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ABSTRACT. We prove an existence theorem for the nonlinear integral equation :

x(t) = f(t) +

α
∫

0

k1(t, s)x(s)ds +

α
∫

0

k2(t, s)g(s, x(s))ds, t ∈ Iα = [0, α], α ∈ R+,

with the Henstock-Kurzweil-Pettis integrals. This integral equation can be considered as a nonlinear

Fredholm equation expressed as a perturbed linear equation. The assumptions about the function

g are really-weak: scalar measurability and weak sequential continuity with respect to the second

variable. Moreover, we suppose that the function g satisfies some conditions expressed in terms of

the measure of weak noncompactness.
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1. INTRODUCTION

The Henstock-Kurzweil integral encompasses the Newton, Riemann and Lebesgue

integrals [15, 19, 25]. A particular feature of this integral is that integrals of highly

oscillating functions such as F ′(t), where F (t) = t2 sin t−2 on (0, 1] and F (0) = 0 can

be defined. This integral was introduced by Henstock and Kurzweil independently in

1957-58 and has since proved useful in the study of ordinary differential equations [4,

8, 23, 24, 31]. In the paper [7] S. S. Cao defined the Henstock integral in a Banach

space, which is a generalization of the Bochner integral. The Pettis integral is also

a generalization of the Bochner integral [30]. This notion is strictly relative to weak

topologies in Banach spaces.

In [10], we generalized both concepts of integral introducing the Henstock-Kurzweil-

Pettis integral.

Let (E, ‖·‖) be a Banach space, E∗- its dual space and Iα = [0, α], α ∈ R+.

Moreover, let (C(Iα, E), ω) denote the space of all continuous functions from Iα to

E endowed with the topology σ(C(Iα, E), C(Iα, E)∗). In this paper we will prove an
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existence theorem for the integral equation:

(1) x(t) = f(t) +

α
∫

0

k1(t, s)x(s)ds +

α
∫

0

k2(t, s)g(s, x(s))ds,

where g : Iα × E → E, f : Iα → E, x : Iα → E are functions with values in E,

k1, k2 : Iα × Iα → R+ and the integrals are taken in the sense of Henstock-Kurzweil-

Pettis [11].

Note that the previous integral equation can be considered as a nonlinear Fred-

holm equation expressed as a perturbed linear equation.

We should mention that an extensive work has been done in the study of the

solutions of particular cases of (1) (see, for example, [1, 2, 3, 20, 21, 26, 28, 29]).

The main result presented in this paper generalizes the previous ones.

A Kubiaczyk fixed point theorem [22] and the techniques of the theory of measure

of weak noncompactness are used to prove the existence of solution of problem (1).

The assumptions about the function g are really-weak: scalar measurability and weak

sequential continuity with respect to the second variable. By using these conditions,

we define a completely continuous operator F over the Banach space C([0, α]), whose

fixed points are solutions of (1). The fixed point theorem of Kubiaczyk [22] is used

to prove the existence of a fixed point of the operator F .

Let us recall, that a function f : Iα → E is said to be weakly continuous if it is

continuous from Iα to E endowed with its weak topology. A function g : E → E1,

where E and E1 are Banach spaces, is said to be weakly-weakly sequentially continuous

if for each weakly convergent sequence (xn) in E, the sequence (g(xn)) is weakly

convergent in E1. When the sequence xn tends weakly to x0 in E, we will write

xn
ω
→ x0.

Our fundamental tool is the measure of weak noncompactness developed by De-

Blasi [6].

Let A be a bounded nonempty subset of E. The measure of weak noncompactness

µ(A) is defined by

µ(A) = inf{t > 0 : there exists C ∈ Kω such that A ⊂ C + tB0},

where Kω is the set of weakly compact subsets of E and B0 is the norm unit ball in

E.

