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ABSTRACT. Sufficient conditions for the asymptotic constancy of the solutions of impulsive delay

differential system
{

x′(t) = A(t) [x(t − σ) − x(t − τ)] + f(t), t ≥ t0, t 6= ti,

∆x(ti) = Bix(ti) + Di, i = 1, 2, . . . ,

are obtained. Moreover, as t → ∞, the limits of the solutions of the impulsive delay differential

system with Bi = 0 are computed in terms of the initial function and a special matrix solution of

the corresponding adjoint system.
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1. INTRODUCTION

In this paper, we shall consider the nonhomogeneous linear impulsive delay dif-

ferential system

(1)

{

x′(t) = A(t) [x(t− σ) − x(t− τ)] + f(t), t ≥ t0, t 6= ti,

∆x(ti) = Bix(ti) +Di, i = 1, 2, . . . ,

where 0 ≤ σ < τ ; 0 ≤ t0 ≤ t1 < t2 < · · · < ti < ti+1 < . . . , lim
i→∞

ti = ∞; ∆x(ti) =

x(t+i ) − x(t−i ), x(t+i ) = lim
t→t

+

i

x(t) and x(t−i ) = lim
t→t

−

i

x(t) = x(ti).

Let R and Rn be the set of real numbers and the n-dimensional space of real

column vectors, respectively. Let ‖·‖ denote any convenient norm on Rn or the

associated induced norm of a square matrix. We shall study system (1) together with

the following hypotheses:

(H1) A : [t0,∞) → Rn×n is a continuous matrix function,

(H2) f : [t0,∞) → Rn is a continuous vector function,

(H3) Bi ∈ Rn×n such that det(I +Bi) 6= 0, where I is the n× n identity

matrix, i = 1, 2, . . . ,

(H4) Di ∈ Rn, i = 1, 2, . . .
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We denote by PC([t0 − τ, t0], R) the set of piecewise continuous functions on

[t0 − τ, t0].

Definition 1. For any real-valued piecewise continuous n-dimensional vector function

φ = (φ1, . . . , φn) where φi ∈ PC([t0−τ, t0], R), x(t) = (x1(t), . . . , xn(t)) is said to be a

solution of (1) on [t0,∞) and satisfies the initial condition x(t) = φ(t), t ∈ [t0 − τ, t0],

if the following conditions are satisfied:

(B1) x(t) is absolutely continuous on each interval (ti, ti+1),

(B2) for any ti ∈ [t0,∞), i = 1, 2, . . . , x(t+i ) and x(t−i ) exist and x(t−i ) = x(ti),

(B3) x(t) satisfies (1) for almost everywhere in [t0,∞) and at impulsive points ti

situated in [t0,∞) may have discontinuity of the first kind.

Definition 2. We say a vector function is continuous (absolutely continuous) if all

of its components are continuous (absolutely continuous).

Impulsive and delay differential equations are observed in many fields of science

and technology such as biology, engineering and physics. Many dynamic population

models are special cases of (1). For example, in [12], Cooke and Yorke proposed the

scalar equation

x′(t) = g(x(t)) − g(x(t− L)),

as a model for certain population growth if individuals have a constant life span L,

where x(t) is the size of the population at time t and g(x) is the birth rate. When

g(x) = ax (a = const.), then the equation above reduces to (1) with n = 1, A(t) = a,

σ = 0, τ = L, and f(t) ≡ 0. Furthermore, the scalar linear delay differential equation

of the type of (1)

x′(t) = a(t) (x(t) − x(t− h))

is a sort of pantograph equation which arises as a mathematical model of an industrial

problem involving wave motion in the overhead supply line to an electrified railway

system [17]. Also, system (1) with f ≡ 0 has an application in number theory [28].

