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ABSTRACT. In this paper, some new oscillation criteria for linear matrix Hamiltonian systems

are established, which involves the maximum eigenvalue of the coefficients. These results improve

and generalize some known oscillation criteria due to G. J. Butler, L. H. Erbe and A. B. Mingarelli

[1], N. Parhi and P. Praharaj [2] for self-adjoint second order matrix differential systems, and Yang

et. al. [4] for linear matrix Hamiltonian systems.
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1. INTRODUCTION

In this paper, we consider oscillatory properties for the linear matrix Hamiltonian

system

(1.1)

{

X ′ = A(t)X + B(t)U,

U ′ = C(t)X − A∗(t)U, t ≥ a,

where A(t), B(t), C(t) are real n × n matrix-valued functions, B, C are symmetric,

B is positive definite. By M ∗ we mean the transpose of the matrix M , for any

n × n symmetric matrix M , its eigenvalues are real numbers, and we always denote

them by λ1[M ] ≥ λ2[M ] ≥ · · · ≥ λn[M ]. The trace of M is denoted by tr(M) and

tr(M) =
∑n

k=1 λk(M).

For any two solutions (X1(t), U1(t)) and (X2(t), U2(t)) of system (1.1), the Wron-

skian matrix X∗

1 (t)U2(t) − U∗

1 (t)X2(t) is a constant matrix. In particular, for any

solution (X(t), U(t)) of system (1.1), X∗(t)U(t) − U∗(t)X(t) is a constant matrix.

A solution (X(t), U(t)) of system (1.1) is said to be nontrivial, if det X(t) 6= 0 is

fulfilled for at least one t ≥ a. A nontrivial solution (X(t), U(t)) of system (1.1) is said

to be prepared if X∗(t)U(t) − U∗(t)X(t) ≡ 0, t ≥ a. A nontrivial prepared solution

(X(t), U(t)) of system (1.1) is said to be oscillatory in case the determinant of X(t)
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vanishes on [T,∞) for each T ≥ 0. By Sturm’s separation theorem (see, for example,

[16]), we know that all prepared solutions of system (1.1) are either oscillatory or

non-oscillatory, so we can divide system (1.1) into two cases: if all prepared solutions

of system (1.1) are oscillatory, system (1.1) is oscillatory; otherwise, system (1.1) is

non-oscillatory.

When A(t) ≡ 0, system (1.1) reduces to the second order self-adjoint matrix

differential system

(1.2) (P (t)Y ′)′ + Q(t)Y = 0, t ≥ a

with P (t) = B−1(t), Q(t) = −C(t). Oscillation and non-oscillation of system (1.2)

and its special cases

(1.3) Y ′′ + Q(t)Y = 0, t ≥ a

have been extensively studied by many authors (see [1, 2, 7, 8, 15] and references con-

tained therein). Many of these criteria involve the integral of the coefficients modelled

on either the criteria due to Wintner[9] or Kamenev[10] for the scalar equation

(1.4) y′′ + q(t)y = 0, t ≥ a,

(1.5) (p(t)y′)′ + q(t)y = 0, t ≥ a.

Wintner[9] proved that

(1.6) lim
t→∞

∫ t

a

∫ s

a

q(τ)dτds = ∞

is sufficient condition for (1.4) to be oscillatory. Hartman[11] weakened this hypothesis

to the following oscillatory condition.

(1.7) −∞ < lim inf
t→∞

1

t

∫ t

a

∫ s

a

q(τ)dτ < lim sup
t→∞

1

t

∫ t

a

∫ s

a

q(τ)dτ ≤ ∞.

By using the maximum eigenvalue of the coefficients or positive linear functional,

oscillation criteria of Hartman type have been given for system (1.3) by Butler et. al.

[1] and system (1.2) by N. Parhi and P. Praharaj [2]. Here, we list the results due to

N. Parhi and P. Praharaj.

Theorem 1.1. Suppose that P−1(t) ≥ I for t ≥ a, and

(1.8) lim inf
t→∞

1

t

∫ t

a

(

tr

∫ s

a

Q(τ)dτ

)

ds > −∞.

If one of the conditions

(C)1 lim sup
t→∞

1

t

∫ t

a

(

tr

∫ s

a

Q(τ)dτ

)

ds = ∞;(1.9)

(C)2 lim sup
t→∞

1

t

∫ t

a

[

tr

∫ s

a

Q(τ)dτ

]2

ds = ∞;(1.10)
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(C)3 lim approx supt→∞

[

tr

∫ t

a

Q(τ)dτ

]

= ∞;(1.11)

(C)4 lim approx inft→∞

[

tr

∫ t

a

Q(τ)dτ

]

= −∞(1.12)

holds, then system (1.2) is oscillatory.

