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1. INTRODUCTION

It has been realized recently that fractional differential equations are appropriate

models for studying and describing the memory and hereditary properties of various

materials and processes. This lead to a renewed surge of research activity in the area

and basic theoretical concepts like differential and integral inequalities [4], existence

and uniqueness results [2, 3, 5, 6, 10] were studied. The monotone iterative technique

and its generalization for IVPs and PBVPs has been developed in [8, 1] and [9, 11]

respectively.

The method of quasilinearization [7] is a very fruitful technique that guarantees

the quadratic convergence of a monotone sequence of solutions of linear equations,

which are constructed using the method of lower and upper solutions, to a unique

solution of the differential equation under certain conditions.

In this paper we develop this useful method of quasilinearization to fractional

differential equations which are excellent models for many physical phenomena. We

obtain results when the right hand side function of the fractional differential equation

satisfies a weaker hypothesis than convexity and also when the right hand side function

is concave.

2. PRELIMINARIES

We start with the definitions of Caputo fractional differential equation, Riemann-

Liouville fractional differential equation and the relation between the two derivatives.

Received October 1, 2008 1083-2564 $15.00 c©Dynamic Publishers, Inc.



408 J. VASUNDHARA DEVI AND CH. SUSEELA

The Caputo fractional differential equation is given by

cDqx = f(t, x), x(t0) = x0. (2.1)

and the corresponding Volterra fractional integral equation by

x(t) = x0 +
1

Γ(q)

t∫

t0

(t − s)q−1 f(s, x(s))ds. (2.2)

The Riemann-Liouville fractional differential equation is expressed as

Dqx = f(t, x), (2.3)

x(t0) = x0 = x(t)(t − t0)
1−q|t=t0 (2.4)

and the corresponding Volterra fractional integral equation is

x(t) = x0(t) +
1

Γ(q)

t∫

t0

(t − s)q−1 f(s, x(s))ds, (2.5)

where

x0(t) =
x0(t − t0)

q−1

Γ(q)
.

The relation between the Caputo fractional derivative and the Riemann-Liouville

fractional derivative is as follows:

cDqx(t) = Dq [x(t) − x(t0)]. (2.6)

We shall state the needed notation and the required results from [3, 4, 5], without

proof, for Riemann-Liouville fractional derivatives below. Let Cp([t0, T ], R) = {u ∈

C((t0, T ], R) and (t − t0)
p u(t) ∈ C([t0, T ], R)}.

Lemma 2.1. Let m ∈ Cp([t0, T ], R) be locally Hölder continuous with exponent λ > q

and for any t1 ∈ (t0, T ], we have

m(t1) = 0 and m(t) ≤ 0 for t0 ≤ t ≤ t1, (2.7)

then

Dqm(t1) ≥ 0. (2.8)

Lemma 2.2. Let {xǫ(t)} be a family of continuous functions on [t0, T ], for each ǫ > 0,

where

Dq xǫ(t) = f(t, xǫ(t)), x0
ǫ = xǫ(t)(t − t0)

1−q|t=t0 ,

and

|f(t, xǫ(t))| ≤ M for t0 ≤ t ≤ T.

Then the family {xǫ(t)} is equicontinuous on [t0, T ].



QUASILINEARIZATION FOR FRACTIONAL DIFFERENTIAL EQUATIONS 409

Theorem 2.3. Let v, w ∈ Cp([t0, T ], R) be locally Hölder continuous for an exponent

0 < λ < 1 and λ > q, f ∈ C([t0, T ] × R, R) and

(i) Dqv(t) ≤ f(t, v(t)),

(ii) Dqw(t) ≥ f(t, w(t)), t0 < t ≤ T,
(2.9)

one of the inequalities (i) or (ii) being strict. Then

v0 < w0 (2.10)

where v0 = v(t)(t − t0)
1−q|t=t0, and w0 = w(t)(t− t0)

1−q|t=t0, implies

v(t) < w(t), t0 ≤ t ≤ T. (2.11)

We first show that Lemma 2.1 also holds for Caputo derivative.

Lemma 2.4. Let m ∈ Cp([t0, T ], R) be locally Hölder continuous with exponent λ > q

and for any t1 ∈ (t0, T ] we have

m(t1) = 0 and m(t) ≤ 0 for t0 ≤ t ≤ t1. (2.12)

Then it follows that

cDq m(t1) ≥ 0. (2.13)

Proof. In view of the relation (2.6), we have

cDqm(t) = Dq[m(t) − m(t0)].

