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1. INTRODUCTION

Recently there has been a surge in the study of the theory of fractional differential

equations. The existing results have been collected in the forthcoming monograph

on that subject [1]. In this paper, we prove necessary comparison theorems utilizing

Lyapunov-like functions, define stability concepts in terms of a norm and prove stabil-

ity results parallel to Lyapunov’s results relative to stability and asymptotic stability.

Since there are many stability concepts and corresponding results in the literature for

ODEs, it is useful to work with stability concepts in terms of two measures, which

includes several important stability notions as special cases [2, 3]. A few choices of the

two measures are given to demonstrate the versatility of this approach. We extend

this versatile approach to provide necessary conditions for stability criteria in terms

of two measures for fractional differential equations. We use Caputo’s derivative of

arbitrary order which is more suitable to discuss Lyapunov stability theory.

2. BASIC COMPARISON RESULTS

We shall consider the IVP of Caputo’s fractional differential equation, namely

cDqx = f(t, x), x(t0) = x0, t0 ≥ 0, (2.1)

where f ∈ C(R+ × R
n, Rn). For any Lyapunov-like function

V ∈ C(R+ × R
n, R+), we define

cD
q
+V (t, x) = lim sup

h→0

1

hq
[V (t, x) − V (t − h, x − hqf(t, x))] (2.2)

for (t, x) ∈ R+ × R
n. In this chapter, we shall employ Lyapunov-like functions to

estimate the solutions x(t) = x(t, t0, x0) of IVP (2.1) in terms of such functions, as
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the method offers a lot of flexibility in obtaining qualitative properties, including

stability, of solutions of IVP (2.1). In fact, the Lyapunov-like function acts like a

transformation of (2.1) into a relatively simple fractional differential equation, the

properties of solutions of this simple system can be transferred back to the original

more complicated system. This is known as the comparison principle, in general.

We can now formulate the basic comparison results via Lyapunov-like function.

Theorem 2.1. Let V ∈ C(R+ × R
n, R+) and V (t, x) be locally Lipschitzian in x.

Assume that
cD

q
+V (t, x) ≤ g(t, V (t, x)), (t, x) ∈ R+ × R

n, (2.3)

where g ∈ C(R2
+, R). Suppose that r(t) = r(t, t0, u0) is the maximal solution of the

scalar fractional differential equation

cDqu = g(t, u), u(t0) = u0 ≥ 0 (2.4)

existing on [t0,∞). Then V (t0, x0) ≤ u0 implies

V (t, x(t)) ≤ r(t), t ≥ t0, (2.5)

where x(t) = x(t, t0, x0) is any solution of the IVP (2.1) existing on [t0,∞).

Proof. Let x(t) = x(t, t0, x0) be any solution of (2.1) existing on [t0,∞) such that

V (t0, x0) ≤ u0. Set m(t) = V (t, x(t)). Then for small h > 0, we have

V (t, x(t)) − V (t − h, S(x, h, r, q)) = V (t, x(t)) − V (t − h, x − hqf(t, x))

+ V (t − h, x − hqf(t, x)) − V (t − h, S(x, h, r, q)),

where S(x, h, r, q) =
∑n

r=1(−1)r+1
(

q

r

)

x(t − rh).

Since V (t, x) is locally Lipschitzian in x, we get, using (2.2), the fractional dif-

ferential inequality

cD
q
+m(t) = lim sup

h→0
nh=t−t0

1

hq
[V (t, x(t)) − V (t − h, x(t) − hqf(t, x(t)))

+ V (t − h, x(t) − hqf(t, x(t))) − V (t − h, S(x, h, r, q))]

≤ g(t, V (t, x(t))) = g(t, m(t)), (2.6)

since lim sup
h→0

L
ǫ(hq)
hq → 0, L being Lipschitzian constant. Moreover, we have m(t0) =

V (t0, x0) ≤ u0 and therefore it follows from Theorem 2.8.3 [1], the desired estimate

V (t, x(t)) ≤ r(t), t ≥ t0.

Here we have employed the discussion of Section 2.8 [1].