Theorem 1.1 is a generalization of paper [1], where equation (1.3) is considered,

and the positive linear functional tr
∫ t

a
Q(τ)dτ is replaced by the convex functional

λ1(
∫ t

a
Q(τ)dτ).

Recently, using positive linear functional, Yang et. al. [4] obtain the following

oscillation criteria for system (1.1).

Theorem 1.2. Assume there exist a positive function v ∈ C1 ([a,∞), (0,∞)) and a

positive linear functional satisfying g on the collections of real n×n matrix, such that

lim
t→∞

∫ t

a

1

v(s)g(B−1(s))
ds = ∞,

and

lim
t→∞

g(J0(t)) = ∞,

where

J0(t) =

∫ t

a

[

−v(A∗B−1A + C) +
v′

2
(A∗B−1 + B−1A) −

v′2

4v
B−1

]

(s)ds

− v(t)B−1(t)A(t) +
v′(t)

2
B−1(t).

Then system (1.2) is oscillatory.

Following the paper [15], we see that any positive linear functional g can be

characterized by a semi-positive definite matrix [αij] as

g(A) = 〈([αij] ⊗ A)u, u〉,

with u = (1, 1, . . . , 1)T , where A is an arbitrary n × n matrix. Moreover ‖g‖ = g(I),

where the norm is defined in Euclidean space. A positive linear functional g with

‖g‖ = 1 satisfies

(1.13) λn(D) ≤ g(D) ≤ λ1(D),

where D is an arbitrary n × n symmetric matrix. So the positive linear functional

g(A) in Theorem 1.2 is equivalent to the positive linear functional trA. Moreover, we

note that J0(t) in Theorem 1.2 is not symmetric.

In this paper, we use the convex functional λ1(·) to obtain oscillation criteria for

system (1.1), which extend and improve the oscillation criteria mentioned above.
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2. MAIN RESULTS

If (X(t), U(t)) is a prepared solution of system (1.1) such that X(t) is nonsingular for

t sufficiently large, without loss of generality, we may suppose that X(t) is nonsingular

for t ≥ a. Set

W (t) = −v(t)U(t)X−1(t), t ≥ a.

Then W (t) satisfies the Riccati matrix equation

W ′(t) =

(

v′

v
W − vC + WA + A∗W +

1

v
WBW

)

(t)

= D(t) + (
1

v
R∗BR)(t), t ≥ a,(2.1)

where D(t) =

(

−v(A∗B−1A + C) +
v′

2
(A∗B−1 + B−1A) −

v′2

4v
B−1

)

(t), and R(t) =
(

W − vB−1A + v′

2
B−1

)

(t). We note that R(t) is not symmetric in general. Integrat-

ing (2.1) from a to t, we have

W (t) = W (a) +

∫ t

a

D(s)ds +

∫ t

a

(
1

v
R∗BR)(s)ds.

Hence we have

(2.2) R(t) = W (a) +

∫ t

a

(
1

v
R∗BR)(s)ds + J0(t).

Since J0(t) is not symmetric, we define J(t) =
J0(t)+J∗

0
(t)

2
, which is usually known as the

hermitian part of J0(t). Now, all the eigenvalues of J(t) are real and trJ0(t) = trJ(t).

Lemma 2.1. Assume that there exists a positive function v ∈ C1 ([a,∞), (0,∞))

satisfying v(t) ≤ λn(B(t)). Then

(2.3) lim
t→∞

∫ t

a

(
1

v
R∗BR)(s)ds < ∞

if and only if

(2.4) lim inf
t→∞

1

t

∫ t

a

trJ(s)ds > −∞.

Remark 2.1. Lemma 2.1 extends Lemma 5.1 in[1].

We introduce the following concepts from [2]. For any subset E of the real line

R, µ(E) denotes the Lebesgue measure of E. If f : [a,∞) → R is continuous and

if l, m satisfy −∞ ≤ l, m ≤ ∞, then lim approx inf t→∞
f(t) = l if and only if µ{t ∈

[a,∞) : f(t) ≤ l1} < ∞ for all l1 < l and µ{t ∈ [a,∞) : f(t) ≤ l2} = ∞ for all l2 > l.