Noting that Dqm(t0) =
m(t0)(t − t0)

−q

Γ(1 − q)
and m(t0) ≤ 0 we get

−Dqm(t0) ≥ 0.

Hence we obtain cDqm(t) ≥ Dqm(t).

Thus using Lemma 2.1, we conclude

cDqm(t1) ≥ Dq m(t1) ≥ 0.

We next claim that both the Lemma 2.2 and the Theorem 2.3 hold for Caputo

derivative also. The proofs being similar are omitted.

The explicit solution of the nonhomogeneous linear fractional differential equation

of Caputo’s type is used to prove the main result. Hence we present it here from [2].

The nonhomogeneous linear fractional differential equation of Caputo’s type is given

by

cDq(x) = λx + f(t), x(t0) = x0, (2.14)

where f ∈ Cq([t0, T ], R), is Hölder continuous with exponent q.
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Using the method of successive approximations we get the unique solution of

(2.14) as

x(t) = x0Eq(λ(t − t0)
q) +

∫ t

t0

(t − s)q−1Eq,q(λ(t − s)q)f(s)ds, t ∈ [t0, T ], (2.15)

where

Eq(t) =
∞∑

k=1

tk

Γ(qk + 1)
and Eq,q(t) =

∞∑
k=1

tk

Γ(qk + q)

are Mittag-Leffler functions of one parameter and two parameters respectively.

The next result deals with nonstrict fractional differential inequalities for Caputo

derivative.

Theorem 2.5. Let v, w ∈ Cp([t0, T ], R) be Hölder continuous for an exponent 0 <

λ < 1 and λ > q, f ∈ C([t0, T ] × R, R) and

(i) cDqv(t) ≤ f(t, v(t)),

(ii) cDq w(t) ≥ f(t, w(t)).
(2.16)

Suppose further that the standard Lipschitz condition

f(t, x) − f(t, y) ≤ L(x − y), x ≥ y and L > 0, (2.17)

is satisfied. Then v(t0) ≤ w(t0) implies

v(t) ≤ w(t), t0 ≤ t ≤ T. (2.18)

Proof. We set

wǫ(t) = w(t) + ǫλ(t)

where

λ(t) = Eq(2L(t − t0)
q).

Then

wǫ(t0) = w(t0) + ǫ > w(t0)

as λ(t0) = 1. Thus we get wǫ(t0) > w(t0) ≥ v(t0) and wǫ(t) > w(t).

Further using the Lipschitz condition (2.17)

cDq wǫ(t) = cDqw(t) + ǫ cDq λ(t)

≥ f(t, w(t)) + 2Lǫ λ(t)

≥ f(t, wǫ(t)) − Lǫ λ(t) + 2Lǫ λ(t)

> f(t, wǫ(t)), t0 < t ≤ T.

Now applying Theorem 2.3 for Caputo differential inequalities to v(t), wǫ(t) we get

v(t) < wǫ(t), t0 ≤ t ≤ T for every ǫ > 0. As ǫ → 0 we get v(t) ≤ w(t), t0 ≤ t ≤ T

and thus the proof is complete.

Corollary 2.6. The function f(t, v) = σ(t)v where σ(t) ≤ L is admissible in Theo-

rem 2.5 to yield v(t) ≤ 0 on t0 ≤ t ≤ T .



QUASILINEARIZATION FOR FRACTIONAL DIFFERENTIAL EQUATIONS 411

3. QUASILINEARIZATION

The method of upper and lower solutions coupled with the monotone iterative

technique offers monotone sequences that converge to the extremal solutions of the

original nonlinear problem. When we employ the technique of lower and upper solu-

tions together with the method of quasilinearization, it is possible to construct mono-

tone sequences which converge quadratically to the solution of the original problem.

In this section, we shall extend the method of quasilinearization to the fractional

differential equation of Caputo type, namely,

cDqx = f(t, x), x(t0) = x0, (3.1)

where f ∈ C([t0, T ] × R, R), cDq is Caputo’s fractional derivative and

x(t) = x0 +
1

Γ(q)

t∫

t0

(t − s)q−1f(s, x(s))ds, t ∈ [t0, T ], (3.2)

is the equivalent Volterra fractional integral equation.

We shall prove the following simple result concerning quasilinearization, when f

satisfies weaker conditions then convexity.

Theorem 3.1. Assume that

(i) f ∈ C([t0, T ] × R, R), α0, β0 ∈ Cq([t0, T ], R) and cDqα0 ≤ f(t, α0),
cDqβ0 ≥ f(t, β0), α0(t) ≤ β0(t), t ∈ [t0, T ], α0(t0) ≤ x0 ≤ β0(t0);

(ii) f(t, x) ≥ f(t, y) + fx(t, y)(x− y), x ≥ y, fx(t, x) is assumed to exist and satisfy

|fx(t, x) − fx(t, y)| ≤ L|x − y|; (3.3)

(iii) fx(t, x) is nondecreasing in x for each t.

