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ABSTRACT. In this paper, we use Leggett-Williams multiple fixed point theorem to obtain several

different sufficient conditions for the existence of at least three positive periodic solutions for the

first order functional differential equations of the form

y′(t) = −a(t)y(t) + λf(t, y(h(t))).

Some applications to mathematical ecological models and population models are also given.
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1. INTRODUCTION

Consider the nonlinear first order functional differential equation of the form

y′(t) = −a(t)y(t) + λf(t, y(h(t))) (1.1)

where λ is a positive parameter, h, a ∈ C(R,R+) are T -periodic with a(t) 6≡ 0,

and f ∈ C(R × R+, R+) is T -periodic with respect to the first variable, where R =

(−∞,∞), R+ = [0,∞) and T is a positive constant. Our aim of this paper is to study

the existence of at least three positive T -periodic solutions of (1.1) using Leggett-

Williams multiple fixed point theorem [12].

If h(t) = t− τ(t) and τ ∈ C(R,R+) with τ(t) ≤ t, then (1.1) takes the form

y′(t) = −a(t)y(t) + λf(t, y(t− τ(t))). (1.2)

As the existence of positive periodic solutions of (1.1) is regarded, one can find from

the arguments in the succeeding sections that some similar results can be derived for

(1.2). Functional differential equation of the form (1.2) includes many mathematical
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ecological and population models (directly or after some transformation), such as:

(a) Lasota-Wazewska model [4, 6, 13, 16, 17, 19, 23, 24, 26]

y′(t) = −a(t)y(t) + p(t)e−γ(t)y(t−τ(t)). (1.3)

(b) Models for blood cell production [3, 5, 14, 15, 22]

y′(t) = −a(t)y(t) + b(t)
ym(t− τ(t))

1 + yn(t− τ(t))
. (1.4)

(c) Nicholson’s blowflies models [7, 9, 11, 15, 22]

y′(t) = −a(t)y(t) + b(t)ym(t− τ(t))e−γ(t)yn(t−τ(t)). (1.5)

The variation of the environment, in particular the periodic variation of the environ-

ment, plays an important role in many biological and ecological systems. Hence it will

be interesting to study the existence of at least one periodic solution of (1.3)–(1.5).

Many authors have used fixed point theorem of cone expansion and cone compression

method, upper-lower solution method and iterative technique to find out at least one

and at least two positive periodic solutions of (1.1) although it is very difficult to

find upper and lower solutions for a general differential equation. For instance, see

[2, 7, 10, 16, 21, 22, 25, 26]. In [26], Zhang et al. have used fixed point theorem of

cone expansion and cone compression to investigate the existence of multiple positive

periodic solutions for the first order differential equation. On the other hand, it has

been observed that very few papers exist in the literature on the existence of at least

three periodic solutions of (1.1). For example, see [1]. The use of Leggett-Williams

multiple fixed point theorem for the existence of at least three periodic solutions of

(1.1) is relatively scarce in the literature. In this paper, by using Leggett-Williams

multiple fixed point theorem, we provide some results on the existence of at least

three positive periodic solutions of (1.1) and then apply our results to obtain some

new criteria for the existence of at least three positive periodic solutions of the models

(1.3)–(1.5). Some explicit intervals on the parameter λ are given while proving our

results. The results of this paper can be extended to

y′(t) = −a(t)y(t) + f(t, y(t− τ1(t)), . . . , y(t− τn(t))) (1.6)

where 0 ≤ τi(t) ≤ t, i = 0, 1, . . . , n, f ∈ C(R × Rn
+, R+) is periodic with respect to

the first variable, τi(t+ T ) = τi(t), 1 ≤ i ≤ n.

For the last two decades, there has been a rich literature on the use of the fixed

point theorems on the existence of positive solutions of boundary value problems. The

existence of periodic solutions of this type equation is closely related to the existence

of general boundary value problems. Many ideas in the paper and the references come

from those for general boundary value problems.
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2. PRELIMINARY

First, observe that the solution of (1.1) may be written in the form

y(t) = λ

∫ t+T

t

G(t, s)f(s, y(h(s))) ds,

where G(t, s) = e
R s
t a(θ) dθ

e
R T
0 a(θ) dθ

−1
is the Green’s kernel. The Green’s kernel G(t, s) used

in this paper is well known in the literature. As in many articles, its lower bound,

being positive, is used for defining a cone. It is easy to verify that G(t, s) satisfies the

property

0 < α =
1

δ − 1
≤ G(t, s) ≤

δ

δ − 1
= β, for s ∈ [t, t+ T ] (2.1)

where

δ = e
R T
0 a(θ) dθ.