Corollary 2.2. If, in Theorem 2.1, we suppose that g(t, u) ≡ 0, then we arrive at

V (t, x(t)) ≤ V (t0, x0), t ≥ t0. (2.7)



LYAPUNOV THEORY 367

Corollary 2.3. If, in Theorem 2.1, we suppose, instead of (2.3)

cD
q
+V (t, x) + d(|x|) ≤ g(t, V (t, x)) (2.8)

where d ∈ C(R+, R+), d(0) = 0, d(u) is strictly increasing in u and g(t, u) is nonde-

creasing in u for each t, then we obtain the estimate

V (t, x(t)) +
1

Γ(q)

t
∫

t0

(t − s)q−1d(|x(s)|)ds ≤ r(t), t ≥ t0. (2.9)

Proof. Consider L(t, x(t)) = V (t, x(t)) + 1
Γ(q)

t
∫

t0

(t − s)q−1d(|x(s)|)ds, then setting

m(t) = L(t, x(t)) and using the fact g(t, u) is nondecreasing in u coupled with (2.8),

it is easy to obtain, as before,

cD
q
+m(t) ≤ g(t, m(t)), t ≥ t0,

and the assertion (2.9) follows from Theorem 2.8.3 [1] and Theorem 2.1.

The next result plays an important role when we utilize vector Lyapunov func-

tions.

Theorem 2.4. Let V ∈ C(R+ × R
n, RN

+ ) be locally Lipschitzian in x. Assume that

cD
q
+V (t, x) ≤ g(t, V (t, x)), (t, x) ∈ R+ × R

n, (2.10)

where g ∈ C(R+ ×RN
+ , RN) and g(t, u) is quasimonotone nondecreasing in u for each

t. Let r(t) = r(t, t0, u0) be the maximal solution of the fractional differential system

cDqu = g(t, u), u(t0) = u0, (2.11)

existing on [t0,∞) and x(t) = x(t, t0, x0) be any solution of (2.1) existing on [t0,∞).

Then V (t0, x0) ≤ u0 implies

V (t, x(t)) ≤ r(t), t ≥ t0.

We recall that inequalities between vectors are component-wise inequalities and

quasimonotonicity of g(t, u) means that u ≤ v, ui = vi for 1 ≤ i ≤ N implies gi(t, u) ≤

gi(t, v). The proof is similar to the proof of Theorem 2.1; working component-wise

and using the Comparison Theorem 2.8.3 [1]. We leave it to the reader.

Corollary 2.5. If, in Theorem 2.4, we specialize g(t, u) = Au where A is an n × n

matrix, we get the estimate

V (t, x(t)) ≤ V (t0, x0)Eq(A(t − t0)
q), t ≥ t0,

where Eq is the corresponding Mittag-Leffler’s function.
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3. STABILITY CRITERIA

In this section, we shall consider some simple stability results. We list a few

definitions concerning the stability of the trivial solution of (2.1) which we assume to

exist.

Definition 3.1. The trivial solution x = 0 of (2.1) is said to be

(S1) equi-stable if, for each ǫ > 0 and t0 ∈ R+, there exists a positive function

δ = δ(t0, ǫ) that is continuous in t0 for each ǫ such that ‖x0‖ < δ implies

‖x(t, t0, x0)‖ < ǫ, t ≥ t0;

(S2) uniformly stable, if the δ in (S1) is independent of t0;

(S3) quasi-equi-asymptotically stable, if for each ǫ > 0 and t0 ∈ R+, there exist

positive δ0 = δ0(t0) and T = T (t0, ǫ) such that ‖x0‖ < δ0 implies ‖x(t, t0, x0)‖ < ǫ

for t ≥ t0 + T ;

(S4) quasi-uniformly asymptotically stable, if δ0 and T in (S3) are independent of t0;

(S5) equi-asymptotically stable, if (S1) and (S3) hold simultaneously;

(S6) uniformly asymptotically stable, if (S2) and (S4) hold simultaneously.

Corresponding to the definitions (S1) to (S6), we can define the stability notions

of the trivial solution u = 0 of (2.4). For example, the trivial solution u = 0 of (2.4)

is equi-stable if, for each ǫ > 0 and t0 ∈ R+, there exists a function δ = δ(t0, ǫ) that

is continuous in t0 for each ǫ, such that u0 < δ implies u(t, t0, u0) < ǫ, t ≥ t0.

