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ABSTRACT. We prove an existence theorem for the nonlinear integral equation :

o [e3%

z(t) = f(t) +/k1(t, s)x(s)ds +/k2(t, s)g(s,xz(s))ds, tel,=1[0,a], a€ Ry,
0 0

with the Henstock-Kurzweil-Pettis integrals. This integral equation can be considered as a nonlinear
Fredholm equation expressed as a perturbed linear equation. The assumptions about the function
g are really-weak: scalar measurability and weak sequential continuity with respect to the second
variable. Moreover, we suppose that the function g satisfies some conditions expressed in terms of

the measure of weak noncompactness.
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1. INTRODUCTION

The Henstock-Kurzweil integral encompasses the Newton, Riemann and Lebesgue
integrals [15, 19, 25]. A particular feature of this integral is that integrals of highly
oscillating functions such as F'(t), where F(t) = t?*sint~2 on (0, 1] and F(0) = 0 can
be defined. This integral was introduced by Henstock and Kurzweil independently in
1957-58 and has since proved useful in the study of ordinary differential equations [4,
8, 23, 24, 31]. In the paper [7] S. S. Cao defined the Henstock integral in a Banach
space, which is a generalization of the Bochner integral. The Pettis integral is also
a generalization of the Bochner integral [30]. This notion is strictly relative to weak

topologies in Banach spaces.

In [10], we generalized both concepts of integral introducing the Henstock-Kurzweil-

Pettis integral.
Let (E,|||) be a Banach space, E*- its dual space and I, = [0,a], « € R,.

Moreover, let (C(1,, F),w) denote the space of all continuous functions from I, to
E endowed with the topology o(C(I,, E),C(I,, E)*). In this paper we will prove an

Received June 21, 2006 1056-2176 $15.00 @Dynamic Publishers, Inc.



98 A. SIKORSKA-NOWAK

existence theorem for the integral equation:

(1) x(t) = f(¢) +/k‘1(t, s)x(s)ds—i—/kg(t,s)g(s,x(s))ds,
0 0
where g : I, x E — E, f: 1, — E, x : I, — FE are functions with values in F,
ky, ko : I, x I, — R, and the integrals are taken in the sense of Henstock-Kurzweil-
Pettis [11].
Note that the previous integral equation can be considered as a nonlinear Fred-

holm equation expressed as a perturbed linear equation.

We should mention that an extensive work has been done in the study of the

solutions of particular cases of (1) (see, for example, [1, 2, 3, 20, 21, 26, 28, 29]).
The main result presented in this paper generalizes the previous ones.

A Kubiaczyk fixed point theorem [22] and the techniques of the theory of measure
of weak noncompactness are used to prove the existence of solution of problem (1).
The assumptions about the function g are really-weak: scalar measurability and weak
sequential continuity with respect to the second variable. By using these conditions,
we define a completely continuous operator F' over the Banach space C([0, a]), whose
fixed points are solutions of (1). The fixed point theorem of Kubiaczyk [22] is used

to prove the existence of a fixed point of the operator F'.

Let us recall, that a function f : I, — F is said to be weakly continuous if it is
continuous from [, to F endowed with its weak topology. A function g : F — Fjy,
where F and F, are Banach spaces, is said to be weakly-weakly sequentially continuous
if for each weakly convergent sequence (z,) in F, the sequence (g(x,)) is weakly
convergent in E;. When the sequence x, tends weakly to xp in E, we will write
Ty > .

Our fundamental tool is the measure of weak noncompactness developed by De-
Blasi [6].

Let A be a bounded nonempty subset of E. The measure of weak noncompactness
1(A) is defined by

u(A) =inf{t > 0: there exists C' € K“ such that A C C' +tBy},
where K“ is the set of weakly compact subsets of ' and By is the norm unit ball in

E.

We will use the following properties of the measure of weak noncompactness u
(for bounded nonempty subsets A and B of F):

(i) if A C B, then p(A) < u(B);
(i) pu(A) = pu(A), where A denotes the closure of A;
(iii) u(A) = 0 if and only if A is relatively weakly compact;
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(iv) (AU B) = max {u(A), p(B)};
(v) n(AA ) [Alu(A), (A € R);
(vi) u(A+ B) < u(A) + p(B);

(vii) p(convA) = u(A).