The following concept from Leggett-Williams multiple fixed point theorem [12] is

needed for our use in the sequel: Let X be a Banach space and K be a cone in

X. A mapping ψ is said to be a concave nonnegative continuous functional on K if

ψ : K → [0,∞) is continuous and

ψ(µx+ (1 − µ)y) ≥ µψ(x) + (1 − µ)ψ(y), x, y ∈ K, µ ∈ [0, 1].

Let a, b, c > 0 be constants with K and X as defined above. Define

Ka = {y ∈ K; ‖y‖ < a}, K(ψ, b, c) = {y ∈ K; ψ(y) ≥ b, ‖y‖ ≤ c}.

Theorem 2.1 (Leggett-Williams multiple fixed point theorem, [12]). Let X = (X, ‖.‖)

be a Banach space and K ⊂ X a cone, and c4 > 0 a constant. Suppose there exists a

concave nonnegative continuous function ψ on K with ψ(u) ≤ u for u ∈ Kc4 and let

A : Kc4 → Kc4 be a continuous compact map. Assume that there are numbers c1, c2

and c3 with 0 < c1 < c2 < c3 ≤ c4 such that

(i) {u ∈ K(ψ, c2, c3);ψ(u) > c2} 6= φ and ψ(Au) > c2 for all u ∈ K(ψ, c2, c3);

(ii) ‖Au‖ < c1 for all u ∈ Kc1;

(iii)ψ(Au) > c2 for all u ∈ K(ψ, c2, c4) with ‖Au‖ > c3.

Then A has at least three fixed points u1, u2 and u3 in Kc4. Furthermore, we have

u1 ∈ Kc1, u2 ∈ {u ∈ K(ψ, c2, c4);ψ(u) > c2}, u3 ∈ Kc4\{K(ψ, c2, c4) ∪Kc1}.

LetX = {y(t); y(t) ∈ C(R,R), y(t) = y(t+T )}with the norm ‖y‖ = supt∈[0,T ]|y(t)|;

then X is a Banach space with the norm ‖ · ‖. Define a cone K in X by

K = {y(t); y ∈ X, y(t) ≥
1

δ
‖y‖ ∀t ∈ [0, T ]}

and an operator Aλ on X by

(Aλy)(t) = λ

∫ t+T

t

G(t, s)f(s, y(h(s))) ds.
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Lemma 2.2. Aλ(K) ⊂ K and Aλ : K → K is compact and continuous.

Lemma 2.3. Existence of positive periodic solutions of (1.1) is equivalent to the

existence of fixed point problem of Aλ in K.

The proofs of the Lemma 2.2 and Lemma 2.3 are straightforward and hence we

omit their proof.

3. MAIN RESULTS

Let

fh = lim sup
y→h

max
0≤t≤T

f(t, y)

a(t)y
.

Theorem 3.1. Let f∞ < T . Further, assume that there are constants 0 < c1 < c2

such that

(H1) f(t, y) ≥ 2δc2 for y ∈ K with c2 ≤ y ≤ δc2 and 0 ≤ t ≤ T

and

(H2) f(t, y) < (δ−1)c1
δ

for y ∈ K with y ≤ c1 and 0 ≤ t ≤ T

hold. Then (1.1) has at least three positive T -periodic solutions for

δ − 1

2δT
< λ <

1

T
.

Proof. From f∞ < T , it follows that there exist an ǫ ∈ (0, T ) and θ > 0 such that

f(t, y) ≤ ǫ a(t)y for y ≥ θ and 0 ≤ t ≤ T . Let γ = max0≤y≤θ,0≤t≤T f(t, y). Then

f(t, y) ≤ ǫ a(t)y + γ for y ≥ 0 and 0 ≤ t ≤ T . Choose

c4 > max

{

δ γ T

(δ − 1)(T − ǫ)
, δc2

}

.