Definition 3.2. A function φ(u) is said to belong to the class K, if φ ∈ C([0, ρ), R+),

φ(0) = 0 and φ(u) is strictly monotone increasing in u. A function φ(t, u) is said to

belong to the class CK, if for each t, φ(t, u) ∈ K and φ ∈ C(R+ × [0, ρ), R+).

Definition 3.3. A function V (t, x) with V (t, 0) ≡ 0 is said to be positive definite if

there exists a function b ∈ K such that

V (t, x) ≥ b(|x|), (3.1)

is satisfied for (t, x) ∈ R+ × S(ρ), where S(ρ) = [x ∈ R
n : |x| < ρ], and it is said to

be decrescent if a function a ∈ K exists such that

V (t, x) ≤ a(|x|), (t, x) ∈ R+ × S(ρ). (3.2)

If, on the other hand, we have

V (t, x) ≤ a(t, |x|), (t, x) ∈ R+ × S(ρ), (3.3)

where a ∈ CK, then V (t, x) is known as weakly decrescent.

We can now prove two results on stability theory of Lyapunov parallel to the

analogous results in ODE in the present frame work.
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Theorem 3.4. Assume that there exists a Lyapunov function V ∈ C(R+×S(ρ), R+)

such that V (t, x) is positive definite, weakly decrescent and satisfies the inequality

cD
q
+V (t, x) ≤ 0, (t, x) ∈ R+ × S(ρ). (3.4)

Then the trivial solution x(t) ≡ 0 of the IVP (2.1) is equistable. If, in addition,

V (t, x) is decrescent, then the trivial solution x(t) ≡ 0 of the IVP (2.1) is uniformly

stable.

Proof. Let x(t) = x(t, t0, x0) be any solution of the IVP (2.1). Suppose that t0 ∈ R+

and 0 < ǫ < ρ is given. Then it is possible to find a δ = δ(t0, ǫ) such that

a(t0, δ) < b(ǫ). (3.5)

Choose |x0| < δ. Then we claim |x(t)| < ǫ, t ≥ t0. If this is not true, there would

exist a solution x(t) = x(t, t0, x0) with |x0| < δ and t1 > t0 such that

|x(t1)| = ǫ, |x(t)| ≤ ǫ, t ∈ [t0, t1], (3.6)

so that we have, because of (3.1),

V (t1, x(t1)) ≥ b(ǫ). (3.7)

This means |x(t)| < ρ for t ∈ [t0, t1] and hence condition (3.4) yields by Corollary 2.2,

the inequality

V (t1, x(t1)) ≤ V (t0, x0).

This gives using (3.3), (3.5), (3.6), (3.7),

b(ǫ) ≤ V (t1, x(t1)) ≤ V (t0, x0) ≤ a(t0, |x0|) ≤ a(t0, δ) < b(ǫ),

a contradiction, proving our claim.

If V (t, x) is only decrescent, we get by (3.2)

V (t0, x0) ≤ a(|x0|)

and choose δ = δ(ǫ) > 0 such that a(δ) < b(ǫ). Since δ is now independent of

t0, we have uniform stability of the trivial solution of IVP (2.1) by the foregoing

considerations. The proof is therefore complete.

The next result offers the uniform asymptotic stability.

Theorem 3.5. Let the assumptions Theorem 3.4 hold except that the condition (3.4)

is replaced by

cD
q
+V (t, x) ≤ −d(|x|), (t, x) ∈ R+ × S(ρ), d ∈ K, (3.8)

and V (t, x) is decrescent. Then the trivial solution x(t) ≡ 0 of the IVP (2.1) is

uniformly asymptotically stable.
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Proof. Since (3.8) implies (3.4) and V (t, x) is assumed to be decrescent, we get from

Theorem 3.4 that the trivial solution of (2.1) is uniformly stable. Let 0 < ǫ < ρ and

δ = δ(ǫ) > 0 correspond to uniform stability. Choose an ǫ0 ≤ ρ and designate by δ0 =

δ(ǫ0) > 0 where ǫ0 is fixed. Let us now choose |x0| < δ0 and T (ǫ) = [ a(δ0)
d(δ(ǫ))