Then there exist monotone sequences {αn}, {βn} such that αn → ρ, βn → r uniformly

and monotonically to the unique solution ρ = r = x of IVP (3.1) on [t0, T ] and

convergence is quadratic.

Proof. We consider the following sequences generated by linear fractional differential

equations,

cDqαn+1 = f(t, αn) + fx(t, αn)(αn+1 − αn), αn+1(t0) = x0, (3.4)

cDqβn+1 = f(t, βn) + fx(t, αn)(βn+1 − βn), βn+1(t0) = x0, (3.5)

and α0(t0) ≤ x0 ≤ β0(t0). Since the right hand side satisfies a Lipschitz condition, it

is clear that unique solutions exist. Our aim is to show that

α0 ≤ α1 ≤ · · · ≤ αn ≤ βn ≤ · · · ≤ β1 ≤ β0 on [t0, T ]. (3.6)

We shall first prove that

α0 ≤ α1 ≤ β1 ≤ β0 on [t0, T ]. (3.7)
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Set

p = α1 − α0

so that

cDqp =c Dqα1 −
cDqα0 ≥ f(t, α0) + fx(t, α0)(α1 − α0) − f(t, α0).

This implies cDqp ≥ fx(t, α0)p and p(t0) ≥ 0, which because of Corollary 2.6 yields

p(t) ≥ 0 on [t0, T ]. Thus we have α0 ≤ α1. Similarly, we can show β1 ≤ β0. To show

α1 ≤ β1, we set p = β1 − α1 so that

cDqp = f(t, β0) + fx(t, α0)(β1 − β0) − [f(t, α0) + fx(t, α0)(α1 − α0)].

Using assumption (ii), we get

cDqp ≥ fx(t, α0)[β1 − β0 − (α1 − α0) + β0 − α0] = fx(t, α0)p.

Since p(t0) = 0, we get p(t) ≥ 0 on [t0, T ], which implies β1 ≥ α1

proving (3.7).

Suppose now that for some k > 1,

α0 ≤ αk−1 ≤ αk ≤ βk ≤ βk−1 ≤ β0 on[t0, T ]. (3.8)

and we show that

αk ≤ αk+1 ≤ βk+1 ≤ βk on [t0, T ].

To prove this, we let p = αk+1 − αk so that we have

cDqp = f(t, αk) + fx(t, αk)(αk+1 − αk) − [f(t, αk−1)

+fx(t, αk−1)(αk − αk−1)]

≥ fx(t, αk−1)(αk − αk−1) + fx(t, αk)(αk+1 − αk)

−fx(t, αk−1)(αk − αk−1)

= fx(t, αk)p, p(t0) = 0.

Hence we get p(t) ≥ 0 which yields αk+1 ≥ αk on [t0, T ]. Similarly we can show

βk+1 ≤ βk. To prove αk+1 ≤ βk+1, we set p = βk+1 − αk+1 so that we obtain

cDqp = f(t, βk) + fx(t, αk)(βk+1 − βk)

−[f(t, αk) + fx(t, αk)(αk+1 − αk)]

≥ fx(t, αk)(βk − αk) − fx(t, αk)(αk+1 − αk)

+fx(t, αk)(βk+1 − βk)

≥ fx(t, αk)[βk − αk − αk+1 + αk] + fx(t, αk)(βk+1 − βk)

= fx(t, αk)p and p(t0) = 0.

This proves that αk+1 ≤ βk+1 on [t0, T ]. Hence by induction (3.8) is valid for all n.

Clearly the sequences are uniformly bounded because of (3.8), which shows that

{cDqαn}, {
cDqβn} are also uniformly bounded. By Lemma 2.2 we get the sequences

are equicontinuous on [t0, T ] and therefore Ascoli-Arzela Theorem provides subse-

quences that converge uniformly on [t0, T ]. This together with (3.8) gives that the
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entire sequences {αn}, {βn} converge uniformly and monotonically to ρ, r respectively

as n → ∞. Using the corresponding Volterra fractional integrals of (3.4), (3.5), one

can easily show that ρ, r are solutions of IVP(3.1) and using the fact that f satisfies

a Lipschitz condition, since fx(t, x) is bounded on the sector

[α0, β0] = [x : α0(t) ≤ x ≤ β0(t)],

we find ρ = r = x is the unique solution of IVP (3.1).