It is necessary to remark that if u has these properties, then the following Lemma is
true.

Lemma 1.1 [27]. Let H C C(l,, E) be a family of strongly equicontinuous func-
tions. Let, fort € I,, H(t) = {h(t) € E, h € H}. Then 3(H(l,)) = sup,c;, B(H(t))
and the function t — B(H(t)) is continuous.

In the proof of the main result we will apply the following fixed point theorem.

Theorem 1.2 [22]. Let X be a metrizable locally convex topological vector space.
Let D be a closed convex subset of X, and let F' be a weakly sequentially continuous

map from D into itself. If for some x € D the implication
(2) V=cono({z}UF(V)) =V is relatively weakly compact,

holds for every subset V' of D, where conv ({x} U F (V))denotes the closure of the
convex of ({x} U F(V)), then F has a fized point.

Let us introduce the following definitions:
Definition 1.3 [30]. Let G : [a,b] — E and let A C [a,b]. The function
g: A — FEisa pseudoderivative of G on A if for each x* in E* the real-valued function

x*G is differentiable almost everywhere on A and (z*G)' = 2*g almost everywhere on
A.

Definition 1.4 [15, 25]. A family F of functions F' is said to be uniformly
absolutely continuous in the restricted sense on X or, in short, uniformly AC,(X) if
for every € > 0 there is n > 0 such that for every F' in F and for every finite or
infinite sequence of non-overlapping intervals {|a;, b;|} with a;,b; € X and satisfying
Z |b; — a;| < n, we have Zw( ,lai, bi]) < e, where w(F, [a;, b;]) denotes the oscillation
of F over [a;, b;] (i.e. w(F [a;, b;]) = sup{|F(r) — F(s)| : r,s € [a;, b;]}).

A family F of functions F' is said to be uniformly generalized absolutely continuous
in the restricted sense on [a, b] or uniformly ACG, on [a, ] if [a,b] is the union of a

sequence of closed sets A; such that on each A;, the family F' is uniformly AC,(4;).
2. HENSTOCK-KURZWEIL-PETTIS INTEGRAL IN BANACH SPACES

In this part we present the Henstock-Kurzweil-Pettis integral and we give prop-
erties of this integral.

Definition 2.1 [15, 25]. Let § be a positive function defined on the interval [a, b].
A tagged interval (z, [c, d]) consists of an interval [c,d] C [a,b] and a point x € [c, d].

The tagged interval (z, [c, d]) is subordinate to § if [¢,d] C (z — §(x),x + 0(z)).

Let P = {(s;,]ci,d;]) : 1 <i<n, ne€ N} be such a collection in [a,b]. Then
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(i) The points {s; : 1 <i < n} are called the tags of P.
(ii) The intervals {[c;,d;] : 1 <7 < n} are called the intervals of P.
(iil) If {(sy,[ci, di]) : 1 <i < n} is subordinate to 0 for each i, then we write P is sub
J. .
(iv) If [a,b] = U [es, di], then P is called a tagged partition of [a, b].

i=1
(v) If P is a tagged partition of [a,b] and if P is sub d, then we write P is sub § on
[a, b].
(vi) If £+ [a, b] — E, then f(P) = 32 f(s:)(di — cz).

1=1

(vii) If F'is defined on the subintervals of [a, b], then F(P) = > F([¢;, d;]) =

i[ F(d;) — F(ci))

If F': [a,b] — E, then F can be treated as a function of intervals by defining
F([¢,d]) = F(d) — F(c). For such a function, F'(P) = F(b) — F(a) if P is a tagged
partition of [a, b].

Definition 2.2 [15, 25]. A function f : [a,b] — R is Henstock-Kurzweil integrable
on [a,b] if there exists a real number L with the following property: for each ¢ > 0
there exists a positive function § on [a, b] such that |f(P) — L| < € whenever P is a

tagged partition of [a, b] that is subordinate to .