We will use the following properties of the measure of weak noncompactness µ

(for bounded nonempty subsets A and B of E):

(i) if A ⊂ B, then µ(A) ≤ µ(B);

(ii) µ(A) = µ(Ā), where Ā denotes the closure of A;

(iii) µ(A) = 0 if and only if A is relatively weakly compact;
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(iv) µ(A ∪ B) = max {µ(A), µ(B)};

(v) µ(λA) = |λ|µ(A), (λ ∈ R);

(vi) µ(A + B) ≤ µ(A) + µ(B);

(vii) µ(convA) = µ(A).

It is necessary to remark that if µ has these properties, then the following Lemma is

true.

Lemma 1.1 [27]. Let H ⊂ C(Iα, E) be a family of strongly equicontinuous func-

tions. Let, for t ∈ Iα, H(t) = {h(t) ∈ E, h ∈ H}. Then β(H(Iα)) = supt∈Iα
β(H(t))

and the function t 7→ β(H(t)) is continuous.

In the proof of the main result we will apply the following fixed point theorem.

Theorem 1.2 [22]. Let X be a metrizable locally convex topological vector space.

Let D be a closed convex subset of X, and let F be a weakly sequentially continuous

map from D into itself. If for some x ∈ D the implication

(2) V = conv ({x} ∪ F (V )) ⇒ V is relatively weakly compact,

holds for every subset V of D, where conv ({x} ∪ F (V ))denotes the closure of the

convex of ({x} ∪ F (V )), then F has a fixed point.

Let us introduce the following definitions:

Definition 1.3 [30]. Let G : [a, b] → E and let A ⊂ [a, b]. The function

g : A → E is a pseudoderivative of G on A if for each x∗ in E∗ the real-valued function

x∗G is differentiable almost everywhere on A and (x∗G)′ = x∗g almost everywhere on

A.

Definition 1.4 [15, 25]. A family F of functions F is said to be uniformly

absolutely continuous in the restricted sense on X or, in short, uniformly AC∗(X) if

for every ε > 0 there is η > 0 such that for every F in F and for every finite or

infinite sequence of non-overlapping intervals {[ai, bi]} with ai, bi ∈ X and satisfying
∑

i

|bi − ai| < η, we have
∑

i

ω(F, [ai, bi]) < ε, where ω(F, [ai, bi]) denotes the oscillation

of F over [ai, bi] (i.e. ω(F, [ai, bi]) = sup{|F (r) − F (s)| : r, s ∈ [ai, bi]}).

A family F of functions F is said to be uniformly generalized absolutely continuous

in the restricted sense on [a, b] or uniformly ACG∗ on [a, b] if [a, b] is the union of a

sequence of closed sets Ai such that on each Ai, the family F is uniformly AC∗(Ai).

2. HENSTOCK-KURZWEIL-PETTIS INTEGRAL IN BANACH SPACES

In this part we present the Henstock-Kurzweil-Pettis integral and we give prop-

erties of this integral.

Definition 2.1 [15, 25]. Let δ be a positive function defined on the interval [a, b].

A tagged interval (x, [c, d]) consists of an interval [c, d] ⊆ [a, b] and a point x ∈ [c, d].

The tagged interval (x, [c, d]) is subordinate to δ if [c, d] ⊆ (x − δ(x), x + δ(x)).

Let P = {(si, [ci, di]) : 1 ≤ i ≤ n, n ∈ N} be such a collection in [a, b]. Then
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(i) The points {si : 1 ≤ i ≤ n} are called the tags of P .

(ii) The intervals {[ci, di] : 1 ≤ i ≤ n} are called the intervals of P .

(iii) If {(si, [ci, di]) : 1 ≤ i ≤ n} is subordinate to δ for each i, then we write P is sub

δ.

(iv) If [a, b] =
n
⋃

i=1

[ci, di], then P is called a tagged partition of [a, b].

(v) If P is a tagged partition of [a, b] and if P is sub δ, then we write P is sub δ on

[a, b].

(vi) If f : [a, b] → E, then f(P ) =
n
∑

i=1

f(si)(di − ci).

(vii) If F is defined on the subintervals of [a, b], then F (P ) =
n
∑

i=1

F ([ci, di]) =

n
∑

i=1

[F (di) − F (ci)].