Then for y ∈ Kc4, we have

‖Aλy‖ = sup
0≤t≤T

λ

∫ t+T

t

G(t, s)f(s, y(h(s))) ds

≤ sup
0≤t≤T

λ

∫ t+T

t

G(t, s)(a(s)y(h(s)) ǫ+ γ) ds

≤ sup
0≤t≤T

λ

∫ t+T

t

G(t, s)(a(s)‖y‖ ǫ+ γ) ds

≤ λ

[

ǫc4 sup
0≤t≤T

∫ t+T

t

a(s)G(t, s) ds+ γ

∫ t+T

t

G(t, s) ds

]

≤ λ

[

ǫ c4 +
γ δ

δ − 1
T

]

<
1

T

[

ǫ c4 +
γ δ

δ − 1
T

]

< c4.
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From Lemma 2.2 and the above, it follows that Aλ : Kc4 → Kc4. Next, define a

nonnegative continuous function ψ on K by ψ(y) = mint∈[0,T ] y(t). Then ψ(y) ≤ ‖y‖.

Let c3 = δc2 and φ0(t) = φ0, φ0 is any given number satisfying c2 < φ0 < c3. Then

φ0 ∈ {y : y ∈ K(ψ, c2, c3), ψ(y) > c2}. Further, for y ∈ K(ψ, c2, c3), we have by (H1)

ψ(Aλy) = min
0≤t≤T

λ

∫ t+T

t

G(t, s)f(s, y(h(s))) ds

≥
1

δ − 1
λ

∫ T

0

f(s, y(h(s)))ds

≥
λ

δ − 1
2 δ c2 T

> c2.

Now, let y ∈ Kc1 . Then, using (H2)

‖Aλy‖ = sup
0≤t≤T

λ

∫ t+T

t

G(t, s)f(s, y(h(s))) ds

≤
λ δ

δ − 1

∫ T

0

f(s, y(h(s)))ds

≤
λ δ

δ − 1
c1
δ − 1

δ
T

<
1

T
c1 T

< c1,

that is, Aλy ∈ Kc1. Finally, for y ∈ K(ψ, c2, c4) and ‖Aλy‖ > c3, we have

c3 < ‖Aλy‖ ≤
δ

δ − 1
λ

∫ T

0

f(s, y(h(s))) ds

which in turn implies that

ψ(Aλy) ≥
1

δ − 1
λ

∫ T

0

f(s, y(h(s))) ds

>
c3
δ

= c2.

Hence all the conditions of Theorem 2.1 are satisfied. Consequently, (1.1) has at least

three positive T -periodic solutions. This completes the proof of the theorem.

Theorem 3.2. Let f∞ < T . Assume that there exist constants 0 < c1 < c2 such that

(H3) f(t, y) ≥ 2(δ − 1)c2 for y ∈ K with c2 ≤ y ≤ δc2 and 0 ≤ t ≤ T

and (H2) hold. Then (1.1) has at least three positive T -periodic solutions for

1

2T
< λ <

1

T
.
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The proof of the theorem is as same as the proof of Theorem 3.1. Here we use

(H3) in place of (H1) in the following way to prove the condition (i) of Theorem 2.1.

Define ψ on K by ψ(y) = mint∈[0,T ] y(t) and set c3 = δc2. Then

ψ(Aλy) = min
0≤t≤T

λ

∫ t+T

t

G(t, s)f(s, y(h(s))) ds

≥
1

δ − 1
λ

∫ T

0

f(s, y(h(s))) ds

≥
λ

δ − 1
2 (δ − 1) c2 T

>
1

2T (δ − 1)
2 (δ − 1) c2 T

> c2.

Thus, by Theorem 2.1, (1.1) has at least three positive T -periodic solutions.

Theorem 3.3. Let f∞ < T and f 0 < T . Further, assume that there exists a con-

stant c2 > 0 such that (H1) holds. Then there exist at least three positive T -periodic

solutions of (1.1) for
δ − 1

2δT
< λ <

1

T
.

Proof. Since f∞ < T , then there exist 0 < δ1 < T and ξ1 > 0 such that

f(t, y) ≤ δ1a(t)y for y ≥ ξ1 and 0 ≤ t ≤ T.