To prove the quadratic convergence of {αn}, {βn} to the unique solution, we

consider

pn+1 = x − αn+1, rn+1 = βn+1 − x

so that pn+1(t0) = 0 and rn+1(t0) = 0. We then have

cDqpn+1 = f(t, x) − [f(t, αn) + fx(t, αn)(αn+1 − αn)]

= fx(t, αn)pn − fx(t, αn) [pn − pn+1]

≤ [fx(t, x) − fx(t, αn)] pn + fx(t, αn) pn+1

≤ L|pn|
2 + fx(t, αn) pn+1 ≤ L|pn|

2
0 + Npn+1,

where

|fx| ≤ N, |pn|0 = sup
[t0,T ]

|pn(t)|.

This inequality yields the estimate

pn+1(t) ≤ L|pn|
2
0

t∫
t0

(t − s)q−1 Eq,q(N(t − s)q)ds

≤ N0|pn|
2
0 where N0 = L1

q
(T − t0)

qEq,q(N(T − t0)
q).

Thus we finally have the estimate which shows the quadratic convergence,

|pn+1|0 ≤ N0|pn|
2
0.

A similar computation shows that

|rn+1|0 ≤ N0|rn|
2
0.

The proof is therefore complete.

4. QUASILINEARIZATION: FUNCTION IS CONCAVE

In this section, we obtain the quadratic convergence to the unique solution for

the IVP
cDqx = g(t, x), x(t0) = x0, (4.1)

where g ∈ C[J × R, R] and J = [t0, T ] is a concave function. The main result is

presented below. ,

Theorem 4.1. Assume that
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(i) α0, β0 ∈ Cq[J, R] such that for t ∈ J
cDqα0 ≤ g(t, α0),

c Dqβ0 ≥ g(t, β0) and α0(t) ≤ β0(t) with

α0(t0) ≤ x0 ≤ β0(t0).

(ii) g ∈ C[Ω, R]. Assume gx exists and gxx ≤ 0 on Ω where Ω = {(t, x) : α0(t) ≤

x(t) ≤ β0(t), t ∈ J}.

Then there exists monotone sequences {αn(t)}, {βn(t)} which converge uniformly

to the unique solution of the given IVP (4.1) and the convergence is quadratic.

Proof. Using the fact that gx exists, we get

g(t, x) − g(t, y) ≤ L(x − y), (4.2)

for some L ≥ 0 and α0(t) ≤ y ≤ x ≤ β0(t). Further gxx ≤ 0 implies

g(t, x) ≥ g(t, y) + gx(t, x)(x − y), x ≥ y. (4.3)

Consider the linear Caputo fractional differential equations,

cDqαk+1 = g(t, αk) + gx(t, βk)(αk+1 − αk), αk+1(t0) = x0 (4.4)

cDqβk+1 = g(t, βk) + gx(t, βk)(βk+1 − βk), βk+1(t0) = x0 (4.5)

Taking k = 0, we set p = α0 − α1 and consider

cDqp = cDqα0−,c Dqα1

≤ g(t, α0) − [g(t, α0) + gx(t, β0)(α1 − α0)]

= gx(t, β0)(α0 − α1) = gx(t, β0)p.

Further p(t0) ≤ 0. Thus using Corollary 2.6, we conclude p(t) ≤ 0 for t ∈ J , that is

α0(t) ≤ α1(t), t ∈ J.

In a similar manner we can prove that

β1(t) ≤ β0(t), t ∈ J.

Now set p = α1 − β1, then p(t0) = 0.

Also

cDqp = cDqα1 −
c Dqβ1

= g(t, α0) + gx(t, β0)(α1 − α0) − [g((t, β0) + gx(t, β0)(β1 − β0)].

Using relation (4.3) we arrive at,

cDqp ≤ gx(t, β0)[(α1 − α0) − (β1 − β0) − (β0 − α0)] = gx(t, β0)p.

Again Corollary 2.6 yields, p(t) ≤ 0 on J which implies α1 ≤ β1 on J . Thus

α0(t) ≤ α1(t) ≤ β1(t) ≤ β0(t), t ∈ J. (4.6)

Suppose for k > 1,

α0(t) ≤ αk−1(t) ≤ αk(t) ≤ βk(t) ≤ βk−1(t) ≤ β0(t) on J. (4.7)
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We now show that

αk(t) ≤ αk+1(t) ≤ βk+1(t) ≤ βk(t) on J (4.8)

where αk+1 and βk+1 are the solutions of the linear fractional differential equations

of Caputo’s type (4.4) and (4.5) respectively.

