [a, b].

Hypotheses (A1)–(A3) are common in the literature. Some nice sufficient condi-

tions guaranteeing that (A3) holds are given by Deimling [4] and Lasota and Opial

[14]. A mild form of (A5) is used in Halidias and Papageorgiou [11]. Hypotheses (A4)

and (A5) are relatively new to the literature, but special cases of them have been

appeared in the works of several authors. Note that (A5) holds, in particular, if F is

bounded on Ja × Jb ×R (see Dhage [5, 6] and references therein). Hypothesis (A2) is

assumed in order for (A4) to make sense.

Theorem 3.7. Assume that (A1)–(A6) hold. Then the HPDI (1.1) has a solution in

[u, u] defined on Ja × Jb.

Proof. Let X = C(Ja × Jb,R) and let Y = AC(Ja × Jb,R) ⊂ X. Define an order

interval [u, u] in Y , which is well defined in view of hypothesis (A5). Define the

operators Q on [u, u] by

Qu(x, y) = z0(x, y) +

∫ x

0

∫ y

0

F (t, s, u(t, s)) ds dt, (x, y) ∈ Ja × Jb. (3.3)

Clearly, the operator Q is well defined in view of hypothesis (A3). We will show that

Q satisfies all the conditions of Theorem 2.3.

Step I : First, we show that Q has compact values on [u, u]. Observe that if

(x, y) ∈ Ja × Jb, then operator Q is equivalent to the composition K ◦ S1
G of two

operators on L1(Ja×Jb,R), where K : L1(Ja×Jb,R) → X is the continuous operator

defined by

Kv(x, y) = z0(x, y) +

∫ x

0

∫ y

0

v(t, s) ds dt (3.4)

for (x, y) ∈ Ja × Jb. To show Q has compact values, it then suffices to prove that

the composition operator K ◦ S1
F has compact values on [u, u]. Let u ∈ [u, u] be

arbitrary and let {vn} be a sequence in S1
F (u). By the definition of S1

F , we have
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vn(x, y) ∈ F (x, y, u(x, y)) a.e. (x, y) ∈ Ja × Jb. Since F (x, y, u(x, y)) is compact,

there is a convergent subsequence of vn(x, y) (for simplicity call it vn(x, y) itself)

that converges in measure to some v(x, y), where v(x, y) ∈ F (x, y, u(x, y)) a.e. for

(x, y) ∈ Ja × Jb. From the continuity of K, it follows that Kvn(x, y) → Kv(x, y)

pointwise on Ja ×Jb as n→ ∞. In order to show that the convergence is uniform, we

first show that {Kvn} is an equi-continuous sequence. Let (x1, y1), (x2, y2) ∈ Ja × Jb;

then

|Kvn(x1, y1) −Kvn(x2, y2)| ≤ |z0(x1, y1) − z0(x2, y2)|

+

∣

∣

∣

∣

∫ x1

0

∫ y1

0

vn(t, s) dt ds−

∫ x2

0

∫ y2

0

vn(t, s) dt ds

∣

∣

∣

∣

≤ |z0(x1, y1) − z0(x2, y2)| +

∣

∣

∣

∣

∫ x1

x2

∫ y1

y2

vn(t, s) dt ds

∣

∣

∣

∣

≤ |z0(x1, y1) − z0(x2, y2)| +

∣

∣

∣

∣

∫ x1

x2

∫ y1

y2

|vn(t, s)| dt ds

∣

∣

∣

∣

.

Since vn ∈ L1(Ja × Jb,R), the right hand side of the above inequality tends to 0 as

(x1, y1) → (x2, y2). Hence, {Kvn} is equi-continuous, and an easy application of the

Ascoli theorem implies that {Kvn} has a uniformly convergent subsequence. We then

have Kvnj
→ Kv ∈ (K ◦ S1

F )(u) as j → ∞, and so (K ◦ S1
F )(u) is a compact set in X.

Therefore, Q is a compact-valued multi-valued operator on [u, u].