Similarly, lim approx supt→∞
f(t) = m if and only if µ{t ∈ [a,∞) : f(t) ≥ m1} = ∞

for all m1 < m and µ{t ∈ [a,∞) : f(t) ≥ m2} < ∞ for all m2 > m. We define

lim approxt→∞
f(t) = λ in case

lim approx supt→∞
f(t) = lim approx inf t→∞

f(t) = λ.
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Theorem 2.2. Assume that there exists a positive function v ∈ C1 ([a,∞), (0,∞))

satisfying v(t) ≤ λn(B(t)). Moreover, (2.4) is fulfilled. Then system (1.1) is oscilla-

tory provided one of the following conditions holds.

(i) lim sup
t→∞

1

t

∫ t

a

λ1(J(s))ds = ∞;(2.5)

(ii) lim sup
t→∞

1

t

∫ t

a

[λ1(J(s))]2ds = ∞;(2.6)

(iii) lim approx supt→∞
λ1(J(t)) = ∞;(2.7)

(iv) lim approx inf t→∞
λ1(J(t)) = −∞.(2.8)

Theorem 2.3. Assume that there exists a positive function v ∈ C1 ([a,∞), (0,∞))

satisfying v(t) ≤ λn(B(t)). Moreover,

(2.9) lim inf
t→∞

1

t

∫ t

a

trJ(s)ds = −∞.

Then system (1.1) is oscillatory if

(2.10) lim approx supt→∞
λn(J(t)) > −∞;

Remark 2.2. Theorem 2.3 extends Theorem 2.2 in [1] to the case of (1.1).

3. PROOFS OF THE MAIN RESULTS

Lemma 3.1. (See [14]) Suppose A, B, and C are n× n-matrices, B is semi-positive

definite, C is symmetric. Then

(1) tr(A∗BA) ≥ λn(B)tr(A∗A);

(2) (trA)2 ≤ ntr(A∗A);

(3) tr(A∗A) ≥ tr(A2);

(4) λ2
1(C) ≤ λ1(C

2) ≤ tr(C2).

Proof of Lemma 2.1. Suppose (2.3) holds. Then we rewrite (2.2) and take the trace

of both sides to get

(3.1) trR(t) +

∫

∞

t

1

v(s)
tr(R∗BR)(s)ds = trJ(t) − L,

where L = −trW (a) −
∫

∞

a
1

v(s)
tr(R∗BR)(s)ds is a constant symmetric matrix. Since

v(t) ≤ λnB(t), by Lemma 3.1, we have

1

t

∫ t

a

[

trR(s) +

∫

∞

s

1

v(τ)
tr(R∗BR)(τ)dτ

]2

ds

≤
2

t

∫ t

a

[trR(s)]2 ds +
2

t

∫ t

a

[
∫

∞

s

1

v(τ)
tr(R∗BR)(τ)dτ

]2

ds

≤
2n

t

∫ t

a

tr(R∗R)(s)ds +
2

t

∫ t

a

[
∫

∞

s

1

v(τ)
tr(R∗BR)(τ)dτ

]2

ds
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≤
2n

t

∫ t

a

λn(B(s))

v(s)
tr(R∗R)(s)ds +

2

t

∫ t

a

[
∫

∞

s

1

v(τ)
tr(R∗BR)(τ)dτ

]2

ds

≤
2n

t

∫ t

a

1

v(s)
tr(R∗BR)(s)ds +

2

t

∫ t

a

[
∫

∞

s

1

v(τ)
tr(R∗BR)(τ)dτ

]2

ds(3.2)

By (2.3), we get the first term in (3.2) tends to 0 as t → ∞. Since L < ∞, we obtain

that the second term in (3.2) tends to 0 as t → ∞. So (3.1) and (3.2) imply

1

t

∫ t

a

[trJ(s) − L]2 ds → 0 as t → ∞.

By Cauchy-Schwarz inequality, we get

1

t

∫ t

a

(trJ(s) − L) ds ≤

(

1

t

∫ t

a

[trJ(s) − L]2 ds

)1/2

→ 0 as t → ∞.

It follows that

lim
t→∞

1

t

∫ t

a

trJ(s)ds = L.