The function f is Henstock-Kurzweil integrable on a measurable set A C |a, b

if fxa is Henstock-Kurzweil integrable on [a,b]. The number L in Definition 2.2 is
b
called the Henstock-Kurzweil integral of f and we will denote it by (HK) [ f(t)dt

Definition 2.3 [7]. A function f : [a,b] — E is Henstock-Kurzweil integrable on
la,b] (f € HK([a,b], E)) if there exists a vector z € E with the following property:
for every € > 0 there exists a positive function ¢ on [a, b] such that ||f(P) —z|| < ¢
whenever P is a tagged partition of [a, b] sub §. The function f is Henstock-Kurzweil
integrable on a measurable set A C [a,b] if fxa is Henstock-Kurzweil integrable on

la,b]. The vector z is the Henstock-Kurzweil integral of f.

We remark that this definition includes the generalized Riemann integral defined
by Gordon [16]. In a special case, when 0 is a constant function, we get the Riemann
integral.

Definition 2.4 [7]. A function f : [a,b] — E is HL integrable on [a,b] (f €
HL([a,b], E)) if there exists a function F' : [a,b] — F, defined on the subintervals of
la, b], satisfying the following property: given € > 0 there exists a positive function ¢
on [a,b] such that if P = {(s;,[c;,d;] : 1 <i < n} is a tagged partition of [a,b] sub ,
then

Z!lf )(d; — i) — F(len di]) < e.
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Remark 1. We note that by triangle inequality:
f e HL([a,b], E) implies f € HK([a,b], E).

In general, the converse is not true. For real-valued functions, the two integrals are

equivalent.

Definition 2.5 [30]. The function f : I, — E is Pettis integrable (P integrable
for short) if

(i) Vgeem x* f is Lebesgue integrable on I,,,

(ii) Yacr,, A-measurable Jycp Vyrep 2% = (L) [ 2* f(s)ds,
A

where (L) [ denotes the Lebesgue integral over A.
A

Now we present a definition of an integral which is a generalization for both:
Pettis and Henstock-Kurzweil integrals.

Definition 2.6 [11]. The function f : I, — E is Henstock-Kurzweil-Pettis
integrable (HKP integrable for short) if there exists a function ¢ : I, — E with the

following properties:

(i) Varer x*f is Henstock-Kurzweil integrable on I, and

(i) Vier,Voreps 2*g(t) = (HK) Of w* f(s)ds.

This function g will be called a primitive of f and by g(a) = [ f(t)dt we will
0
denote the Henstock-Kurzweil-Pettis integral of f on the interval I,.

Remark 2. Each function which is HL integrable is integrable in the sense of
Henstock-Kurzweil-Pettis. Our notion of integral is essentially more general than the

previous ones (in Banach spaces):

(i) Pettis integral: by the definition of the Pettis integral and since each Lebesgue
integrable function is HK integrable, a P integrable function is clearly HKP
integrable.

(ii) Bochner, Riemann, and Riemann-Pettis integrals [16].

(iii) MsShane integral [14] or [17].
(iv) Henstock-Kurzweil (HL) integral ([7]).

We present below an example of a function which is HKP integrable but neither
HL integrable nor P integrable.

Example. Let f : [0,1] = ([0, 1], |]|,) be defined as f(1) = xjo-+ A(1)- (1),
where
F(t)=t*sint™2, te(0,1], F(0)=0, Xj0.4(7) = { t,7 €[0,1],

A(t)(r) =1 for 7,t € [0, 1].
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Put fi(t) = X0, [fo(t) = A(t) - F'(t).
We will show that the function f(t) = fi(t) + f2(t) is integrable in the sense of
Henstock-Kurzweil-Pettis.

Observe that
" (f(t) = 2" (f1(1) + f2(1)) = 2" (f1(t)) + 2" (f2(2)).

Moreover, the function z*(f(t)) is Lebesgue integrable (in fact f; is Pettis integrable

[13]), so it is Henstock-Kurzweil integrable, and the function z*(f5(t)) is Henstock-
Kurzweil integrable by Definition 2.2.

For each x* € E* the function x* f is not Lebesgue integrable because x* f5 is not
Lebesgue integrable. So f is not Pettis integrable. Moreover, the function f; is not
strongly measurable ([13]) and the function f; is strongly measurable. So their sum

f is not strongly measurable. Then by Theorem 9 from [7] f is not HL integrable.