Step II : Next, we show that Q is right monotone increasing and maps [u, u]

into itself. Let u1, u2 ∈ [u, u] be such that u1 ≤ u2. Since S1
F (u1)

i

≤ S1
F (u2), we have

that Q(u1)
i

≤ Q(u2). From (A5), it follows that u ≤ Qu and Qu ≤ u. Now Q is

right monotone increasing, so we have

u ≤ Qu
i

≤ Qu
i

≤ Qu ≤ u

for all u ∈ [u, u]. Hence, Q defines a right monotone increasing multi-valued operator

Q : [u, u] → Pcp([u, u]).

Step III : Finally, let {un} be a monotone sequence in [u, u] and let {zn} be

a sequence in B([u, u]) defined by zn ∈ Bun, n ∈ N. We shall show that {zn} has

a cluster point. This is achieved by showing that {zn} is a uniformly bounded and

equi-continuous sequence.

First we show that {zn} is uniformly bounded sequence. By the definition of

{zn}, there is a vn ∈ S1
G(un) such that

zn(x, y) = z0(x, y) +

∫ x

0

∫ y

0

vn(t, s)) ds dt.
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Then, we have

|zn(x, y)| ≤ |z0(x, y)| +

∫ a

0

∫ b

0

|vn(t, s)|dsdt

≤ |z0(x, y)| +

∫ a

0

∫ b

0

h(t, s) ds dt

≤ ‖z0‖∞ + ‖hr‖L1

for all (x1, y1), (x2, y2) ∈ Ja×Jb. This shows that {zn} is uniformly bounded sequence.

Next, we show that {zn} is an equicontinuous sequence in X. Let (x1, y1), (x2, y2) ∈

Ja × Jb. Then we have

|zn(x1, y1) − zn(x2, y2)| ≤ |z0(x1, y1) − z0(x2, y2)| +

∣

∣

∣

∣

∫ x2

x1

∫ y2

y1

|vn(t, s)| ds dt

∣

∣

∣

∣

≤ |z0(x1, y1) − z0(x2, y2)| +

∣

∣

∣

∣

∫ x2

x1

∫ y2

y1

h(t, s) ds dt

∣

∣

∣

∣

.

The right hand side tends to zero as (x2, y2) → (x1, y1). So, {zn} is an equicontinuous

sequence in X.

Now {zn} is uniformly bounded and equi-continuous, so it has a cluster point in

view of Arzelà-Ascoli theorem. Now an application of Theorem 2.3 yields that the

hyperbolic partial differential inclusion (1.1) has a minimal and a maximal solution

in [u, u] defined on Ja × Jb. This completes the proof.

3.2 Extremal solutions. Next, we prove a result concerning the extremal solutions

for the HPDI (1.1) on Ja × Jb. We need the following definitions in the sequel.

Definition 3.8. A multi-valued function F (x, y, u) is called strict monotone increas-

ing in u almost everywhere for (x, y) ∈ Ja × Jb if F (x, y, u1) ≤ F (x, y, u2) almost

everywhere (x, y) ∈ Ja × Jb for all u1, u2 ∈ R for which u1 < u2.

Definition 3.9. A multi-valued function β : Ja × Jb × R → Pp(R) is called L1-

Chandrabhan if

(i) (x, y) 7→ β(x, y, u(x, y)) is measurable for all u ∈ C(Ja × Jb,R),

(ii) The function u 7→ β(x, y, u) is strict monotone increasing almost everywhere for

(x, y) ∈ Ja × Jb, and

(iii) for each r > 0, there exists a function hr ∈ L1(Ja × Jb,R) such that

‖β(x, y, u)‖P = sup{|z| : z ∈ β(x, y, u)} ≤ hr(x, y) a.e. (x, y) ∈ Ja × Jb

for all u ∈ R with |u| ≤ r.

We need the following additional hypothesis in the sequel.

(A7) The multi-valued function F is L1-Chandrabhan on Ja × Jb × R.
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Remark 3.10. Note that if the multi-valued function F (x, y, u) is L1-Chandrabhan

and (A5) holds, then it is measurable in x and y and integrably bounded on Ja ×

Jb × [−r, r], where r = max{‖u‖ : u ∈ [u, u]}. Such a real number r exists since the

order interval [u, u] is norm-bounded in view of the normality of the cone K in X.