Conversely, suppose that there exists a prepared solution (X(t), U(t)) satisfying

detX(t) 6= 0 for t ≥ a, such that (2.4) holds, then there exists M1 > 0 such that
1
t

∫ t

a
trJ(s)ds > −M1. From (2.2), we get

1

t

∫ t

a

∫ s

a

1

v(τ)
tr(R∗BR)(τ)dτds =

1

t

∫ t

a

trR(s)ds −
1

t

∫ t

a

trJ(s)ds −
t − a

t
trW (a)

<
1

t

∫ t

a

trR(s)ds + M1 −
t − a

t
trW (a)

≤
1

t

∫ t

a

trR(s)ds + M,(3.3)

where M is a constant. Since tr(R∗BR)(t) ≥ 0 and v(t) > 0 for t ≥ a, it follows that

lim
t→∞

∫ t

a

1

v(s)
tr(R∗BR)(s)ds = µ, where 0 < µ ≤ ∞.

Suppose that µ = ∞. Considering (3.3), we obtain

lim
t→∞

1

t

∫ t

a

∫ s

a

1

v(τ)
tr(R∗BR)(τ)dτds = ∞.

This and (3.3) yields

lim
t→∞

1

t

∫ t

a

trR(s)ds = ∞.

So there exist T ≥ a such that 1
t

∫ t

a
trR(s)ds > M for t ≥ T . Again, this and (3.3)

yields

(3.4)
1

t

∫ t

a

∫ s

a

1

v(τ)
tr(R∗BR)(τ)dτds <

2

t

∫ t

a

trR(s)ds, t ≥ T.
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Using Cauchy-Schwarz inequality and Lemma 3.1, we get

∣

∣

∣

∣

1

t

∫ t

a

trR(s)ds

∣

∣

∣

∣

≤

(

1

t

∫ t

a

[trR(s)]2 ds

)1/2

≤

(

n

t

∫ t

a

tr(R∗R)(s)ds

)1/2

≤

(

n

t

∫ t

a

λn(B(s))

v(s)
tr(R∗R)(s)ds

)1/2

≤

(

n

t

∫ t

a

1

v(s)
tr(R∗BR)(s)ds

)1/2

, t ≥ T.(3.5)

From (3.4) and (3.5), we get for t ≥ T ,

(3.6)
1

t2

[
∫ t

a

∫ s

a

1

v(τ)
tr(R∗BR)(τ)dτds

]2

≤
4n

t

∫ t

a

1

v(s)
tr(R∗BR)(s)ds.

Now, set H(t) =
∫ t

a

∫ s

a
1

v(τ)
tr(R∗BR)(τ)dτds, then (3.6) yields

1

t2
H2(t) ≤

4n

t
H ′(t), t ≥ T

and so we get

1

4nt
≤

H ′(t)

H2(t)
, t ≥ T.

An integration from T to ∞ leads to an obvious contradiction, so we get µ < ∞.

Let the operator norm of a matrix A be denoted by |A|. For a ≤ s ≤ t, de-

fine A(s, t) =
∫ t

s
( 1

v
R∗BR)(s)ds. Then A(s, t) is a non-negative definite matrix and

|A(s, t)| = λ1(A(s, t)) ≤ tr(A(s, t)) =
∫ t

s
1

v(s)
tr(R∗BR)(s)ds. The last integrand con-

verges to 0 as s, t → ∞ and so we have |A(s, t)| → 0 as s, t → ∞. So we obtain the

existence of
∫ t

a
( 1

v
R∗BR)(s)ds as asserted. This completes the proof of Lemma 2.1.

Proof of Theorem 2.2. (i) Suppose to the contrary that there is a nontrivial prepared

solution (X(t), U(t)) of system (1) such that X(t) is nonsingular for all sufficiently

large t. Without loss of generality, we may suppose that X(t) is nonsingular for t ≥ a.

Hence we have (2.2) for t ≥ a. It follows that

R(t) :=
1

2
(R(t) + R∗(t)) = W (a) +

∫ t

a

(
1

v
R∗BR)(s)ds + J(t).

That is

(3.7) R(t) − W (a) =

∫ t

a

(
1

v
R∗BR)(s)ds + J(t).

Taking the maximum eigenvalue on both sides, we get

(3.8) λ1

[

R(t) − W (a)
]

= λ1

[
∫ t

a

(
1

v
R∗BR)(s)ds + J(t)

]

.
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Considering the convexity of λ1(·), the fact that
∫ t

a
( 1

v
R∗BR)(s)ds ≥ 0 and λn(B(t)) ≥

v(t), (3.8) implies

λ1

[

R(t)
]

+ λ1 [−W (a)] ≥ λ1 [J(t)] .