On the other hand, there are many works on the theory of impulsive differential

equations as well as on the theory of delay differential equations. The monographs

[5, 31] are for the impulsive case, and the books of Gopalsamy [18], Gyori and Ladas

[20], Hale [21], Kuang [24] are good sources for delay differential equations. But,

the corresponding theory of impulsive delay differential equations (IDDE) has been

less developed because of significant technical and theoretical difficulties. Only a few

publications have been produced in the direction of IDDE. Existence and uniqueness

results for IDDE are presented in [6, 16, 25]. Results on stability for IDDE are given

in [1, 2, 10, 27, 32, 35]. Boundedness results for IDDE are established in [9, 26]. Oscil-

lation theory for IDDE is investigated in [19, 33, 34, 38, 39]. Boundary value problems

and existence of periodic solutions for IDDE are studied in [22, 36, 37].
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Recently, the problem of the asymptotic constancy of solutions and asymp-

totic convergence of solutions of linear delay differential equations without impulses

has been an extensive study [3, 4, 7, 11, 13, 14, 15, 23, 29, 30] and the references cited

therein. In all these works, authors generally consider the scalar linear equation with

variable bounded delay of the form

x′(t) = a(t) (x(t) − x(t− τ(t)) ,

which is similar to (1). Moreover, in [8], Pituk and the first author have proved some

results for the asymptotic constancy of the solutions of (1) without impulses.

So, due to practical reasons and the papers mentioned above, we have been

motivated to deal with system (1) and study the problem of asymptotic constancy.

According to the best of our knowledge, the asymptotic constancy for IDDE has not

been studied till now.

The main purpose of this work is to give sufficient conditions for asymptotic

constancy of (1) and also, as t → ∞, to compute the limits of the solutions of the

impulsive delay differential system

(2)

{

x′(t) = A(t) [x(t− σ) − x(t− τ)] + f(t), t ≥ t0, t 6= ti,

∆x(ti) = Di, i = 1, 2, . . . ,

in terms of a special matrix solution of the corresponding adjoint system and the

initial function

(3) x(t) = φ(t), t ∈ [t0 − τ, t0] ,

where φ : [t0 − τ, t0] → Rn is continuous and ‖φ‖
r

= sup
t0−r≤t≤t0

‖φ(t)‖ for r ≥ 0.

We can guarantee the existence and uniqueness of the solution of the initial value

problem (1), (3) as showed in [1]. In fact, it is well known that under the above

conditions the problem (1), (3) with Bi = Di = 0, i = 1, 2, . . . , has a unique solution

x on [t0 − τ,∞) [21]. This interval includes all of the intervals [ti, ti+1], i = 1, 2, . . . ,

and so there is a unique solution of the initial value problem (1), (3). Moreover, we

should note that a straightforward verification shows that the solution x(t) of the

initial value problem (1), (3) satisfies the following integral equation

(4) x(t) =























φ(t), t0 − τ ≤ t ≤ t0,

x(t0) +
t
∫

t0

A(s)x(s− σ)ds−
t
∫

t0

A(s)x(s− τ)ds+
t
∫

t0

f(s)ds

+
∑

t0≤ti<t

Bix(ti) +
∑

t0≤ti<t

Di, t ≥ t0.

This paper is organised as follows. In Section 2, the main results are presented.

Section 3 contains the proof of our first main result. In Section 4, the proof of second

main result is given. Finally, in Section 5, some remarks and examples are stated.
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2. MAIN RESULTS

We can state our main results as follows.

Theorem 1. In addition to (H1) − (H4), assume that

(i)
∞
∫

t0

‖A(s)‖ ds ≤ K1 <∞,

(ii)
∞
∫

t0

‖f(s)‖ ds ≤ K2 <∞,

(iii)
∞
∏

i=1

(1 + ‖Bi‖) ≤ L1 <∞,

(iv)
∞
∏

i=1

(1 + ‖Di‖) ≤ L2 <∞.

Then the solution x(t) of (1), (3) tends to a constant vector as t→ ∞.

Theorem 2. Assume that all assumptions, except (H3) and (iii), of Theorem 1 are

satisfied. Let x(t) be a solution of (2)–(3) and lim
t→∞

x(t) = l(φ).