In this sequel we present some properties of the HKP integral which are important

in the next part of our paper.
Theorem 2.7 [11]. Let f : [a,b] — E be HKP integrable on [a,b] and let
ff )ds, x € [a,b]. Then

(i) for each x* in E* the function x*f is HK integrable on [a,b] and
(HK fx (s))ds = x*(F(z))
(ii) the function F is weakly continuous on |a,b] and f is a pseudoderivative of F
on la,b.
Theorem 2.8 [11]. Let f : [a,b] — E. If f = 0almost everywhere on [a,b], then
f is HKP integrable on [a,b] and fbf(t)dt = 0.

Theorem 2.9 [11] (Mean value theorem for the HKP integral). If the function
f:1,— E is HKP integrable, then

/ f(t)dt € 1| - com f (1),

where conv f(I) is the closure of the convex of f(I), I is an arbitrary subinterval of
I, and |I| is the length of I.

Theorem 2.10 [9]. Let f : I, — FEand assume that f, : I, — E, n € N, are
HKP integrable on I,. For each n € N, let F,, be a primitive of f,. If we assume
that:

(i) Va* € E* a*(fu(t)) — 2" (f(t)) a.e. on I,
(i) for each x* € E*, the family G = {z*F,, : n = ..)} is uniformly ACG, on
I, (i.e. weakly uniformly ACG, on I,),

(iii) for each x* € E*, the set G is equicontinuous on I,
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then f is HKP integrable on I, and ffn )ds tends weakly in E to ff )ds for each

tel,.
3. EXISTENCE OF A SOLUTION

Now we prove the existence theorem for problem (1) under the weakest assump-

tions on g, as it is known.
For x € C(I,, E), we define the norm of = by: ||z|, = sup{||z(t)|, t € I.}.
Put B = {z € C(la, E) : 2(0) = £(0), [l«]| < |If O + M, M >0}
We define the operator F : C(I,, E) — C(l,, E) by

« e

F(z)(t) = f(t) + /k‘l(t, s)x(s)ds + /kg(t,s)g(s,x(s))ds, tel,, a€ R, z € B,

0 0

where integrals are taken in the sense of Henstock-Kurzweil-Pettis.

Moreover, let I' = {F(z) € C(1,, F) : x € B} and let r(K) be the spectral radius
of the integral operator K defined by

«

K(u)(t) = / [k1(t,s) + ko(t, s)|u(s)ds, tel, u€B.

Now we present the existence theorem for problem (1).

A continuous function x : I, — E is said to be a solution of problem (1) if it

satisfies the equation (1) for every t € I,.

Theorem 3.1 Assume that for each continuous function x : I, — E, g(-, x(-)) is
HKP integrable, g(s,-) is weakly-weakly sequentially continuous and kq, ko : 1o, X I, —
R, are measurable functions such that kq(t,-), ko(t,-) are continuous. Moreover, let
L >0 and

(3) w(g(l, X)) < Lu(X) for each bounded subset X C E I C I,.

Suppose that T' is equicontinuous and uniformly ACG, on I,. Moreover, let (1 +
L)r(K) < 1. Then there exists at least one solution of problem (1) on I, for some

0 < B < a, with continuous initial function f.

Proof. By equicontinuity of I" there exists some number § (0 < # < «) such that

B
[ [Ea(t, s)x(s) + kao(t, s)g(s, x(s)]ds|| < M for fixed M >0, ¢ € I3 and x € B.
0

By our assumptions, the operator F'is well defined and maps B into B. We will
show that the operator F' is weakly sequentially continuous.

By Lemma 9 of [27], a sequence x,,(-) is weakly convergent in C(Ig, E) to x(-) if
and only if x,(¢) tends weakly to z(t) for each t € I5. Because g(s, -) is weakly-weakly
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sequentially continuous, so if z,, =  in (C(Is, E),w) then g(s, z,(s)) = g(s,z(s)) in

E for t € Ig and by Theorem 2.10 we have
B

lm [ [k1(t, $)xn(s) + ka(t, 5)g(s, x,(5))]ds =

n—0o0

0
weakly in E, for each ¢t € Iz. We see that F(x,)(t) — F(x)(t) weakly in E for each
t e lgso F(x,) — F(x)in (C(Ig, E),w).

Suppose that V' C B satisfies the condition V = conv({z} U F(V)), for some
x € B. We will prove that V is relatively weakly compact, thus (2) is satisfied.