If F : [a, b] → E, then F can be treated as a function of intervals by defining

F ([c, d]) = F (d) − F (c). For such a function, F (P ) = F (b) − F (a) if P is a tagged

partition of [a, b].

Definition 2.2 [15, 25]. A function f : [a, b] → R is Henstock-Kurzweil integrable

on [a, b] if there exists a real number L with the following property: for each ε > 0

there exists a positive function δ on [a, b] such that |f(P ) − L| < ε whenever P is a

tagged partition of [a, b] that is subordinate to δ.

The function f is Henstock-Kurzweil integrable on a measurable set A ⊂ [a, b]

if fχA is Henstock-Kurzweil integrable on [a, b]. The number L in Definition 2.2 is

called the Henstock-Kurzweil integral of f and we will denote it by (HK)
b
∫

a

f(t)dt.

Definition 2.3 [7]. A function f : [a, b] → E is Henstock-Kurzweil integrable on

[a, b] (f ∈ HK([a, b], E)) if there exists a vector z ∈ E with the following property:

for every ε > 0 there exists a positive function δ on [a, b] such that ‖f(P ) − z‖ < ε

whenever P is a tagged partition of [a, b] sub δ. The function f is Henstock-Kurzweil

integrable on a measurable set A ⊂ [a, b] if fχA is Henstock-Kurzweil integrable on

[a, b]. The vector z is the Henstock-Kurzweil integral of f .

We remark that this definition includes the generalized Riemann integral defined

by Gordon [16]. In a special case, when δ is a constant function, we get the Riemann

integral.

Definition 2.4 [7]. A function f : [a, b] → E is HL integrable on [a, b] (f ∈

HL([a, b], E)) if there exists a function F : [a, b] → E, defined on the subintervals of

[a, b], satisfying the following property: given ε > 0 there exists a positive function δ

on [a, b] such that if P = {(si, [ci, di] : 1 ≤ i ≤ n} is a tagged partition of [a, b] sub δ,

then
n

∑

i=1

‖f(si)(di − ci) − F ([ci, di])‖ < ε.
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Remark 1. We note that by triangle inequality:

f ∈ HL([a, b], E) implies f ∈ HK([a, b], E).

In general, the converse is not true. For real-valued functions, the two integrals are

equivalent.

Definition 2.5 [30]. The function f : Iα → E is Pettis integrable (P integrable

for short) if

(i) ∀x∗∈E∗ x∗f is Lebesgue integrable on Iα,

(ii) ∀A⊂Iα
, A-measurable ∃g∈E ∀x∗∈E∗ x∗g = (L)

∫

A

x∗f(s)ds,

where (L)
∫

A

denotes the Lebesgue integral over A.

Now we present a definition of an integral which is a generalization for both:

Pettis and Henstock-Kurzweil integrals.

Definition 2.6 [11]. The function f : Iα → E is Henstock-Kurzweil-Pettis

integrable (HKP integrable for short) if there exists a function g : Iα → E with the

following properties:

(i) ∀x∗∈E∗ x∗f is Henstock-Kurzweil integrable on Iα and

(ii) ∀t∈Iα
∀x∗∈E∗ x∗g(t) = (HK)

t
∫

0

x∗f(s)ds.

This function g will be called a primitive of f and by g(α) =
α
∫

0

f(t)dt we will

denote the Henstock-Kurzweil-Pettis integral of f on the interval Iα.

Remark 2. Each function which is HL integrable is integrable in the sense of

Henstock-Kurzweil-Pettis. Our notion of integral is essentially more general than the

previous ones (in Banach spaces):

(i) Pettis integral: by the definition of the Pettis integral and since each Lebesgue

integrable function is HK integrable, a P integrable function is clearly HKP

integrable.

(ii) Bochner, Riemann, and Riemann-Pettis integrals [16].

(iii) MsShane integral [14] or [17].

(iv) Henstock-Kurzweil (HL) integral ([7]).