Γ(1 + q)]
1

q ,

where δ(ǫ) corresponds to uniform stability. Suppose that |x0| < δ0 and that we would

have |x(t)| ≥ δ(ǫ) for t0 ≤ t ≤ t0 + T (ǫ). We then get using (3.8) and Corollary 2.3

with g(t, u) ≡ 0,

V (t, x(t) ≤ V (t0, x0)) −
1

Γ(q)

t
∫

t0

(t − s)q−1d(|x(s)|)ds

≤ a(|x0|) −
d(δ)

Γ(q)

t
∫

t0

(t − s)q−1ds ≤ a(δ0) −
d(δ)

Γ(1 + q)
(t − t0)

q,

which for t = t0 + T (ǫ), reduces to

0 < b(δ(ǫ)) ≤ V (t0 + T, x(t0 + T )) ≤ a(δ0) −
d(δ)

Γ(1 + q)
T q ≤ 0.

This contradiction proves that there exists a t1 ∈ [t0, t0+T (ǫ)] such that |x(t1)| < δ(ǫ).

Thus, in any case, we have |x(t)| < ǫ, t ≥ t0 + T (ǫ), whenever |x0| < δ0, proving the

uniform stability of the trivial solution of the IVP (2.1) and the proof is complete.

4. STABILITY CONCEPTS IN TERMS OF TWO MEASURES

Let us begin by defining the following classes of functions for future use:

K = {a ∈ C[R+, R+] : a(u) is strictly increasing in u and a(0) = 0},

L = {σ ∈ C[R+, R+] : σ(u) is strictly decreasing in u and lim
u→∞

σ(u) = 0},

KL = {a ∈ C[R2
+, R+] : a(t, s) ∈ K for each s and a(t, s) ∈ L for each t},

CK = {a ∈ C[R2
+, R+] : a(t, s) ∈ K for each t},

Γ = {h ∈ C[R+ × Rn, R+] : inf h(t, x) = 0},

Γ0 = {h ∈ Γ : inf
x

h(t, x) = 0 for each t ∈ R+}.

We shall now define the stability concepts for the system (2.1) in terms of two

measures h0, h ∈ Γ.

Definition 4.1. The differential system (2.1) is said to be

(S1) (h0, h)-equistable, if for each ǫ > 0 and t0 ∈ R+, there exists a function δ =

δ(t0, ǫ) > 0 which is continuous in t0 for each ǫ such that

h0(t0, x0) < δ
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implies

h(t, x(t)) < ǫ, t ≥ t0,

where x(t) = x(t, t0, x0) is any solution of (2.1);

(S2) (h0, h)-uniformly stable, if (S1) holds with δ being independent of t0;

(S3) (h0, h)-quasi-equi-asymptotically stable, if for each ǫ > 0 and t0 ∈ R+, there

exist positive numbers δ0 = δ0(t0) and T = T (t0, ǫ) such that

h0(t0, x0) < δ0

implies

h(t, x(t)) < ǫ, t ≥ t0 + T ;

(S4) (h0, h)-quasi-uniform asymptotically stable if (S3) holds with δ0 and T being

independent of t0;

(S∗
3) (h0, h)-quasi-equi-asymptotically stable, if for any ǫ > 0 and α > 0, t0 ∈ R+,

there exists a positive number T = T (t0, ǫ, α) such that

h0(t0, x0) < α

implies

h(t, x(t)) < ǫ, t ≥ t0 + T ;

(S∗
4) (h0, h)-quasi uniform asymptotically stable if (S∗

3) holds with T being indepen-

dent of t0;

(S5) (h0, h)-asymptotically stable if (S1) holds and given t0 ∈ R+, there exists a

δ0 = δ0(t0) > 0 such that

h0(t0, x0) < δ0

implies lim
t→∞

h(t, x(t)) = 0;

(S6) (h0, h)-equi-asymptotically stable, if (S1) and (S3) hold together;

(S7) (h0, h)-uniformly asymptotically stable if (S2) and (S4) hold simultaneously;

(S8) (h0, h)-unstable if (S1) fails to hold.

Sometimes the notion of quasi asymptotic stability may be relaxed somewhat as in

(S∗
3) and (S∗

4). We shall use these notions to define Lagrange stability later.