It follows from a selection theorem (see Deimling [4]) that S1
F is non-empty and has

closed values on [u, u], i.e.,

S1
F (u) = {u ∈ L1(Ja × Jb,R) | u(x, y) ∈ F (x, y, u(x, y)) a.e. (x, y) ∈ Ja × Jb} 6= ∅

for all u ∈ [a, b] ⊂ C(Ja × Jb,R).

Theorem 3.11. Assume that (A1), (A5) and (A7) hold. Then the HPDI (1.1) has a

minimal and a maximal solution in [u, u] defined on Ja × Jb.

Proof. The proof is quite similar to that of Theorem 3.1. Now, S1
F (u) 6= ∅ for each

u ∈ [u, u] in view of Remark 3.10. Also, the multi-valued map u 7→ S1
F (u) is strictly

monotone increasing on [u, u]. Consequently, the multi-valued operator Q defined by

(3.3) is strictly monotone increasing on [u, u]. Hence, the desired result follows by an

application of Theorem 2.2.

4. EXISTENCE THEORY FOR THE PROBLEM (1.2)

4.1 Existence result. We need the following definitions in the sequel.

Definition 4.1. A function u ∈ AC(Ja×Jb,R) is called a solution of the HPDI (1.2)

if there exist a functions v1, v2 ∈ L1(Ja × Jb,R) such that v1(x, y) ∈ F (x, y, u(x, y))

and v2(x, y) ∈ G(x, y, u(x, y)) a.e. (x, y) ∈ Ja × Jb satisfying

∂2u(x, y)

∂x∂y
= v1(x, y) + v2(x, y), (x, y) ∈ Ja × Jb,

u(x, 0) = φ(x), u(0, y) = ψ(y).

Definition 4.2. A function u(·, ·) ∈ AC(Ja×Jb,R) is said to be a strict lower solution

of the HPDI (1.2) if for all v1 ∈ S1
F (u) and v2 ∈ S1

G(u), we have

∂2u(x, y)

∂x∂y
≤ v1(x, y) + v2(x, y),

u(x, 0) ≤ φ(x), u(0, y) ≤ ψ(y),

for all (x, y) ∈ Ja × Jb. Similarly, a function u(·, ·) ∈ AC(Ja × Jb,R) is said to be a

strict upper solution of the HPDI (1.2) if for all v1 ∈ S1
F (u) and v2 ∈ S1

G(u), we have

∂2u(x, y)

∂x∂y
≥ v1(x, y) + v2(x, y),

u(x, 0) ≥ φ(x), u(0, y) ≥ ψ(y),

for all (x, y) ∈ Ja × Jb.
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Definition 4.3. A solution uM of the problem (1.2) is said to be maximal if for any

other solution u to the problem (1.2) we have u(x, y) ≤ uM(x, y) for all (x, y) ∈ Ja×Jb.

Again, a solution um of the problem (1.2) is said to be minimal if um(x, y) ≤ u(x, y)

for all (x, y) ∈ Ja × Jb, where u is any other solution of the problem (1.2) on Ja × Jb.

Definition 4.4. A multi-valued mapping β : Ja × Jb × R → Pcp(R) is said to be

Carathéodory if

(i) (x, y) 7→ β(x, y, z) is measurable for each z ∈ R;

(ii) z 7→ β(x, y, z) is upper semi-continuous for almost each (x, y) ∈ Ja × Jb.

A Carathéodory multi-valued mapping β is called L1-Carathéodory if

(iii) for each real number r > 0 there exists a hr ∈ L1(Ja × Jb,R) such that

‖β(x, y, z)‖P ≤ hr(x, y) a.e. (x, y) ∈ Ja × Jb,

for all z ∈ R with |z| ≤ r.

Finally, a Carathéodory multi-valued map β is called L1
R
-Carathéodory if

(iv) there exists a h ∈ L1(Ja × Jb,R) such that

‖β(x, y, z)‖P ≤ h(x, y) a.e. (x, y) ∈ Ja × Jb,

for all z ∈ R.

Then we have the following lemmas due to Lasota and Opial [14].

