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1. INTRODUCTION

In the last few years, many researchers have focused their research on the study

of fractional differential and integral equations defined on bounded and unbounded

intervals, and various theoretical results have been obtained; see the monographs

of Kilbas et al. [26], Miller and Ross [30], and the papers of Agarwal et al. [1, 2],

Belarbi et al. [12], Benchohra et al. [13, 14], Delboso and Rodino [15], Diethelm

and Ford [16], El-Sayed et al. [17], Furati and Tatar [19, 20, 21] and Momani et

al. [31, 32]. These results are applied in different fields of science and engineering

such as physics, biology and chemistry, etc. We refer the reader to the papers of

Gaul et al. [22], Glockle and Nonnenmacher [23], Hilfer [25], Mainardi [28], Metzler

et al. [29] and Podlubny [35]. Recently Lakshmikantham and Devi [27] studied the

existence, uniqueness and continuous dependence on initial data of the solutions of a

class of fractional differential equations in Banach spaces involving Riemann-Liouville

derivatives. As far as we know there are very few papers related to ordinary fractional

differential equations on Banach spaces (see [27]).
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In this paper we consider the existence of solutions of an initial value problem

(IVP for short) for a nonlinear fractional differential equation,

cDry(t) = f(t, y), for each t ∈ J = [0, T ], 1 < r < 2, (1.1)

y(0) = y0, y′(0) = y1, (1.2)

where cDr is the Caputo fractional derivative, f : J × E → E is a given function

satisfying some assumptions that will be specified later, and E is a Banach space with

norm ‖ · ‖. We will use the technique of measures of noncompactness which is often

used in several branches of nonlinear analysis. Especially, that technique turns out

to be a very useful tool in existence for several types of integral equations; details are

found in Akhmerov et al. [4], Alvàrez [5], Banas̀ et al. [6, 7, 8, 9, 10, 11], El-Sayed

and Rzepka [18], Guo et al. [24], Mönch [33], Mönch and Von Harten [34] and Szufla

[36].

The principal goal here is to prove the existence of solutions for the above problem

using Mönch’s fixed point theorem and its related Kuratowski measure of noncom-

pactness.

2. PRELIMINARIES

We now gather some definitions and preliminary facts which will be used through-

out this paper.

Denote by C(J, E) the Banach space of continuous functions y : J → E, with

the usual supremum norm

‖y‖∞ = sup{‖y(t)‖, t ∈ J}.

Let L1(J, E) be the Banach space of measurable functions y : J → E which are

Bochner integrable, equipped with the norm

‖y‖L1 =

∫

J

y(t) dt.

AC1(J, E) denotes the space of functions y : J → E, whose first derivative is abso-

lutely continuous.

Moreover, for a given set V of functions v : J → E, let us denote by

V (t) = {v(t) : v ∈ V }, t ∈ J,

and

V (J) = {v(t) : v ∈ V, t ∈ J}.

Now let us recall some fundamental facts of the notion of Kuratowski measure of

noncompactness.
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Definition 2.1 ([4, 8]). Let E be a Banach space and ΩE the bounded subsets of E.

The Kuratowski measure of noncompactness is the map α : ΩE → [0,∞] defined by

α(B) = inf{ǫ > 0 : B ⊆ ∪n
i=1Bi and diam(Bi) ≤ ǫ}; here B ∈ ΩE .

This measure of noncompactness satisfies some important properties [4, 8]:

(a) α(B) = 0 ⇔ B is compact (B is relatively compact).

(b) α(B) = α(B).

(c) A ⊂ B ⇒ α(A) ≤ α(B).

(d) α(A + B) ≤ α(A) + α(B)

(e) α(cB) = |c|α(B); c ∈ R.

(f) α(convB) = α(B).

For our purpose we will need the definition of Caputo derivative of fractional

order

Definition 2.2 ([26]). The fractional order integral of the function h ∈ L1([a, b]) of

order r ∈ R+ is defined by

Ir
ah(t) =

1

Γ(r)

∫ t

a

h(s)

(t − s)1−r
dt,

where Γ is the gamma function. When a = 0, we write Irh(t) = h(t) ∗ ϕr(t), where

ϕr(t) = tr−1

Γ(r)
for t > 0, and ϕr(t) = 0 for t ≤ 0, and ϕr → δ(t) as r → 0, where δ is

the delta function.