If

(v)
t+τ
∫

t+σ

‖A(s)‖ ds ≤ ρ < 1, t ≥ t0,

then

(5) l(φ) = Y (t0)φ(t0) −

t0+τ
∫

t0

Y (s)A(s)φ(s− τ)ds

+

t0+σ
∫

t0

Y (s)A(s)φ(s− σ)ds+

∞
∫

t0

Y (s)f(s)ds+
∑

t0≤ti

Y (ti)Di,

where Y is a special matrix solution of the integral equation

(6) Y (t) = I +

t+τ
∫

t+σ

Y (s)A(s)ds for t ≥ t0.

3. THE PROOF OF THEOREM 1

To prove this theorem we consider the following well known lemma. For the

proof, see [5].

Lemma 1. Suppose that for t ≥ t0 the inequality

u(t) ≤ c+

t
∫

t0

b(s)u(s)ds+
∑

t0≤τk<t

βku(τk)

holds, where u(t) ∈ PC (R,R+), b(t) ∈ PC (R,R+) and βk ≥ 0, k ∈ N and c ≥ 0

are constants (Here, PC(R,R+) denotes the set of functions ψ : R → R+ which
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are continuous for t ∈ R, t 6= τk, are continuous from the left for t ∈ R, and have

discontinuities of the first kind at the points τk ∈ R).

Then for t ≥ t0

u(t) ≤ c
∏

t0≤τk<t

(1 + βk) exp





t
∫

t0

b(s)ds



 .

Proof of Theorem 1. Let x(t) be the solution of (1), (3). Then from (4) it follows

that

‖x(t)‖ ≤ ‖x(t0)‖ +

t
∫

t0

‖A(s)‖ ‖x(s− σ)‖ ds+

t
∫

t0

‖A(s)‖ ‖x(s− τ)‖ ds

+

t
∫

t0

‖f(s)‖ ds+
∑

t0≤ti<t

‖Bi‖ ‖x(ti)‖ +
∑

t0≤ti<t

‖Di‖

for t ≥ t0. This inequality can be written as below:

‖x(t)‖ ≤ ‖x(t0)‖ +

t0
∫

t0−σ

‖A(s+ σ)‖ ‖x(s)‖ ds+

t
∫

t0

‖A(s+ σ)‖ ‖x(s)‖ ds

−

t
∫

t−σ

‖A(s+ σ)‖ ‖x(s)‖ ds+

t0
∫

t0−τ

‖A(s+ τ)‖ ‖x(s)‖ ds

+

t
∫

t0

‖A(s+ τ)‖ ‖x(s)‖ ds−

t
∫

t−τ

‖A(s + τ)‖ ‖x(s)‖ ds

+

t
∫

t0

‖f(s)‖ ds+
∑

t0≤ti<t

‖Bi‖ ‖x(ti)‖ +
∑

t0≤ti<t

‖Di‖

≤ ‖x(t0)‖ + ‖φ‖
σ

t0
∫

t0−σ

‖A(s+ σ)‖ ds+

t
∫

t0

‖A(s+ σ)‖ ‖x(s)‖ ds

+ ‖φ‖
τ

t0
∫

t0−τ

‖A(s+ τ)‖ ds+

t
∫

t0

‖A(s+ τ)‖ ‖x(s)‖ ds

+

t
∫

t0

‖f(s)‖ ds+
∑

t0≤ti<t

‖Bi‖ ‖x(ti)‖ +
∑

t0≤ti<t

‖Di‖ .

From (i), (ii) and (iv), we find that

‖x(t)‖ ≤ c+

t
∫

t0

(‖A(s+ σ)‖ + ‖A(s+ τ)‖) ‖x(s)‖ ds+
∑

t0≤ti<t

‖Bi‖ ‖x(ti)‖
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for t ≥ t0, where c = ‖x(t0)‖ +K1 ‖φ‖σ
+K1 ‖φ‖τ

+K2 + L2.