Lemma 4.5. If dim(X) <∞ and β : J×X×X → Pcp(X) is L1-Carathéodory, then

S1
β(x) 6= ∅ for each x ∈ X.

Lemma 4.6 (Lasota and Opial [14]). Let X be a Banach space. Let β : Ja×Jb×X →

Pcp(X) be an L1-Carathéodory multi-valued map with S1
β 6= ∅, and let L be a linear

continuous mapping from L1(Ja × Jb, X) into C(Ja × Jb, X), then the operator

L ◦ S1
β : C(Ja × Jb, X) → Pcp,cv(C(Ja × Jb, X))

u 7→ (L ◦ S1
β)(u) := L(S1

β(u))

is a closed graph operator in C(Ja × Jb, X) × C(Ja × Jb, X).

We consider the following set of hypotheses in the sequel.

(B1) F,G : Ja × Jb × R → Pcp,cv(R).

(B2) G is L1- Carathéodory.

(B3) The multi-valued mapping (x, y) 7→ G(x, y, z(x, y)) is measurable and there

exists a function k ∈ L1(Ja × Jb,R) such that

dH(G(x, y, z(x, y)), G(x, y, z(x, y))) ≤ k(x, y)|z(x, y) − z(x, y)| a.e. (x, y) ∈ Ja × Jb

for all z, z ∈ R.
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(B4) The multi-valued map u 7→ S1
G(u) is right monotone increasing in C(Ja ×Jb,R).

(B5) HPDI (1.2) has a strict lower solution u and a strict upper solution u with u ≤ u.

Our main existence theorem for the problem (1.1) is

Theorem 4.7. Assume that the hypotheses (A2)-(A4), (A6) and (B1)-(B2) and (B4)-

(B5) hold. Then the HPDI (1.2) has a solution in [u, u] defined on Ja × Jb.

Proof. Let X = C(Ja × Jb,R) and define an order interval [u, u] in X which is well

defined in view of hypothesis (B5). Define two multi-valued maps A,B on [u, u] by

A(u) =

{

z ∈ X : z(x, y) =

∫ x

0

∫ y

0

v1(t, s) ds dt, v1 ∈ S1
G(u)

}

(4.1)

and

B(u) =

{

z ∈ X : z(x, y) = z0(x, y) +

∫ x

0

∫ y

0

v2(t, s) ds dt, v2 ∈ S1
F (u)

}

. (4.2)

Then the HPDI (1.2) is transformed into the operator inclusion

u(x, y) ∈ Au(x, y) +Bu(x, y), (x, y) ∈ Ja × Jb. (4.3)

Clearly, A,B : [u, u] → X. We shall show that the operators A and B satisfy all the

conditions of Theorem 2.5. The proof will be given in the following steps.

Step I : First, we show that A has compact values on [u, u]. Observe that if

(x, y) ∈ Ja × Jb, then the operator A is equivalent to the composition L ◦ S1
G of two

operators on L1(Ja ×Jb,R), where L : L1(Ja ×Jb,R) → X is the continuous operator

defined by

Lv(x, y) =

∫ x

0

∫ y

0

v(t, s) ds dt (4.4)

for (x, y) ∈ Ja × Jb. To show A has compact values, it then suffices to prove that the

composition operator L ◦ S1
G has compact values on [u, u]. Now proceeding with the

arguments similar to that of Step I in the proof of Theorem 3.1, it can be shown that

(L◦S1
G)(u) is a compact set in X for each u ∈ [u, u]. Therefore, A is a compact-valued

multi-valued operator on [u, u].

Step II : Next we show that A is completely continuous on [u, u]. First, we show

that B is compact on [u, u]. Let u ∈ [u, u] be arbitrary. Then, for each z ∈ B(u),

there exists v ∈ S1
G(u) such that for each (x, y) ∈ Ja × Jb we have

z(x, y) =

∫ x

0

∫ y

0

v(t, s) ds dt.