Let

γ = max
0≤y≤ξ1,0≤t≤T

f(t, y).

Then f(t, y) ≤ δ1a(t)y + γ for y ≥ 0 and 0 ≤ t ≤ T . Choosing c4 as in Theorem 3.1,

one may prove that Aλ : Kc4 → Kc4. Further, defining a continuous function ψ on

K by ψ(y) = y and using (H1), we can prove that the condition (i) of Theorem 2.1

holds. From f 0 < T , there exist δ2, 0 < δ2 < T and c2
2
> ξ2 > 0 such that

f(t, y) ≤ δ2a(t)y for 0 ≤ y ≤ ξ2 and 0 ≤ t ≤ T.

Set 0 < c1 = ξ2. Then for y ∈ Kc1, we have

‖Aλy‖ = sup
0≤t≤T

λ

∫ t+T

t

G(t, s)f(s, y(h(s))) ds

= sup
0≤t≤T

λ

∫ T

0

G(t, s)f(s, y(h(s))) ds

< λ δ2 sup
0≤t≤T

∫ T

0

G(t, s)a(s)‖y‖ ds

< λ c1 δ2 sup
0≤t≤T

∫ T

0

a(s)G(t, s) ds

< λ c1 δ2
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<
1

T
c1 δ2

< c1,

that is, the condition (ii) of Theorem 2.1 is satisfied. In a similar way to Theorem 3.1,

it can be shown that the condition (iii) of Theorem 2.1 is satisfied. Hence there exist

at least three positive T -periodic solutions of (1.1). Thus the theorem is proved.

Theorem 3.4. Let f∞ < T , f 0 < T and (H3) hold. Then there exist at least three

positive T -periodic solutions of (1.1) for

1

2T
< λ <

1

T
.

In [26], Zhang et.al. proved the following interesting result:

Theorem 3.5. Let f 0 < 1 and f∞ < 1. Further, assume that there exists ρ > 0 such

that f(t, y) > a(t)|y| for µρ < |u| < ρ, where µ = exp{−
∫ T

0
a(s) ds}. Then (1.6) has

at least two positive T -periodic solutions y1 and y2 such that

0 < ‖y1‖ < ρ < ‖y2‖.

We note that our results can be applied to (1.6). Applying Theorem 3.3 or

Theorem 3.4 to (1.6), we have the following:

Corollary 3.6. Let f 0 < T and f∞ < T . Further, assume that there exists a constant

c2 > 0 such that either

(H4) f(t, y) ≥ 2δ c2 for y ∈ K with c2 ≤ y ≤ δc2 and 0 ≤ t ≤ T

or

(H5) f(t, y) ≥ 2(δ − 1)c2 for y ∈ K with c2 ≤ y ≤ δc2 and 0 ≤ t ≤ T .

hold. Then (1.6) has at least three positive T -periodic solutions for

δ − 1

2 δ T
< λ <

1

T
.

Our Corollary 3.6 is different from Theorem 3.5. Indeed, the upper bound on f 0

and f∞ is the general period T and there exist at least three T -periodic solutions in

Corollary 3.6.

Theorem 3.7. Let f∞ < T . Assume that there are constants 0 < c1 < c2 such that

(H1) holds and

(H6) f(t, y) < y for 0 ≤ y ≤ c1 and 0 ≤ t ≤ T .

Then there exist at least three positive T -periodic solution of (1.1) for

δ − 1

2δT
< λ ≤

δ − 1

δT
.
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The proof of the theorem is same as Theorem 3.3. One is required to choose

c4 > max{
γ

(δ − 1)δ1 + T
, δc2},

to show that Aλ : Kc4 → Kc4 . However, we need the following argument to prove the

condition (ii) of Theorem 2.1: from (H6), we have, for x ∈ Kc1

‖Aλy‖ = sup
0≤t≤T

λ

∫ t+T

t

G(t, s)f(s, y(h(s))) ds

≤ λ
δ

δ − 1
c1T ≤ c1.