Thus
1

t

∫ t

a

λ1

[

R(s)
]

ds +
t − a

t
λ1 [−W (a)] ≥

1

t

∫ t

a

λ1 [J(s)] ds.

This and (2.5) yields

lim sup
t→∞

1

t

∫ t

a

λ1

[

R(s)
]

ds = ∞.

Hence there exists a sequence {tm} such that tm → ∞ as m → ∞ and

(3.9) lim
m→∞

1

tm

∫ tm

a

λ1

[

R(s)
]

ds = ∞.

By Lemma 3.1 ((4), (3)), we have

(3.10) λ2
1

[

R(t)
]

≤ tr
[

R(t)
]2

= tr

[

1

2
(R2 + R∗R)(t)

]

≤ tr(R∗R)(t).

We obtain by Cauchy-Schwarz inequality

∣

∣

∣

∣

1

tm

∫ tm

a

λ1

[

R(s)
]

ds

∣

∣

∣

∣

≤

(

1

tm

∫ tm

a

λ2
1

[

R(s)
]

ds

)1/2 (

tm − a

tm

)1/2

≤

(

1

tm

∫ tm

a

tr(R∗R)(s)ds

)1/2

≤

(

1

tm

∫ tm

a

λn(B(s))

v(s)
tr(R∗R)(s)ds

)1/2

≤

(

1

tm

∫ tm

a

1

v(s)
tr(R∗BR)(s)ds

)1/2

.

This and (3.9) implies

lim
m→∞

1

tm

∫ tm

a

1

v(s)
tr(R∗BR)(s)ds = ∞.

So

(3.11) lim
m→∞

∫ tm

a

1

v(s)
tr(R∗BR)(s)ds = ∞.

On the other hand, by Lemma 2.1, we get

(3.12) lim
t→∞

∫ t

a

1

v(s)
tr(R∗BR)(s)ds < ∞.

This contradiction completes the first part of Theorem 2.2.

(ii) This result is clear as (2.5) implies (2.6) by Schwarzs inequality applied to

Lebesgue measure divided by t.
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(iii) Following the proof of the second part, we get (??). So

(3.13) λ1

[

R(t)
]

+ λ1

[
∫

∞

t

(
1

v
R∗BR)(s)ds

]

+ λ1 [L] ≥ λ1 [J(t)] .

Since λi

[∫

∞

t
( 1

v
R∗BR)(s)ds

]

≥ 0 and
∫

∞

t
1

v(s)
tr[(R∗BR)(s)]ds → 0, we have

(3.14) λ1

[
∫

∞

t

(
1

v
R∗BR)(s)ds

]

→ 0.

Now for any k ≥ 1,

µ {t : λ1(J(t)) ≥ k} = ∞.

So that if k ≥ |λ1(L)| + 1,

µ(E1) = µ

{

t : λ1

[

R(t)
]

+ λ1

[
∫

∞

t

(
1

v
R∗BR)(s)ds

]

> 1

}

= ∞.

By (3.14), we see that ∃ T ≥ a, such that λ1

[∫

∞

t
( 1

v
R∗BR)(s)ds

]

< 1
2

for t ≥ T . So

µ(E2) = µ

{

t : λ1

[

R(t)
]

>
1

2

}

= ∞.

Since λ2
1(A) ≤ λ1(A

2) for any symmetric matrix A, we have

µ(E3) = µ

{

t : λ1

[

R
2
(t)

]

>
1

4

}

= ∞.

Since trR
2
(t) ≤ tr(R∗R)(t), we deduce that

µ(E4) = µ
{

t : tr(R∗R)(t) >
n

4

}

= ∞.

So

∞ =

∫

E4

tr(R∗R)(s)ds ≤

∫

E4

1

v(s)
tr(R∗BR)(s)ds,

which contradicts Lemma 2.1.

(iv) Similar to the second part, we get (3.13). Since for any M > 0,

µ {t : λ1(J(t)) ≤ −M} = ∞

and since

λ1

[

R(t)
]

≤ λ1

[

R(t) +

∫

∞

t

(
1

v
R∗BR)(s)ds

]

≤ λ1 [J(t)] + λ1 [−L] ,

it follows that if M ≥ 1 + |λ1(−L)|,

µ(E5) = µ
{

t : λ1

[

R(t)
]

≤ −1
}

= ∞

and hence

µ(E6) = µ {t : tr(R∗R)(t) > n} = ∞.