Applying Lemma 1,

‖x(t)‖ ≤ c
∏

t0≤ti<t

(1 + ‖Bi‖) exp





t
∫

t0

(‖A(s+ σ)‖ + ‖A(s+ τ)‖) ds



 ,

and using the conditions (i) and (iii), we have

‖x(t)‖ ≤ cL1e
2K1 = K , for t ≥ t0.

Therefore the solution x(t) is bounded for t ≥ t0 and so there is a positive constant

K ′, K ′ ≥ K, such that

(7) ‖x(t)‖ ≤ K ′ for t ≥ t0 − τ.

On the other hand, for t0 ≤ s ≤ t <∞

(8) ‖x(t) − x(s)‖ ≤

t
∫

s

‖A(u)‖ ‖x(u− σ)‖ du+

t
∫

s

‖A(u)‖ ‖x(u− τ)‖ du

+

t
∫

s

‖f(u)‖ du+
∑

s≤ti<t

‖Bi‖ ‖x(ti)‖ +
∑

s≤ti<t

‖Di‖ .

Now, using (7), (8) may be written as

(9) ‖x(t) − x(s)‖ ≤ 2K ′

∞
∫

s

‖A(u)‖ du+

∞
∫

s

‖f(u)‖ du

+K ′
∑

s≤ti

‖Bi‖ +
∑

s≤ti

‖Di‖ .

We note that because of (iii) and (iv), we have, respectively,

(10)

∞
∑

i=1

‖Bi‖ <∞,

and

(11)

∞
∑

i=1

‖Di‖ <∞.

From (9) and conditions (i), (ii), (10) and (11), it is easy to see that

lim
s→∞

‖x(t) − x(s)‖ = 0.

Hence the Cauchy convergence criterion implies the existence of lim
t→∞

x(t) in Rn.
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4. THE PROOF OF THEOREM 2

The proof of Theorem 2 is based on the method presented in [8]. Therefore, we

first need to prove the following results.

Theorem 3. Suppose (H1) and (v) hold. Then there exists a unique continuous and

bounded matrix function Y : [t0,∞) → Rn×n such that (6) holds.

We omit the proof of this theorem because the equation (6) does not include

any impulse, and so the proof of Theorem 3 is a repetition of the arguments in

[8, Theorem 2].

Let us denote

(12) C(t) = Y (t)x(t) −

t+τ
∫

t

Y (s)A(s)x(s− τ)ds

+

t+σ
∫

t

Y (s)A(s)x(s− σ)ds for t ≥ t0,

where Y has the meaning from Theorem 3 and x is the solution of (2), (3).

Lemma 2. Suppose that (H1), (H2), (H4) and (v) hold. Then

(13) C(t) = C(t0) +

t
∫

t0

Y (s)f(s)ds+
∑

t0≤ti<t

Y (ti)Di for t ≥ t0.

Proof. First, we should prove that C(t) defined by (12) satisfies

(14)

{

C ′(t) = Y (t)f(t), t ≥ t0, t 6= ti,

∆C(ti) = Y (ti)Di, i = 1, 2, . . .

Because of Theorem 3, we know that the special matrix solution Y of (6) is differen-

tiable on [t0,∞) and satisfies the “adjoint system”

(15) Y ′(t) = Y (t+ τ)A(t + τ) − Y (t+ σ)A(t+ σ)

for t ≥ t0.

Differentiating (12) for t ≥ t0 and t 6= ti, we get

(16) C ′(t) = Y ′(t)x(t) + Y (t)x′(t) − Y (t+ τ)A(t + τ)x(t)

+Y (t)A(t)x(t− τ) + Y (t + σ)A(t+ σ)x(t) − Y (t)A(t)x(t − σ).

Using (2) and (15), Equation (16) implies that

C ′(t) = Y (t)f(t) for t ≥ t0 and t 6= ti.

Moreover, from (12),

∆C(ti) = C(t+i ) − C(t−i )

= Y (ti)∆x(ti)
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= Y (ti)Di

which completes the proof of (14).

Integrating both sides of (14) with respect to s from t0 to t, we obtain

C(t) = C(t0) +

t
∫

t0

Y (s)f(s)ds+
∑

t0≤ti<t

∆C(ti)

for t ≥ t0 which implies (13).