Example 3.8. Consider the equation

y′(t) = −
1

6π
(2 + cos t)y(t) +

3

28π
e4y2(t− τ)e−y(t−τ) (3.1)

where τ > 0 is a constant. Here a(t) = 1
6π

(2 + cos t), T = 2π. Set f(t, y) = 3
4π
e4y2e−y

and λ = 1
7
. It is easy to verify that 1

2T
< λ < 1

T
, that is, 1

4π
< 1

7
< 1

2π
. Now,

δ = e
R 2π
0 a(t) dt = e

2
3 = 1.947734041, α = 1

δ−1
= 1.05514834 and β = δ

δ−1
= 2.05514834.

Further, f∞ < 2π holds. Choose c1 = 3
100
, c2 = 1

2
. Then c3 = c2δ = 0.97386702. For

c2 ≤ y ≤ c2δ, we obtain 3
4π
e4y2e−y > 3

4π
e4c22e

−c2δ. Since 3
4π
e4c2e

−c2δ > 2(δ − 1), then

f(t, y) > 2(δ − 1)c2 for c2 ≤ y ≤ c2δ, that is, (H3) holds. Further, for 0 ≤ y ≤ c1,

f(t, y) = 3
4π
e4y2e−y < 3

4π
e4c21 <

1
β
c1 holds. This in turn implies that (H2) holds. By

Theorem 3.2, (3.1) has at least three positive 2π-periodic solutions. Theorem 3.4 can

be applied to this example.

4. APPLICATIONS

Example 4.1. Consider the Lasota-Wazewska model

y′(t) = −ay(t) + pe−γy(t−τ). (4.1)

If a(t) ≡ a, p(t) ≡ p, τ(t) ≡ τ and γ(t) ≡ γ are positive constants, then (1.3) reduces

to (4.1). In [6, 26] the authors have proved that (4.1) has at least one positive

periodic solution. However, to the best of our knowledge, no result exists for the

existence of at least three positive periodic solutions of (4.1). It would be interesting

to obtain results, directly or after some analysis, for the existence of at least three

positive periodic solutions of (4.1). The following result follows from Theorem 3.2.

Theorem 4.2. Let γ < 2e, δ ≤ 2e
2e−γ

and γδ2 < δ − 1 hold. Then (4.1) has at least

three positive T -periodic solutions for 1
2T
< p < 1

T
.

Proof. Let f(t, y) = e−γy. Then f(t, y) > e−γδc2 for c2 ≤ y ≤ δc2. Thus, (H3) holds if

and only if e−γδc2 ≥ 2(δ − 1)c2 for c2 ≤ y ≤ δc2. Now choose c2 = 1
δγ

. Then δ ≤ 2e
2e−γ

and c2 = 1
δγ

imply that e−γδc2 ≥ 2(δ − 1)c2 for c2 ≤ y ≤ δc2. Hence (H3) is satisfied.

It is clear that f∞ < T . In order to apply Theorem 3.2, we are required to show the
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existence of a constant c1 such that 0 < c1 < c2 and (H2) holds. Since f(t, y) < 1,

then (H2) holds if c1 >
δ

δ−1
. Indeed, (H2) holds if 1 < δ−1

δ
c1 for 0 ≤ y ≤ c1, that

is, c1 >
δ

δ−1
. Now we show the existence of c1. Clearly, γδ2 < δ − 1 implies that

δ
δ−1

< 1
γδ

= c2. Thus, there exists a real c1 ∈ ( δ
δ−1

, 1
γδ

) such that δ
δ−1

< c1 < c2 = 1
γδ

.

Thus f(t, y) satisfy the property (H2). By Theorem 3.2, (4.1) has at least three

positive T -periodic solutions for 1
2T
< p < 1

T
. The theorem is proved.

Example 4.3. If a(t) ≡ a, b(t) ≡ b and τ(t) ≡ τ are constants, then (1.4) reduces to

y′(t) = −ay(t) + b
ym(t− τ)

1 + yn(t− τ)
. (4.2)

Set

µ = 2(δ − 1)δ2m−1 n

1 + n−m

(1 + n−m

m− 1

)
m−1

n . (4.3)

Applying Theorem 3.4 to Eq. (4.2), we obtain

Theorem 4.4. Let 0 < m − 1 < n. Eq. (4.2) has at least three positive T -periodic

solutions for µ

2T
< b < µ

T
, where µ is given in (4.3).