From (H5), we have

|z(x, y)| ≤

∫ a

0

∫ b

0

|v(t, s)| ds dt ≤

∫ a

0

∫ b

0

hr(t, s) ds dt ≤ ‖hr‖L1 .
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Next, we show that B maps [u, u] into an equicontinuous subset of X. Let u ∈ [u, u]

be arbitrary and let (x1, y1), (x2, y2) ∈ Ja × Jb. Then for each z ∈ B(u),

|z(x2, y2) − z(x1, y1)| ≤

∣

∣

∣

∣

∫ x2

x1

∫ y2

y1

|v(t, s)| ds dt

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ x2

x1

∫ y2

y1

hr(t, s) ds dt

∣

∣

∣

∣

.

The right hand side tends to zero as (x2, y2) → (x1, y1). An application of Arzelá-

Ascoli Theorem yields that the operator B : [u, u] → Pp(X) is compact. Next we

prove that B has a closed graph. Let un → u∗, zn ∈ B(un) and zn → z∗. We need to

show that z∗ ∈ B(u∗). zn ∈ B(un) implies that there exists vn ∈ SG,un
such that for

each (x, y) ∈ Ja × Jb,

zn(x, y) =

∫ x

0

∫ y

0

vn(t, s) ds dt.

We must show that there exists v∗ ∈ S1
G(u∗) such that for each (x, y) ∈ Ja × Jb,

z∗(x, y) =

∫ x

0

∫ y

0

v∗(t, s) ds dt.

Clearly, we have

‖zn − z∗‖∞ → 0 as n→ ∞.

Consider the continuous linear operator L : L1(Ja × Jb,R) → C(Ja × Jb,R) given by

v 7→ L(v)(x, y) =

∫ x

0

∫ y

0

v(t, s) ds dt.

From Lemma 4.5, it follows that L ◦ S1
G is a closed graph operator. Moreover, we

have

zn(x, y) ∈ L(S1
G(un)).

Since un → u∗, it follows from Lemma 4.5 that

z∗(x, y) =

∫ x

0

∫ y

0

v∗(t, s) ds dt

for some v∗ ∈ S1
G(u∗). This shows that A is a completely continuous multi-valued

operator on [u, u].

Step III : Next we show that B is a totally bounded multi-valued operator on

[u, u]. Let z ∈
⋃

B([u, u]) be arbitrary. Then there is a v ∈ S1
F (u) for some u ∈ [u, u]

such that

z(x, y) = z0(x, y) +

∫ x

0

∫ y

0

v(t, s) ds dt.

Then, we have

|z(x, y)| ≤ |z0(x, y)| +

∫ a

0

∫ b

0

|v(t, s)| ds dt

≤ |z0(x, y)| +

∫ a

0

∫ b

0

h(t, s) ds dt

≤ ‖z0‖∞ + ‖h‖L1.
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This shows that
⋃

B([u, u]) is a uniformly bounded subset of X. Next, we show that
⋃

B([u, u]) is an equicontinuous set in X. Let (x1, y1), (x2, y2) ∈ Ja × Jb. Then we

have

|z(x2, y2) − z(x1, y1)| ≤ |z0(x1, y1) − z0(x2, y2)| +

∣

∣

∣

∣

∫ x2

x1

∫ y2

y1

|v(t, s)| ds dt

∣

∣

∣

∣

≤ |z0(x1, y1) − z0(x2, y2)| +

∣

∣

∣

∣

∫ x2

x1

∫ y2

y1

h(t, s) ds dt

∣

∣

∣

∣

.

The right hand side tends to zero as (x2, y2) → (x1, y1). So,
⋃

B([u, u]) is an equicon-

tinuous sequence in X. Now
⋃

B([u, u]) is uniformly bounded and equi-continuous,

so it totally bounded in view of Arzelà-Ascoli theorem.

Step IV : From the hypotheses (A4) and (B4), it follows that the multi-valued

maps u 7→ S1
F (u) and u 7→ S1

G(u) are right monotone increasing in [u, u]. Therefore,

S1
F (u1)

i

≤ S1
F (u2) and S1

G(u1)
i

≤ S1
G(u2)

for all u1, u2 ∈ [u, u] for which u1 ≤ u2. Consequently, the multi-valued operators A

and B are right monotone increasing on [u, u].