We present below an example of a function which is HKP integrable but neither

HL integrable nor P integrable.

Example. Let f : [0, 1] → (L∞[0, 1], ‖·‖
∞

) be defined as f(t) = χ[0,t]+A(t)·F ′(t),

where

F (t) = t2 sin t−2, t ∈ (0, 1], F (0) = 0, χ[0,t](τ) =

{

1, τ ∈ [0, t],

0, τ /∈ [0, t],
t, τ ∈ [0, 1],

A(t)(τ) = 1 for τ, t ∈ [0, 1].
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Put f1(t) = χ[0,t], f2(t) = A(t) · F ′(t).

We will show that the function f(t) = f1(t) + f2(t) is integrable in the sense of

Henstock-Kurzweil-Pettis.

Observe that

x∗(f(t)) = x∗(f1(t) + f2(t)) = x∗(f1(t)) + x∗(f2(t)).

Moreover, the function x∗(f1(t)) is Lebesgue integrable (in fact f1 is Pettis integrable

[13]), so it is Henstock-Kurzweil integrable, and the function x∗(f2(t)) is Henstock-

Kurzweil integrable by Definition 2.2.

For each x∗ ∈ E∗ the function x∗f is not Lebesgue integrable because x∗f2 is not

Lebesgue integrable. So f is not Pettis integrable. Moreover, the function f1 is not

strongly measurable ([13]) and the function f2 is strongly measurable. So their sum

f is not strongly measurable. Then by Theorem 9 from [7] f is not HL integrable.

In this sequel we present some properties of the HKP integral which are important

in the next part of our paper.

Theorem 2.7 [11]. Let f : [a, b] → E be HKP integrable on [a, b] and let

F (x) =
x
∫

a

f(s)ds, x ∈ [a, b]. Then

(i) for each x∗ in E∗ the function x∗f is HK integrable on [a, b] and

(HK)
x
∫

a

x∗(f(s))ds = x∗(F (x))

(ii) the function F is weakly continuous on [a, b] and f is a pseudoderivative of F

on [a, b].

Theorem 2.8 [11]. Let f : [a, b] → E. If f = 0almost everywhere on [a, b], then

f is HKP integrable on [a, b] and
b
∫

a

f(t)dt = 0.

Theorem 2.9 [11] (Mean value theorem for the HKP integral). If the function

f : Iα → E is HKP integrable, then
∫

I

f(t)dt ∈ |I| · convf(I),

where convf(I) is the closure of the convex of f(I), I is an arbitrary subinterval of

Iα and |I| is the length of I.

Theorem 2.10 [9]. Let f : Iα → Eand assume that fn : Iα → E, n ∈ N , are

HKP integrable on Iα. For each n ∈ N , let Fn be a primitive of fn. If we assume

that:

(i) ∀x∗ ∈ E∗ x∗(fn(t)) → x∗(f(t)) a.e. on Iα,

(ii) for each x∗ ∈ E∗, the family G = {x∗Fn : n = 1, 2, . . . )} is uniformly ACG∗ on

Iα (i.e. weakly uniformly ACG∗ on Iα),

(iii) for each x∗ ∈ E∗, the set G is equicontinuous on Iα,
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then f is HKP integrable on Iα and
t
∫

0

fn(s)ds tends weakly in E to
t
∫

0

f(s)ds for each

t ∈ Iα.

3. EXISTENCE OF A SOLUTION

Now we prove the existence theorem for problem (1) under the weakest assump-

tions on g, as it is known.

For x ∈ C(Iα, E), we define the norm of x by: ‖x‖C = sup{‖x(t)‖ , t ∈ Iα}.

Put B = {x ∈ C(Iα, E) : x(0) = f(0), ‖x‖ ≤ ‖f(·)‖ + M, M > 0}.

We define the operator F : C(Iα, E) → C(Iα, E) by

F (x)(t) = f(t) +

α
∫

0

k1(t, s)x(s)ds +

α
∫

0

k2(t, s)g(s, x(s))ds, t ∈ Iα, α ∈ R+, x ∈ B,

where integrals are taken in the sense of Henstock-Kurzweil-Pettis.