Proof. Since δ > 1 and 0 < m− 1 < n, then µ > 0. Equation (4.1) can be written as

y′(t) = −ay(t) +
b

µ
µ

ym(t− τ)

1 + yn(t− τ)
. (4.4)

Let f(t, y) = µ ym

1+yn . Since m > 1, then f 0 = 0 < T and f∞ = 0 < T . To complete

the proof of the theorem, inview of Theorem 3.4, we need to find a c2 > 0 such that

(H3) holds. Set c2 = 1
δ
( m−1

1+n−m
)

1
n . Now, for c2 ≤ ‖y‖ ≤ δc2, we have

µ
ym

1 + yn
≥ µ

(‖y‖/δ)m

1 + δncn2
≥

µ

δm
.

cm2
1 + δncn2

(4.5)

Since c2 = 1
δ
( m−1

1+n−m
)

1
n , then 1+ δncn2 = n

1+n−m
. Then, from (4.5) we have, using (4.3)

µ
ym

1 + yn
≥

cm2
δm

.
n−m+ 1

n
2(δ − 1)δ2m−1 .

n

n−m+ 1
.
(1 + n−m

m− 1

)
m−1

n

≥ 2(δ − 1)cm2 δ
m−1.

(1 + n−m

m− 1

)
m−1

n

≥ 2(δ − 1)cm2 δ
m−1.

1

δm−1cm−1
2

≥ 2(δ − 1)c2.

This completes the proof of the theorem.

Example 4.5. If a(t) ≡ a, b(t) ≡ b, τ(t) ≡ τ and γ(t) ≡ γ are positive constants, then

(1.5) reduces to

y′(t) = −ay(t) + bym(t− τ)e−γyn(t−τ) (4.6)

Theorem 4.6. Let m > 1 and 2e(δ − 1)δ(m−1)γ
m−1

n ≤ 1. Then Eq. (4.6) has at least

three positive T -periodic solutions for 1
2T
< b < 1

T
.
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Proof. Let f(t, y) = yme−γy. Set c2 = 1
δ γ1/n . Then it is easy to observe that c2 = 1

δ γ1/n

and 2e(δ − 1)δ(m−1)γ
m−1

n ≤ 1 imply that cm2 e
−δ γn cn

2 > 2(δ − 1)c2 for c2 ≤ y ≤ δc2

and hence (H3) is satisfied. Further, f∞ = 0 < T , and f 0 = 0 < T hold. Then by

Theorem 3.4, (4.6) has at least three positive T -periodic solutions for 1
2T

< b < 1
T
.

The proof is complete.

Although, the condition in Theorem 4.6 looks complicated, it is easy to verify.

The following corollary follows from Theorem 4.6.

Corollary 4.7. Let m > 1 and 1 < δ ≤ 1
γ1/n ≤ 1+2e

e
. Then (4.6) has at least three

positive T -periodic solutions for 1
2T
< b < 1

T
.

Proof. In fact, 1 < δ ≤ 1
γ1/n ≤ 1+2e

e
implies that 2e(δ − 1)δ(m−1)γ

m−1
n ≤ 1 and hence

by Theorem 4.6, (4.6) has at least three positive T -periodic solutions for 1
2T
< b < 1

T
.

This completes the proof of the theorem.

Remark 4.8. One may find that Theorem 4.4 do not work for m = 1 and m = n+1

and Theorem 4.6 do not work for m = 1. Thus, it would be interesting to obtain

sufficient conditions on the coefficient functions for the existence of atleast three

positive T -periodic solutions of the equations (4.2) and (4.6) for general m and n.

ACKNOWLEDGMENTS

The work of the first and the third authors is supported by National Board for

Higher Mathematics (DAE) Govt. of India, under sponsored research scheme, vide

grant no. 48/5/2006-R&D-II/1350, Dated February 26, 2007.

REFERENCES

[1] D. Bai and Y. Xu, Periodic solutions of first order functional differential equations with periodic

deviations, Comp. Math. Appl. 53(2007), 1361–1366.

[2] S. Cheng, G. Zhang, Existence of positive periodic solutions for non-autonomous functional

differential equations, Electron. J. Differrential Equations 59 (2001), 1–8.