So

∞ =

∫

E6

tr[(R∗R)(s)]ds ≤

∫

E6

1

v(s)
tr(R∗BR)(s)ds,

which contradicts Lemma 2.1. This completes the proofs of Theorem 2.2.
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Proof of Theorem 2.3. By (2.10), we may suppose that

lim approx supt→∞
λn(J(t)) = m > −∞.

Following the proof of Theorem 2.2, we get (3.7). Since lim inf t→∞

1
t

∫ t

a
trJ(s)ds =

−∞, it follows that
∫ t

a
( 1

v
R∗BR)(s)ds → ∞, so λ1{

∫ t
( 1

v
R∗BR)(s)ds} → ∞ as t → ∞.

Since (2.10) implies for any ε > 0, µ{t : λn[J(t)] ≥ m − ε} = ∞, we have by (3.7)

that

1

n
trW (a) +

1

n

∫ t

a

1

v(s)
tr(R∗BR)(s)ds =

1

n
tr

[

R(t) − J(t)
]

≤ λ1

[

R(t) − J(t)
]

≤ λ1

[

R(t)
]

− λn [J(t)] .(3.15)

Since

1

n

∫ t

a

1

v(s)
tr(R∗BR)(s)ds ≥

1

n

∫ t

a

λn(B(s))

v(s)
tr(R∗R)(s)ds

≥
1

n

∫ t

a

tr(R∗R)(s)ds

≥
1

n

∫ t

a

trR
2
(s)ds

≥
1

n

∫ t

a

λ1

[

R
2
(s)

]

ds.(3.16)

(3.15) and (3.16) imply

1

n

∫ t

a

λ1

[

R
2
(s)

]

ds +
1

n
trW (a) ≤ λ1

[

R(t)
]

− λn [J(t)] .

Hence we have for ε > 0,

µ

{

t :
1

n

∫ t

a

λ1

[

R
2
(s)

]

ds +
1

n
trW (a) ≤ λ1

[

R(t)
]

− m + ε

}

= ∞.

So

µ

{

t :
1

n

∫ t

a

λ1

[

R
2
(s)

]

ds ≤ λ1

[

R(t)
]

}

= ∞,

and

µ(E7) = µ

{

t :
1

n

∫ t

a

λ1

[

R
2
(s)

]

ds ≤ λ1

[

R(t)
]

}

∩ [a + 1,∞) = ∞.

Set F (t) =
∫ t

a
λ1

[

R
2
(s)

]

ds, we see that 0 < F (t) ≤ ∞ for t ∈ E7, and F ′(t) =

λ1

[

R
2
(t)

]

≥
[

λ1(R(t))
]2

. So F ′(t) ≥ F 2(t)
n2 , t ∈ E7. Now

∫

E7

F ′(s)
F 2(s)

ds ≥ µ(E7)
n2 = ∞,

but the integrand of the left-hand side is ≤ 1
F (a+1)

, which is a contradiction. This

completes the proof of Theorem 2.3.
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4. EXAMPLE AND REMARKS

Example 4.1. Consider the four-dimensional system (1.1) where

A(t) =

[

0 1

0 0

]

, B(t) =
1

t + 1
E2, C(t) =

[

−(t + 1) + 1
4(t+1)

−1
2

−1
2

1
4(t+1)

]

,

and X, U are 2 × 2 matrix functions of t on [0,∞). Let v(t) = 1
t+1

, then λn(B(t)) =

v(t). By direct computation, we have

J(t) =

[

t −1
2

−1
2

−t

]

.

Hence (2.4) is fulfilled and we note that trJ(t) = 0, so Theorem 1.2 can not be used

to verify the oscillation of this system. However, we find that

lim sup
t→∞

1

t

∫ t

a

λ1(J(s))ds = ∞.

So by Theorem 2.2, we deduce the system is oscillatory.

Remark 4.1. Similarly, we can deduce oscillation criteria via a more generalize

Riccati transformation

(4.1) W (t) = v(t)
[

U(t)X−1(t) + φ(t)B−1(t)
]

,

where φ(t) ∈ C1[t0,∞) is a carefully chosen function and v(t) = exp{−2
∫ t

φ(s)ds}.

Here we omit the details.

Remark 4.2. In paper [13], the authors obtain oscillation criteria for system (1.1)

by using generalized Riccati transformation similar to (4.1) and fundamental matrix

solution of Y ′ = A(t)Y . The results we obtained here are different to those mentioned

above.
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