A few choices of the two measures (h0, h) given below will demonstrate the gener-

ality of the Definition 4.1. Furthermore, (h0, h)-stability concepts enable us to unify a

variety of stability notions found in the literature. It is easy to see that Definition 4.1

reduces to

(1) the well known stability of the trivial solution x(t) ≡ 0 of (2.1) or equivalently,

of the invariant set {0}, if h(t, x) = h0(t, x) = ‖x‖;

(2) the stability of the prescribed motion x0(t) of (2.1) if

h(t, x) = h0(t, x) = ‖x − x0(t)‖;
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(3) the partial stability of the trivial solution of (2.1) if

h(t, x) = ‖x‖s, 1 ≤ s ≤ n

and

h0(t, x) = ‖x‖

(4) the stability of asymptotically invariant set {0}, if

h(t, x) = h0(t, x) = ‖x‖ + σ(t)

where σ ∈ L:

(5) the stability of the invariant set A ⊂ R
n if h(t, x) = h0(t, x) = d(x, A), where

d(x, A) is the distance of x from the set A;

(6) the stability of conditionally invariant set B with respect to A, where A ⊂ B ⊂

R
n, if h(t, x) = d(x, B) and h0(t, x) = d(x, A).

We recall that the set {0} is said to be asymptotically invariant if given ǫ > 0,

there exists a τ(ǫ) > 0 such that x0 = 0 implies ‖x(t, t0, 0)‖ < ǫ for t ≥ t0 ≥ τ(ǫ).

Several other combinations of choices are possible for h0, h in addition to those given

in (1) through (6).

Definition 4.2. Let h0, h ∈ Γ. Then, we say that

(i) h0 is finer than h if there exists a ρ > 0 and a function φ ∈ CK such that

h0(t, x) < ρ implies h(t, x) ≤ φ(t, h0(t, x));

(ii) h0 is uniformly finer than h if in (i) φ is independent of t;

(iii) h0 is asymptotically finer than h if there exists a ρ > 0 and a function φ ∈ KL

such that h0(t, x) < ρ implies h(t, x) ≤ φ(h0(t, x), t).

Definition 4.3. Let V ∈ C[R+ × R
n, R+]. Then V is said to be

(i) h-positive definite if there exists a ρ > 0 and a function b ∈ K such that

b(h(t, x)) ≤ V (t, x) whenever h(t, x) < ρ;

(ii) h-decrescent if there exists a ρ > 0 and a function a ∈ K such that V (t, x) ≤

a(h(t, x)) whenever h(t, x) < ρ;

(iii) h-weakly decrescent if there exists a ρ > 0 and a function a ∈ CK such that

V (t, x) ≤ a(t, h(t, x)) whenever h(t, x) < ρ;

(iv) h-asymptotically decrescent if there exists a ρ > 0 and a function a ∈ KL such

that V (t, x) ≤ a(h(t, x), t) whenever h(t, x) < ρ.

Corresponding to Definition 4.1, we need the stability definition for the trivial

solution of the comparison equation

cDqu = g(t, u), u(t0) = u0 ≥ 0, (4.1)

where g ∈ C[R2
+, R] and g(t, 0) ≡ 0. We merely state one of the concepts.
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Definition 4.4. The trivial solution u(t) ≡ 0 of (4.1) is said to be equistable if for

any ǫ > 0 and t0 ∈ R+, there exists a δ = δ(t0, ǫ) > 0 which is continuous in t0 such

that u0 < δ implies u(t, t0, u0) < ǫ, t ≥ t0, u(t, t0, u0) being any solution of (4.1).

5. STABILITY CRITERIA IN TERMS OF TWO MEASURES

Let us now establish some sufficient conditions for the (h0, h) stability properties

of the differential system (2.1).

Theorem 5.1. Assume that

(A0) h, h0 ∈ Γ and h0 is uniformly finer than h;

(A1) V ∈ C[R+ × R
n, R+], V (t, x) is locally Lipschitzian in x, V is h-positive definite

and h0-decrescent;

(A2) g ∈ C[R2
+, R] and g(t, 0) ≡ 0;

(A3)
cD

q
+V (t, x) ≤ g(t, V (t, x)) for (t, x) ∈ S(h, ρ) for some ρ > 0, where S(h, ρ) =

{(t, x) ∈ R+ × R
n : h(t, x) < ρ}.