[3] K. Gopalsamy, Stability and oscillation in delay differential equations of population dynamics,

Kluwer Academic Press, Boston, 1992.

[4] K. Gopalsamy, S. I. Trofimchuk, Almost periodic solutions of Lasota-Wazewska type delay

differential equations, J. Math. Anal. Appl. 237 (1999), 106–123.

[5] K. Gopalsamy and P. Weng, Global attractivity and level crossing in model of Hematopoiesis,

Bull. Inst. Math. Acad. Sinica 22 (1994), 341–360.

[6] J. R. Graef, C. Qian and P. W. Spikes, Oscillation and global attractivity in a periodic delay

equation, Canad. Math. Bull. 38 (3) (1996), 275–283.

[7] W. S. C. Gurney, S. P. Blathe and R. M. Nishet, Nicholson’s blowflies revisited, Nature 287

(1980), 17–21.

[8] D. Jiang, J. Wei, B. Jhang, Positive periodic solutions of functional differential equations and

populations models, Electron. J. Differential Equations 71(2002), 1-13.



MULTIPLE PERIODIC SOLUTIONS 351

[9] W. Joseph, H. So, J. Wu and X. Zhous, Structured population on two patches: modelling

desparel and delay, J. Math. Biology 43 (2001), 37–51.

[10] W. Joseph, H. So and J. Yu, Global attractivity and uniform stability in Nicholson’s blowflies,

Differential Equations Dynam. Systems 1 (1994), 11–18.

[11] Y. Kuang, Delay differential equations with applications in population dynamics, Academic

Press, New York, 1993.

[12] R. W. Leggett, L. R. Williams, Multiple positive fixed points of nonlinear operators on ordered

Banach spaces, Indiana Univ.Math.J. 28 (1979), 673–688.

[13] B. S. Lalli and B. G. Ghang, On a periodic delay population model, Quart. Appl. Math. LII

(1994), 35–42.

[14] Y. Li, Existence and global attractivity of positive periodic solutions of a class of delay differ-

ential equations, Science in China (Series) 41 (3) (1998), 273–284.

[15] J. Lio and J. Yu, Global asymptotic stability of nonautonomous mathematical ecological equa-

tions with distributed deviating arguments (in chinese), Acta.Math. Sinica 41 (1998), 1273–

1282.

[16] Y. Luo, W. Wang and J. Shen, Existence of positive periodic solutions for two kinds of neutral

functional differential equations, To appear in Appl. Math. Lett.

[17] A. J. Nicholsons, The balance of animal population, J.Animal Ecology 2 (1993), 132–178.

[18] Seshadev Padhi and Shilpee Srivastava, Multiple periodic solutions for nonlinear first order

functional differential equations with applications to population dynamics, Appl. Math. Com-

put. (2008), doi:10.1016/j.amc.2008.03.031.

[19] F. Xiang and Y. Rang, On the Lasota-Wazewska model with piecewise constant arguments,

Acta. Math. Scientia 26B (2) (2006), 371–378.

[20] H. Wang, Positive periodic solutions for functioanl differential equations, J.Differential Equa-

tions 202 (2004), 354–366.

[21] A. Wan, D. Jiang, Existence of positive periodic solutions for functional differential equations,

Kyushu J.Math. 56 (2002), 193–202.

[22] A. Wan, D. Jiang, A new existence theory for positive periodic solutions to functional differ-

ential equations, Comp. Math. Appl. 47 (2004), 1257–1262.

[23] M. Wazewska-Czyzewska and A. Lasota, Mathematical problems of the dyanamics of red blood

cells systems, Ann. Polish Math. Soc. Series III, Appl. Math. 17 (1988), 23–40.

[24] P. Weng, M. Liang, The existence and behaviour of periodic solutions of Hematopoiesis model,

Math. Appl. 4 (1995), 434–439.

[25] G. Zhang, S. Cheng, Positive periodic solutions of nonautonomuos functioanal differential

equations depending on a parameter, Abstract Appl. Anal. 7 (2002), 279–286.

[26] W. Zhang, D. Zhu, P. Bi, Existence of periodic solutions of a scalar functional differential

equations via a fixed point theorem, Math. Comput. Modelling 46 (2007), 718–729.