Thus, the multi-valued operators A and B satisfy all the conditions of Theorem

2.5 and hence the problem (1.2) has a solution in [u, u] defined on Ja × Jb. This

completes the proof.

Theorem 4.8. Assume that the hypotheses (A2)-(A4), (A6), (B1),(B3) and (B4)-(B5)

hold. Then the HPDI (1.2) has a solution in [u, u] defined on Ja × Jb.

Proof. Let X = C(Ja × Jb,R) and define an order interval [u, u] in X which is well

defined in view of hypothesis (B5). Define two multi-valued maps A,B on [u, u] by

(4.1) and (4.2) respectively.

Define an equivalent norm ‖ · ‖ in C(Ja × Jb,R) by

‖u‖ = sup
(x,y)∈Ja×Jb

e−2K(x,y)|u(x, y)| (4.5)

where

K(x, y) =

∫ x

0

∫ y

0

k(t, s) ds dt.

Then we have

|u(x, y)| ≤ e2K(x,y)‖u‖. (4.6)

See Dhage [8] and the references therein.

We show that A is a multi-valued contraction on [u, u]. Let u1, u2 ∈ [u, u] and

z1 ∈ A(u1). Then, there exists v1(x, y) ∈ G(x, y, u1(x, y)) such that for each (x, y) ∈

Ja × Jb,

z1(x, y) =

∫ x

0

∫ y

0

v1(t, s) ds dt.
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From (B3), it follows that

dH(G(x, y, u1(x, y)), G(x, y, u2(x, y))) ≤ k(x, y)|u1(x, y) − u2(x, y)|.

Hence, there exists w ∈ F (x, y, u2(x, y)) such that

|v1(x, y) − w| ≤ k(x, y)|u1(x, y) − u2(x, y)|.

Consider U : Ja × Jb → Pp(R) given by

U(x, y) = {w ∈ R : |v1(x, y) − w| ≤ k(x, y)|u1(x, y) − u2(x, y)|}.

Since the multi-valued mapping V (x, y) = U(x, y) ∩ G(x, y, u2(x, y)) is measurable

(see Proposition III.4 in [2]), there exists a function v2(x, y) which is a measurable

selection for V . So, v2(x, y) ∈ G(x, y, u2(x, y)) and for each (x, y) ∈ Ja × Jb,

|v1(x, y) − v2(x, y)| ≤ k(x, y)|u1(x, y) − u2(x, y)|.

Let us define for each (x, y) ∈ Ja × Jb,

z2(x, y) =

∫ x

0

∫ y

0

v2(t, s) ds dt.

Thus, we have by (B3),

e−2K(x,y)|z1(x, y) − z2(x, y)| ≤ e−2K(x,y)

∫ x

0

∫ y

0

k(t, s)|u1(t, s) − u2(t, s)| ds dt

≤ e−2K(x,y)

∫ x

0

∫ y

0

k(t, s){e−2K(t,s)|u1(t, s) − u2(t, s)|}e
2K(t,s) ds dt

≤ e−2K(x,y)

∫ x

0

∫ y

0

k(t, s)‖u1 − u2‖e
2K(t,s) ds dt

≤ e−2K(x,y)

∫ x

0

∫ y

0

1

2

∂2

∂t∂s

[

e2K(t,s)
]

‖u1 − u2‖ ds dt

= e−2K(x,y)

(

e2K(x,y)

2

∣

∣

∣

∣

(x,y)

(0,0)

)

‖u1 − u2‖

≤
1

2
‖u1 − u2‖.

Taking supremum over t we obtain

‖z1 − z2‖ ≤
1

2
‖u1 − u2‖.

By an analogous relation, obtained by interchanging the roles of u1 and u2, it follows

that

dH(A(u1), A(u2)) ≤
1

2
‖u1 − u2‖.

So, A is a multi-valued contraction on X. The rest of the proof is similar to that of

Theorem 3.3 and now the conclusion follows by an application of Theorem 2.6. This

completes the proof.
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4.2 Extremal solutions. Finally, we prove the existence theorems for the extremal

solutions for HPDI (1.2) between the given strict upper and lower solutions on Ja×Jb

under suitable conditions.