Let, for t € Iz, V(t) ={v(t) € E,v e V}.

From the definition of B and Lemma 1.1, it follows that the function v : t +—

[Fa(t, s)a(s) + ka(t, 5)g(s, x(s))]ds

O\m

wu(V(t)) is continuous on Is.

We divide the interval Ig: 0 =ty < t; < -+ < t,,, = 3, where t; = %, 1=
0,1,...,m. Let V({tl,tl_,_l]) = {U(S) ceFE:ue ‘/, t; <s< ti—l—l}a 1= O,l,...,m— 1.
By Lemma 1.1 and the continuity of v there exists s, € T; = [t;, t;11] such that
(4) u(V([ti tia])) = sup{u(V(s)) : t; < s <tira} = v(si).

On the other hand, by the definition of the operator ' and Theorem 2.11 we have

F(u) Z / [k1(t, s)u(s) + ka(t, s)g(s,u(s))]ds
t> + Z_ (ti+1 B ti)m[kl (t, Ti)v([tiv ti+1]) + k2(ta Ti)g(Tzw V([ti, ti+1]))]
for each u € V.Z_
Therefore
FV( )+ Z iv1 — ti)convlky (¢, T;)V ([ts, tia]) + ka(t, T3)g(Ti, V ([t tival]))]-

Using (3), (4) and the properties of the measure of weak noncompactness ;1 we obtain

—_

p(F(V (1)) < ' (tigr — t) ko (8, To)u(V ([t tiga]))

3

@
Il
=)

3
L

+ ) (i = )[Ry (8, T)u(g(T5, V ([, tiga])))

i

Il
o

3
L

(tiz1 — i) [F1(t, Ti)v(s;) + ka(t, T;) Lu(s;)]

(VAN
N

m—1

(ti1 —ti)ko(t, Ti)v(si) + L Z (tigr — ta)ka(t, T)v(s;)

1=0

3
L

@
Il
=)
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< m;l (tig1 — 1) 52%2 ki(t, s)v(s;) + Lg (tig1 —ts) §2£ ka(t, s)v(s;)
_ n'l_l (tisr — t) ki (t, pi)v(s;) + Lnil (tiv1 — to)ka(t, qi)v(si),
WF(V(E) < m(t )k pv(p) + m(t — )k, ) (0() — 000
s L’i—;(tm — tka(ta)0(a)
+ Lg(tm — t)llalt, ) (0(5:) — (@)
— :}1 (tis1 — i)k (t,pi)u(pi)+%§[k1 (t, pi)(v(si) — v(pi))]
+Ln§(ti+1 t)ka(t, ¢:)v(q) mE; ko (t, @) (v(si) — v(@i))]-

By the continuity of v we have v(s;) — v(p;) < €1 and g — 0 as m — oo and

v(s;) —v(g;) < ez and g9 — 0 as m — 0.

So

pEIB

B
W(F(V () < / (1, s)o(s)ds + B sup ki (£, p)ey

qEIB

B8
ny’ / Fa(t, $)o(s)ds + LB sup kalt, q)es
Therefore
B
(5) W(E(V(H) < (1+ L) / a(t, 5) + ka(t, $)]o(s)ds, for t € Iy,

Since V' = conv({u}UF(V)), by the property of the measure of weak noncompactness
we have p(V(t)) < p(F(V(t))) and so in view of (5), it follows that v(t) < (1 +

B
L) [ [ki(t,s) + ka(t, s)Jv(s)ds, for t € Ig. Because this inequality holds for every
0

te Ig and (14 L)r(K) < 1, so by applying Gronwall’s inequality [18], we conclude
that u(V(t)) = 0, for te Iz. Hence Arzela-Ascoli‘s theorem implies that the set V'
is relatively compact. Consequently, by Theorem 1.2, F' has a fixed point which is a
solution of the problem (1).
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Remark 3. The condition (3) in our Theorem 3.1 can be also generalized to
the Sadovskii conditions: pu(F(I x X)) < u(X), whenever p(X) > 0, where p can be

replaced by some axiomatic measure of weak noncompactness.

Acknowledgment: I'm grateful to the referee’s valuable suggestions.
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