Then, the stability properties of the trivial solution of (4.1) imply the corresponding

(h0, h)-stability properties of (2.1).

Proof. We shall only prove (h0, h)-equi-asymptotic stability of (2.1). For this purpose,

let us first prove (h0, h) equistability.

Since V is h-positive definite, there exists a λ ∈ (0, ρ] and b ∈ K such that

b(h(t, x)) ≤ V (t, x), (t, x) ∈ S(h, λ). (5.1)

Let 0 < ǫ < λ and t0 ∈ R+ be given and suppose that the trivial solution of (4.1) is

equistable. Then, given b(ǫ) > 0 and t0 ∈ R+, there exists a function δ1 = δ1(t0, ǫ)

that is continuous in t0 such that u0 < δ1 implies

u(t, t0, u0) < b(ǫ), t ≥ t0, (5.2)

where u(t, t0, u0) is any solution of (4.1). We choose u0 = V (t0, x0). Since V is

h0-decrescent and h0 is uniformly finer than h, there exists a λ0 > 0 and a function

a ∈ K such that for (t0, x0) ∈ S(h0, λ0),

h(t0, x0) < λ and V (t0, x0) ≤ a(h0(t0, x0)). (5.3)

It then follows from (5.1) that

b(h(t0, x0)) ≤ V (t0, x0) ≤ a(h0(t0, x0)), (t0, x0) ∈ S(h0, λ0). (5.4)

Choose δ = δ(t0, ǫ) such that δ ∈ (0, λ0], a(δ) < δ1 and let h0(t0, x0) < δ. Then

(5.4) shows that h(t0, x0) < ǫ since δ1 < b(ǫ). We claim that

h(t, x(t)) < ǫ, t ≥ t0
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whenever h0(t0, x0) < δ, where x(t) = x(t, t0, x0) is any solution of (2.1) with

h0(t0, x0) < δ. If this is not true, then there exists a t1 > t0 and a solution x(t)

of (2.1) such that

h(t1, x(t1)) = ǫ and h(t, x(t)) < ǫ, t0 ≤ t < t1, (5.5)

in view of the fact that h(t0, x0) < ǫ whenever h0(t0, x0) < δ. This means that

x(t) ∈ S(h, λ) for [t0, t1] and hence by Theorem 2.1 we have

V (t, x(t)) ≤ r(t, t0, u0), t0 ≤ t ≤ t1, (5.6)

where r(t, t0, u0) is the maximal solution of (4.1). Now the relations (5.1), (5.2), (5.5)

and (5.6) yield

b(ǫ) ≤ V (t1, x(t1)) ≤ r(t1, t0, u0) < b(ǫ),

a contradiction proving (h0, h)-equistability of (2.1).

Suppose next that the trivial solution of (4.1) is quasi-equi-asymptotically stable.

From the (h0, h)-equistability, we set ǫ = λ so that δ̂0 = δ(t0, λ). Now let 0 < η < λ.

Then, by quasi-equi-asymptotic stability of (4.1), we have that, given b(η) > 0 and

t0 ∈ R+, there exist positive numbers δ∗1 = δ∗1(t0) and T = T (t0, η) > 0 such that

u0 < δ∗1 implies u(t, t0, u0) < b(η), t ≥ t0 + T. (5.7)

Choosing u0 = V (t0, x0) as before, we find a δ∗0 = δ∗0(t0) > 0 such that δ∗0 ∈ (0, λ0] and

a(δ∗0) < δ∗1. Let δ0 = min(δ∗0, δ̂0) and h0(t0, x0) < δ0. This implies that h(t, x(t)) < λ,

t ≥ t0 and hence the estimate (5.6) is valid for all t ≥ t0. Suppose now that there

exists a sequence {tk}, tk ≥ t0+T , tk → ∞ as k → ∞ such that η ≤ h(tk, x(tk)) where

x(t) is any solution of (2.1) such that h0(t0, x0) < δ0. This leads to a contradiction

b(η) ≤ V (tk, x(tk)) ≤ r(tk, t0, u0) < b(η)

because of (5.6) and (5.7). Hence the system (2.1) is (h0, h)-equi-asymptotically

stable and the proof is complete.