Moreover, let Γ = {F (x) ∈ C(Iα, E) : x ∈ B} and let r(K) be the spectral radius

of the integral operator K defined by

K(u)(t) =

α
∫

0

[k1(t, s) + k2(t, s)]u(s)ds, t ∈ Iα, u ∈ B.

Now we present the existence theorem for problem (1).

A continuous function x : Iα → E is said to be a solution of problem (1) if it

satisfies the equation (1) for every t ∈ Iα.

Theorem 3.1 Assume that for each continuous function x : Iα → E, g(·, x(·)) is

HKP integrable, g(s, ·) is weakly-weakly sequentially continuous and k1, k2 : Iα×Iα →

R+ are measurable functions such that k1(t, ·), k2(t, ·) are continuous. Moreover, let

L > 0 and

(3) µ(g(I, X)) ≤ Lµ(X) for each bounded subset X ⊂ E, I ⊂ Iα.

Suppose that Γ is equicontinuous and uniformly ACG∗ on Iα. Moreover, let (1 +

L)r(K) < 1. Then there exists at least one solution of problem (1) on Iβ, for some

0 < β ≤ α, with continuous initial function f.

Proof. By equicontinuity of Γ there exists some number β (0 < β ≤ α) such that
∥

∥

∥

∥

∥

β
∫

0

[k1(t, s)x(s) + k2(t, s)g(s, x(s)]ds

∥

∥

∥

∥

∥

≤ M for fixed M > 0, t ∈ Iβ and x ∈ B.

By our assumptions, the operator F is well defined and maps B into B. We will

show that the operator F is weakly sequentially continuous.

By Lemma 9 of [27], a sequence xn(·) is weakly convergent in C(Iβ, E) to x(·) if

and only if xn(t) tends weakly to x(t) for each t ∈ Iβ. Because g(s, ·) is weakly-weakly
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sequentially continuous, so if xn
ω
→ x in (C(Iβ, E), ω) then g(s, xn(s))

ω
→ g(s, x(s)) in

E for t ∈ Iβ and by Theorem 2.10 we have

lim
n→∞

β
∫

0

[k1(t, s)xn(s) + k2(t, s)g(s, xn(s))]ds =

β
∫

0

[k1(t, s)x(s) + k2(t, s)g(s, x(s))]ds

weakly in E, for each t ∈ Iβ. We see that F (xn)(t) → F (x)(t) weakly in E for each

t ∈ Iβ so F (xn) → F (x) in (C(Iβ, E), ω).

Suppose that V ⊂ B satisfies the condition V̄ = conv({x} ∪ F (V )), for some

x ∈ B. We will prove that V is relatively weakly compact, thus (2) is satisfied.

Let, for t ∈ Iβ, V (t) = {υ(t) ∈ E, υ ∈ V }.

From the definition of B and Lemma 1.1, it follows that the function v : t 7→

µ(V (t)) is continuous on Iβ.

We divide the interval Iβ: 0 = t0 < t1 < · · · < tm = β, where ti = iβ

m
, i =

0, 1, . . . , m. Let V ([ti, ti+1]) = {u(s) ∈ E : u ∈ V, ti ≤ s ≤ ti+1}, i = 0, 1, . . . , m − 1.

By Lemma 1.1 and the continuity of v there exists si ∈ Ti = [ti, ti+1] such that

(4) µ(V ([ti, ti+1])) = sup{µ(V (s)) : ti ≤ s ≤ ti+1} =: v(si).

On the other hand, by the definition of the operator F and Theorem 2.11 we have

F (u)(t) = f(t) +

m−1
∑

i=0

ti+1
∫

ti

[k1(t, s)u(s) + k2(t, s)g(s, u(s))]ds

∈ f(t) +

m−1
∑

i=0

(ti+1 − ti)conv[k1(t, Ti)V ([ti, ti+1]) + k2(t, Ti)g(Ti, V ([ti, ti+1]))]

for each u ∈ V .