We need the following hypothesis in the sequel.

(B6) The multi-valued function G(x, y, u) is strict monotone increasing in u almost

everywhere for (x, y) ∈ Ja × Jb.

Theorem 4.9. Assume that the hypotheses (A7), (B1),(B2) and (B4)-(B6) hold. Then

the HPDI (1.2) has a minimal and a maximal solution in [u, u] defined on Ja × Jb.

Proof. Let X = C(Ja × Jb,R) and define an order interval [u, u] in X which is well

defined in view of hypothesis (B5). Define two multi-valued maps A,B on [u, u] by

(4.1) and (4.2) respectively. It can be shown as in the proof of Theorem 4.2 that A and

B are respectively completely continuous and totally bounded compact-valued multi-

valued operators on [u, u]. Since the multi-valued functions F (x, y, u) and G(x, y, u)

are strictly monotone increasing in u almost everywhere (x, y) ∈ Ja × Jb, the multi-

valued maps u 7→ S1
F (u) and u 7→ S1

G(u) are strictly monotone increasing in [u, u].

As a result the multi-valued operators A and B are strictly monotone increasing in

[u, u]. Now the desired conclusion follows by an application of Theorem 2.8. This

completes the proof.

Theorem 4.10. Assume that (A7), (B1),(B3) and (B4)-(B5) hold. Then the HPDI

(1.2) has a minimal and a maximal solution in [u, u] defined on Ja × Jb.

Proof. Let X = C(Ja × Jb,R) and define an order interval [u, u] in X which is well

defined in view of hypothesis (B5). Define two multi-valued maps A,B on [u, u] by

(4.1) and (4.2) respectively. It can be shown as in the proof of Theorem 4.2 that

A and B are respectively contraction and totally bounded compact-valued multi-

valued operators on [u, u]. Since the multi-valued functions F (x, y, u) and G(x, y, u)

are strictly monotone increasing in u almost everywhere (x, y) ∈ Ja × Jb, the multi-

valued maps u 7→ S1
F (u) and u 7→ S1

G(u) are are strictly monotone increasing in [u, u].

As a result, the multi-valued operators A and B are strictly monotone increasing in

[u, u]. Now the desired conclusion follows by an application of Theorem 2.9. This

completes the proof.

In the following we give an example illustrating the abstract theory developed

for the problem (1.1).

5. AN EXAMPLE

Example 5.1. Let Ja = [0, 1] = Jb and define two functions φ, ψ : [0, 1] → R by

φ(x) = x and ψ(y) = y2 so that φ(0) = ψ(0). Now consider the hyperbolic differential
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inclusion










∂2u(x, y)

∂x∂y
∈ G(x, y, u(x, y)), (x, y) ∈ Ja × Jb,

u(x, 0) = x, u(0, y) = y2,

(5.1)

where the multi-valued function G : Ja × Jb × R → Pp(R) is defined by

G(x, y, u) =







































{

1
30

}

, if u < 0,

[

1
20
, 1

18

]

, if u = 0,

{

1
17

}

, if u ∈ (0, 1),
{

[u]
15+[u]

}

, if u ≥ 1,

(5.2)

for all x, y ∈ [0, 1] and u ∈ R, where [u] is the greatest integer not greater than u.

Now the multi-valued map G satisfies all the conditions of Theorem 3.2 with u ≡ 0

and u ≡ 3 on J . Hence, the above HPDI (16) has a minimal and a maximal solution

in [0, 3] defined on [0, 1] × [0, 1].

Remark 5.2. Notice that we do not require the multi-valued functions involved in

the hyperbolic partial differential inclusions (1.1) or (1.2) of this paper to have convex

values for any of our existence results which is the usual case with the most of the

existence results for differential inclusions. This is the advantage of the monotone

method over those of topological methods in the existence theory for such differen-

tial inclusions. Finally, while concluding this paper, we mention that the monotone

method of this paper can also be applied to problems of higher order hyperbolic partial

differential inclusions with appropriate modifications for proving the various aspects

of the solutions. Some of the results in this direction will be reported elsewhere.
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