To prove the relation (4.8) we set p = αk − αk+1, so that p(t0) = 0 and

cDqp = g(t, αk−1) + gx(t, βk−1)(αk − αk−1)

−[g(t, αk) + gx(t, βk)(αk+1 − αk)]

≤ −gx(t, βk−1)(αk − αk−1)

+gx(t, βk−1)(αk − αk−1) + gx(t, βk)(αk − αk+1)

= gx(t, βk)p.

Applying Corollary 2.6 we obtain αk(t) ≤ αk+1(t) on J .

Similarly we can show βk+1(t) ≤ βk(t), t ∈ J . Finally consider p = αk+1 − βk+1.

cDqp = g(t, αk) + gx(t, βk)(αk+1 − αk) − [g(t, βk) + gx(t, βk)(βk+1−βk)]

≤ gx(t, βk)(αk − βk) + gx(t, βk)(αk+1 − αk) − gx(t, βk)(βk+1 − βk)

≤ gx(t, βk)[(αk − βk) − (βk+1 − βk)] + gx(t, βk)(αk+1 − αk)

= gx(t, βk)p.

Also p(t0) = 0. Again using Corollary 2.6 we conclude that αk+1(t) ≤ βk+1(t) on J .

Thus using the principle of mathematical induction, we infer that

α0 ≤ α1 ≤ α2 ≤ · · · ≤ αn ≤ βn ≤ βn−1 ≤ · · · ≤ β1 ≤ β0 on J. (4.9)

From (4.9) we observe that the sequences are uniformly bounded which also yields

that {cDqαn}, {
cDqβn} are uniformly bounded.

By Lemma 2.2 we can conclude that the sequences {αn} and {βn} are equicon-

tinuous on J and therefore Ascoli Arzela Theorem provides subsequences that con-

verge uniformly on J. This together with (4.9) guarantees that the entire sequences

{αn}, {βn} converge uniformly and monotonically to p and r respectively as n → ∞.

Using the corresponding Volterra fractional integrals of

cDqαk = g(t, αk−1) + gx(t, βk−1)(αk − αk−1), αk(t0) = x0

cDqβk = g(t, βk−1) + gx(t, βk−1)(βk − βk−1), βk(t0) = x0

one can easily show that p and r are solutions of IVP (4.1). Since g satisfies Lipschitz

condition we find p = r = x is the unique solution of IVP (4.1).

To prove the quadratic convergence of {αn}, {βn} to the unique solution we con-

sider pn+1 = x−αn+1, qn+1 = βn+1 − x. Clearly pn+1(t0) = 0 and qn+1(t0) = 0. Using
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the relation (4.4) and the mean value theorem successively we get

cDqpn+1 = g(t, x) − [g(t, αn) + gx(t, βn)(αn+1 − αn)]

= g(t, x) − g(t, αn) − gx(t, βn)(αn+1 − αn)

= gx(t, η)pn − gx(t, βn)pn + gx(t, βn)pn+1

≤ [gx(t, αn) − gx(t, βn)]pn + gx(t, βn)pn+1

= −gxx(t, ξ)(βn − αn)pn + gx(t, βn)pn+1

= −gxx(t, ξ)qnpn − gxx(t, ξ)p
2
n + gx(t, βn)pn+1

where αn < η < x; αn < ξ < βn.

Note that gxx ≤ 0.

Let

|gxx(t, x)| ≤ M1, |gx(t, x) ≤ L, (t, x) ∈ Ω.

Hence
cDqpn+1 ≤ M1[pnqn + p2

n] + Lpn+1

≤ M1

2
[3p2

n + q2
n] + Lpn+1 with pn+1(t0) = 0.

Thus
cDqpn+1 ≤

M1

2
[3|pn|

2
0 + |qn|

2
0] + Lpn+1.

where

|pn|0 = sup
t∈J

|pn(t)|, |qn|0 = sup
t∈J

|qn(t)|.

This inequality gives the estimate

pn+1(t) ≤
M1

2
[3|pn|

2
0 + |qn|

2
0]

t∫

t0

(t − s)q−1 Eq,q(L(t − s)q)ds

≤ L0[3|pn|
2
0 + |qn|

2
0]

where L0 =
M1

2q
(T − t0)

q Eq,q(L(T − t0)
q).

Thus we have the estimate |pn+1|0 ≤ L0[3|pn|
2
0 + |qn|

2
0], which implies the quadratic

convergence of the sequence. A similar computation slows that

|qn+1|0 ≤ L0[|pn|
2
0 + 3|qn|

2
0]. The proof is complete.
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