Therefore

F (V (t)) ⊂ f(t) +
m−1
∑

i=0

(ti+1 − ti)conv[k1(t, Ti)V ([ti, ti+1]) + k2(t, Ti)g(Ti, V ([ti, ti+1]))].

Using (3), (4) and the properties of the measure of weak noncompactness µ we obtain

µ(F (V (t))) ≤

m−1
∑

i=0

(ti+1 − ti)k1(t, Ti)µ(V ([ti, ti+1]))

+

m−1
∑

i=0

(ti+1 − ti)[k2(t, Ti)µ(g(Ti, V ([ti, ti+1])))

≤
m−1
∑

i=0

(ti+1 − ti)[k1(t, Ti)v(si) + k2(t, Ti)Lv(si)]

=
m−1
∑

i=0

(ti+1 − ti)k1(t, Ti)v(si) + L
m−1
∑

i=0

(ti+1 − ti)k2(t, Ti)v(si)
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≤

m−1
∑

i=0

(ti+1 − ti) sup
s∈Ti

k1(t, s)v(si) + L

m−1
∑

i=0

(ti+1 − ti) sup
s∈Ti

k2(t, s)v(si)

=

m−1
∑

i=0

(ti+1 − ti)k1(t, pi)v(si) + L

m−1
∑

i=0

(ti+1 − ti)k2(t, qi)v(si),

where si, pi, qi ∈ Ti, hence

µ(F (V (t))) ≤

m−1
∑

i=0

(ti+1 − ti)k1(t, pi)v(pi) +

m−1
∑

i=0

(ti+1 − ti)[k1(t, pi)(v(si) − v(pi))]

+ L
m−1
∑

i=0

(ti+1 − ti)k2(t, qi)v(qi)

+ L
m−1
∑

i=0

(ti+1 − ti)[k2(t, qi)(v(si) − v(qi))]

=

m−1
∑

i=0

(ti+1 − ti)k1(t, pi)v(pi)+
β

m

m−1
∑

i=0

[k1(t, pi)(v(si) − v(pi))]

+ L

m−1
∑

i=0

(ti+1 − ti)k2(t, qi)v(qi)+
Lβ

m

m−1
∑

i=0

[k2(t, qi)(v(si) − v(qi))].

By the continuity of v we have v(si) − v(pi) < ε1 and ε1 → 0 as m → ∞ and

v(si) − v(qi) < ε2 and ε2 → 0 as m → ∞.

So

µ(F (V (t))) <

β
∫

0

k1(t, s)v(s)ds + β sup
p∈Iβ

k1(t, p)ε1

+ L

β
∫

0

k2(t, s)v(s)ds + Lβ sup
q∈Iβ

k2(t, q)ε2.

Therefore

(5) µ(F (V (t))) ≤ (1 + L)

β
∫

0

[k1(t, s) + k2(t, s)]v(s)ds, for t ∈ Iβ.

Since V = conv({u}∪F (V )), by the property of the measure of weak noncompactness

we have µ(V (t)) ≤ µ(F (V (t))) and so in view of (5), it follows that v(t) ≤ (1 +

L)
β
∫

0

[k1(t, s) + k2(t, s)]v(s)ds, for t ∈ Iβ. Because this inequality holds for every

t∈ Iβ and (1 + L)r(K) < 1, so by applying Gronwall’s inequality [18], we conclude

that µ(V (t)) = 0, for t∈ Iβ. Hence Arzela-Ascoli‘s theorem implies that the set V

is relatively compact. Consequently, by Theorem 1.2, F has a fixed point which is a

solution of the problem (1).
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Remark 3. The condition (3) in our Theorem 3.1 can be also generalized to

the Sadovskii conditions: µ(F (I ×X)) < µ(X), whenever µ(X) > 0, where µ can be

replaced by some axiomatic measure of weak noncompactness.

Acknowledgment: I’m grateful to the referee’s valuable suggestions.
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