We have assumed in Theorem 5.1 stronger requirements on V, h, h0 only to unify

all the stability criteria in one theorem. This obviously puts burden on the compari-

son equation (4.1). However, to obtain only non-uniform stability criteria, we could

weaken certain assumptions of Theorem 5.1 as in the next result. The details of proof

are omitted.

Theorem 5.2. Assume that conditions (A0)–(A3) hold with the following

changes:

(i) h0, h ∈ Γ0 and h0 is finer than h and

(ii) V is h0-weakly decrescent.

Then, the equi or uniform stability properties of the trivial solution of (4.1) imply the

corresponding equi (h0, h)-stability properties of (2.1).
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We shall next consider a result on (h0, h)-asymptotic stability which generalizes

classical results.

Theorem 5.3. Assume that

(i) h0, h ∈ Γ0 and h0 is finer than h;

(ii) V ∈ C[R+ ×R
n, R+], V (t, x) is locally Lipschitzian in x, V is h-positive definite

and h0-weakly decrescent;

(iii) W ∈ C[R+ × R
n, R+], W (t, x) is locally Lipschitzian in x, W is h-positive

definite, D+
−W (t, x) is bounded from above or from below on S(h, ρ) and for

(t, x) ∈ S(h, ρ),

cD
q
+V (t, x) ≤ −C(W (t, x)), C ∈ K.

Then, the system (2.1) is (h0, h)-asymptotically stable.

Proof. By Theorem 5.2 with g ≡ 0, if follows that the system (2.1) is (h0, h)-

equistable. Hence it is enough to prove that given t0 ∈ R+, there exists a δ0 =

δ0(t0) > 0 such that h0(t0, x0) < δ0 implies h(t, x(t)) → 0 as t → ∞.

For ǫ = λ, let δ0 = δ(t0, λ) be associated with (h0, h)-equistability. We suppose

that h0(t0, x0) < δ0. Since W (t, x) is h-positive definite, it is enough to prove that

lim
t→∞

W (t, x(t)) = 0 for any solution x(t) of (2.1) with

h0(t0, x0) < δ0.

We first note that lim
t→∞

inf W (t, x(t)) = 0. For otherwise, in view of (iii), we get

V (t, x(t)) → −∞ as t → ∞.

Suppose that lim
t→∞

W (t, x(t)) 6= 0. Then, for any ǫ > 0, there exist divergent

sequences {tn}, {t
∗
n} such that ti < t∗i < ti+1, i = 1, 2, . . ., and







W (ti, x(ti)) = ǫ
2
,

W (t∗i , x(t∗i )) = ǫ,

and

ǫ

2
< W (t, x(t)) < ǫ, t ∈ (ti, t

∗
i ). (5.8)

Of course, we could also have, instead of (5.8),

W (ti, x(ti)) = ǫ, W (t∗i , x(t∗i )) =
ǫ

2
, W (t, x(t)) ∈ (

ǫ

2
, ǫ), t ∈ (ti, t

∗
i ) (5.9)
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Suppose that D+W (t, x) ≤ M . Then, it is easy to obtain, using (5.8), the relation

t∗i − ti > ǫ
2M

. In view of (iii), we have for large n,

0 ≤ V (t∗n, x(t∗n)) ≤ V (t0, x0) −
1

Γ(q)

∑

1≤i≤n

t∗i
∫

ti

(t∗i − s)q−1C(W (s, x(s)))ds

≤ V (t0, x0) − nC(
ǫ

2
)

ǫ

2M

1

Γ(q + 1)
< 0,

which is a contradiction. Thus, W (t, x(t)) → 0 as t → ∞ and hence h(t, x(t)) → 0

as t → ∞. The argument is similar when D+W is bounded from below and we use

(5.9). The proof is therefore complete.

Corollary 5.4 (Marachkov’s theorem). Suppose that f is bounded on R+ × S(ρ).

Then the trivial solution of (2.1) is asymptotically stable if there exist C ∈ K and

V ∈ C[R+ × S(ρ), R+] such that

(i) V is positive definite, V (t, 0) ≡ 0 and V (t, x) is locally Lipschitzian in x;

(ii) cD
q
+V (t, x) ≤ −C(‖x‖), (t, x) ∈ R+ ×S(ρ), C ∈ K.
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