We are now ready to prove the second main result.

Proof of Theorem 2. Let x(t) be the solution of equation (2), (3). It is sufficient

to show that

(17) lim
t→∞

x(t) = C(t0) +

∞
∫

t0

Y (s)f(s)ds+
∑

t0≤ti

Y (ti)Di

where C is defined by (12). We have for t ≥ t0,

x(t) − C(t0) −
∞
∫

t0

Y (s)f(s)ds−
∑

t0≤ti

Y (ti)Di

= x(t) −



C(t0) +

t
∫

t0

Y (s)f(s)ds+
∑

t0≤ti<t

Y (ti)Di





−

∞
∫

t

Y (s)f(s)ds−
∑

t≤ti

Y (ti)Di

= x(t) − C(t) −

∞
∫

t

Y (s)f(s)ds−
∑

t≤ti

Y (ti)Di.

The last equality is a consequence of (13). This, together with (12), implies for t ≥ t0,

(18) x(t) − C(t0) −
∞
∫

t0

Y (s)f(s)ds−
∑

t0≤ti

Y (ti)Di

= x(t) − Y (t)x(t) +
t+τ
∫

t

Y (s)A(s)x(s− τ)ds

−
t+σ
∫

t

Y (s)A(s)x(s− σ)ds−
∞
∫

t

Y (s)f(s)ds

−
∑

t≤ti

Y (ti)Di.

Multiplying (6) by x(t), we obtain for t ≥ t0,

x(t) = Y (t)x(t) −

t+τ
∫

t+σ

Y (s)A(s)x(t)ds
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= Y (t)x(t) −

t+τ
∫

t

Y (s)A(s)x(t)ds+

t+σ
∫

t

Y (s)A(s)x(t)ds.

Substituting the last expression into (18), we find for t ≥ t0,

(19) x(t) − C(t0) −
∞
∫

t0

Y (s)f(s)ds−
∑

t0≤ti

Y (ti)Di

= −

t+τ
∫

t

Y (s)A(s)x(t)ds+

t+σ
∫

t

Y (s)A(s)x(t)ds

+

t+τ
∫

t

Y (s)A(s)x(s− τ)ds−

t+σ
∫

t

Y (s)A(s)x(s− σ)ds

−

∞
∫

t

Y (s)f(s)ds−
∑

t≤ti

Y (ti)Di

=

t+τ
∫

t

Y (s)A(s) [x(s− τ) − x(t)] ds

+

t+σ
∫

t

Y (s)A(s) [x(t) − x(s− σ)] ds

−

∞
∫

t

Y (s)f(s)ds−
∑

t≤ti

Y (ti)Di.

From (19) together with the estimate (7) and the boundedness of Y (t) on [t0,∞), we

have
∥

∥

∥

∥

∥

x(t) − C(t0) −
∞
∫

t0

Y (s)f(s)ds−
∑

t0≤ti

Y (ti)Di

∥

∥

∥

∥

∥

≤ 2K ′ ‖Y ‖
B

t+τ
∫

t

‖A(s)‖ ds+ 2K ′ ‖Y ‖
B

t+σ
∫

t

‖A(s)‖ ds

+ ‖Y ‖
B

∞
∫

t

‖f(s)‖ ds+ ‖Y ‖
B

∑

t≤ti

‖Di‖

for t ≥ t0, where ‖Y ‖
B

= sup
t≥t0

‖Y (t)‖. Hence it follows that (17) is correct.

Taking into account (3) and (12), it is easily verified that the limit relation (17) reduce

to (5). So the proof of Theorem 2 is completed.
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5. REMARKS AND EXAMPLES

Remark 1. Our technique for the proof of Theorem 1 is different from that in

[8, Theorem 1]. Because the technique used there did not work for IDDE. So, we

first had to establish the boundedness of x(t), and then we followed the Cauchy

convergence criterion to complete the proof of Theorem 1.