Definition 2.3 ([26]). For a function h defined on the interval [a, b], the Caputo

fractional-order derivative of h, is defined by

cDr
a+h(t) =

1

Γ(n − r)

∫ t

a

h(n)(s)ds

(t − s)1−n+r

Here n = JrK + 1 and JrK denotes the integer part of r.

From the definition of the Caputo derivative, the following auxiliary results have

been established in [37].

Lemma 2.4. Let r > 0, then the differential equation

cDrh(t) = 0

has solutions h(t) = c0 + c1t + c2t
2 + · · ·+ cnt

n−1, ci ∈ E, i = 0, 1, . . . , n, n = JrK + 1.

Lemma 2.5. Let r > 0, then

IrcDrh(t) = h(t) + c0 + c1t + c2t
2 + · · ·+ cnt

n−1

for some ci ∈ E, i = 0, 1, . . . , n, n = JrK + 1.

Definition 2.6. A map f : J × E → E is said to be Carathéodory if
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(i) t 7−→ f(t, u) is measurable for each u ∈ E;

(ii) u 7−→ F (t, u) is continuous for almost all t ∈ J.

The following theorems will play a major role in our analysis.

Theorem 2.7 ([3, 36]). Let D be a bounded, closed and convex subset of a Banach

space such that 0 ∈ D, and let N be a continuous mapping of D into itself. If the

implication

V = convN(V ) or V = N(V ) ∪ {0} ⇒ α(V ) = 0

holds for every subset V of D, then N has a fixed point.

Lemma 2.8 ([36]). Let D be a bounded, closed and convex subset of the Banach space

C(J, E), G a continuous function on J × J and f a function from J ×E → E which

satisfies the Carathéodory conditions, and suppose there exists p ∈ L1(J, R+) such

that, for each t ∈ J and each bounded set B ⊂ E, we have

lim
h→0+

α(f(Jt,h × B)) ≤ p(t)α(B); here Jt,h = [t − h, t] ∩ J.

If V is an equicontinuous subset of D, then

α
({

∫

J

G(s, t)f(s, y(s))ds : y ∈ V
})

≤

∫

J

‖G(t, s)‖p(s)α(V (s))ds.

3. MAIN RESULTS

First of all, we define what we mean by a solution of the IVP (1.1)–(1.2).

Definition 3.1. A function y ∈ AC1(J, E) is said to be a solution of the problem

(1.1)–(1.2) if y satisfies the equation cDry(t) = f(t, y(t)) on J , and the conditions

y(0) = y0 and y′(0) = y1.

Lemma 3.2. Let 1 < r < 2 and let h : J → E be continuous. A function y is said

to be a solution of the fractional integral equation

y(t) = y0 + y1t +
1

Γ(r)

∫ t

0

(t − s)r−1h(s)ds, (3.1)

if and only if y is a solution of the fractional IVP

cDry(t) = h(t), t ∈ [0, T ], (3.2)

y(0) = y0, y′(0) = y1. (3.3)

Proof. By Lemma 2.5 we reduce (3.2)–(3.3) to an equivalent integral equation

y(t) = Irh(t) + c0 + c1t =
1

Γ(r)

∫ t

0

(t − s)r−1h(s)ds + c0 + c1t

for some constants c0, c1 ∈ E. Conditions (3.3) give

c0 = y0, c1 = y1.
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Hence we get (3.1). Conversely, if y satisfies equation (3.1), the equations (3.2)–(3.3)

hold.

To establish our main result concerning existence of solutions of (1.1)–(1.2), we

impose suitable conditions on the functions involved in that problem. Namely, we

assume that

(H1) f : J × E → E satisfies the Carathéodory conditions;

(H2) There exists p ∈ L1(J, R+) ∩ C(J, R+), such that,

‖f(t, y)‖ ≤ p(t)‖y‖, for t ∈ J and each y ∈ E;

(H3) For each t ∈ J and each bounded set B ⊂ E, we have

lim
h→0+

α(f(Jt,h × B)) ≤ p(t)α(B); here Jt,h = [t − h, t] ∩ J.

Theorem 3.3. Assume that conditions (H1)–(H3) hold. Let p∗ = supt∈J p(t). If

p∗T r

Γ(r + 1)
< 1, (3.4)

then the IVP (1.1)–(1.2) has at least one solution.

Proof. Transform the problem (1.1)–(1.2) into a fixed point problem. Consider the

operator N : C(J, E) −→ C(J, E) defined by

N(y)(t) = y0 + y1t +
1

Γ(r)

∫ t

0

(t − s)r−1f(s, y(s))ds.