Remark 2. Our method for the proof of Theorem 2 is a modification of that in

[8, Theorem 3]. However, there is a significant difference between the two proofs. As

a matter of the fact that our proof is based on the boundedness of x(t) instead of the

convergence of
∞
∫

t0

|x′(t)| dt used in [8, Theorem 3].

Remark 3. We proved Theorem 1 for the impulse conditions

∆x(ti) = Bix(ti) +Di, i = 1, 2, . . . ,

that are considered as general case for linear impulsive delay differential equations

[see 19, 33, 38, 39]. But, we could managed to prove Theorem 2 only for the impulse

conditions

∆x(ti) = Di, i = 1, 2, . . . ,

which are equal to

x(t+
i
) = x(t−

i
) +Di, i = 1, 2, . . . ,

and these type of conditions are formally similar to x(t+i ) = Bix(t
−
i ) used in [1, 9].

Example 1. Let us consider the scalar initial value problem without impulses

(20)

{

x′(t) = A(t)[x(t) − x(t− 1)] + f(t), t ≥ 0,

x(t) = e−t, −1 ≤ t ≤ 0,

where A(t) =
1

(1 + t)2
, f(t) =

(

−1 −
1

(1 + t)2
+

e

(1 + t)2

)

e−t.

This problem satisfies all hypotheses of Theorem 1 and 2 with Bi = 0 and Di = 0 for

i = 1, 2, . . . . So, the solution x(t) of (20) tends to a real constant as t→ ∞ and this

limit, say l(φ), can be calculated with subject to (5) as

(21) l(φ) = Y (0) −

1
∫

0

Y (s)A(s)e−(s−1)ds+

∞
∫

0

Y (s)f(s)ds

where Y (t), by (6), satisfies the following scalar integral equation

(22) Y (t) = 1 +

t+1
∫

t

Y (s)A(s)ds for t ≥ 0.

On the other hand, the solution of (20) is x(t) = e−t for −1 ≤ t < ∞ and l(φ) =

lim
t→∞

x(t) = 0.
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Example 2. Again, consider Eq. (20) with impulses as follows

(23)















x′(t) = A(t)[x(t) − x(t− 1)] + f(t), t ≥ 0, t 6= ti = i,

∆x(ti) =
1

2i
, i = 1, 2, 3, . . .

x(t) = e−t, −1 ≤ t ≤ 0,

Here, also, all hypotheses of Theorem 1 and 2 are satisfied for impulsive delay dif-

ferential equation (23). Therefore, due to Theorem 1, the solution x(t) of (23) has a

limit, that is, lim
t→∞

x(t) = l(φ) ∈ R. From Theorem 2, it is clear that

l(φ) =

∞
∑

i=1

1

2i
Y (i)

where Y (t) is the same as (22).

To calculate l(φ) explicitly from (5) and (6), we may consider the following example.

Example 3. If we take, n = 1, A(t) = 0, f(t) = 0, Bi = 0, Di =
1

2i
(i = 1, 2, . . . ),

then system (1) reduces to the scalar equation

(24)







x′(t) = 0, t ≥ 0, t 6= ti = i,

∆x(ti) =
1

2i
, i = 1, 2, 3, . . .

Here, in place of initial function (3), we take into account the initial condition

(25) x(0) = 1.

Clearly, Theorems 1 and 2 can be applied to the problem (24)–(25). From (5) and

(6), the limit of the solution x(t) of (24)–(25) is calculated as

lim
t→∞

x(t) = l(φ) = 2.

Indeed, the solution x(t) is obtained as

x(t) =







1, 0 ≤ t ≤ 1,
k
∑

m=0

1

2m
, k < t ≤ k + 1, k = 1, 2, . . .

and

lim
t→∞

x(t) =
∞

∑

m=0

1

2m
.

We note that, in the case of without impulses, the problem (24)–(25) reduces to

(26)







x′(t) = 0, t ≥ 0,

x(0) = 1

which has the solution x(t) = 1 on [0,∞). For this solution lim
t→∞

x(t) = 1 which also

can be found by applying (6) and (5) with Di = 0.
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