Clearly, the fixed points of the operator N are solutions of the problem (1.1)–(1.2).

Let

r0 ≥
‖y0‖ + ‖y1‖T

1 − p∗T r

Γ(r+1)

(3.5)

and consider

Dr0
= {y ∈ C(J, E) : ‖y‖∞ ≤ r0}.

Clearly, the subset Dr0
is closed, bounded and convex. We shall show that N satisfies

the assumptions of Theorem 2.7. The proof will be given in three steps.

Step 1: N is continuous.

Let {yn} be a sequence such that yn → y in C(J, E). Then for each t ∈ J ,

‖N(yn)(t) − N(y)(t)‖ =
∥

∥

1

Γ(r)

∫ t

0

(t − s)r−1[f(s, yn(s)) − f(s, y(s))]ds
∥

∥

≤
1

Γ(r)

∫ t

0

(t − s)r−1‖f(s, yn(s)) − f(s, y(s))‖ds.

Since f is of Carathéodory type, then by the Lebesgue dominated convergence theo-

rem we have

‖N(yn) − N(y)‖∞ → 0 as n → ∞.

Step 2: N maps Dr0
into itself.
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For each y ∈ Dr0
, by (H2) and (3.5), we have, for each t ∈ J ,

‖N(y)(t)‖ ≤ ‖y0 + y1t‖ +
1

Γ(r)

∫ t

0

(t − s)r−1‖f(s, y(s))‖ds

≤ ‖y0‖ + ‖y1‖T +
1

Γ(r)

∫ t

0

(t − s)r−1p(s)‖y(s)‖ds

≤ ‖y0‖ + ‖y1‖T +
r0

Γ(r)

∫ t

0

(t − s)r−1p(s)ds

≤ ‖y0‖ + ‖y1‖T +
r0p

∗T r

Γ(r + 1)

≤ r0.

Step 3: N(Dr0
) is bounded and equicontinuous.

By Step 2, it is obvious that N(Dr0
) ⊂ C(J, E) is bounded. For the equicontinuity

of N(Dr0
), let t1, t2 ∈ J , t1 < t2 and y ∈ Dr0

. Then

‖N(y)(t2) − N(y)(t1)‖ ≤ ‖y1t2 − y1t1‖

+
1

Γ(r)

∥

∥

∥

∫ t2

0

(t2 − s)r−1f(s, y(s))

−

∫ t1

0

(t1 − s)r−1f(s, y(s))
∥

∥

∥
ds

≤ ‖y1‖(t2 − t1)

+
1

Γ(r)

∫ t1

0

[(t2 − s)r−1 − (t1 − s)r−1]‖f(s, y(s))‖ds

+
1

Γ(r)

∫ t2

t1

(t2 − s)r−1‖f(s, y(s))‖ds

≤ ‖y1‖(t2 − t1)

+
r0

Γ(r)

∫ t1

0

[(t2 − s)r−1 − (t1 − s)r−1]p(s)ds

+
r0

Γ(r)

∫ t2

t1

(t2 − s)r−1p(s)ds.

As t1 → t2, the right hand side of the above inequality tends to zero.

Now let V be a subset of Dr0
such that V ⊂ conv(N(V ) ∪ {0}).

From Step 3, the subset V is bounded and equicontinuous and therefore the

function v 7−→ v(t) = α(V (t)) is continuous on J . Since the function t 7−→ y0 + y1t

is continuous on J , the set {y0 + y1t, t ∈ J} ⊂ E is compact. Using this fact, (H3),

Lemma 2.8 and the properties of the measure α, we have, for each t ∈ J ,

v(t) ≤ α(N(V )(t) ∪ {0})

≤ α(N(V )(t))

≤
1

Γ(r)

∫ t

0

(t − s)r−1p(s)α(V (s))ds
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≤
1

Γ(r)

∫ t

0

(t − s)r−1p(s)v(s)ds

≤ ‖v‖∞
1

Γ(r)

∫ t

0

(t − s)r−1p(s)ds

≤ ‖v‖∞
p∗T r

Γ(r + 1)
.

This means that

‖v‖∞ ≤ ‖v‖∞
p∗T r

Γ(r + 1)
.

By (3.4) it follows that ‖v‖∞ = 0, that is v(t) = 0 for each t ∈ J , and then V (t) is

relatively compact in E. In view of the Ascoli-Arzelà theorem, V is relatively compact

in Dr0
. Applying now Theorem 2.7, we conclude that N has a fixed point which is a

solution of the problem (1.1)–(1.2).
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