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ABSTRACT. This paper is devoted to study the existence of multiple positive solutions for the

second order periodic boundary value problems with impulse effects. By imposing different condi-

tions on nonlinearity, we establish various of existence results. Besides, some results generalize Jiang

[5] for ordinary differential equations. In particular, nonlinearity involving the first derivative of x

is considered.
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1. INTRODUCTION

In this paper, we shall study the existence of multiple positive solutions for the

periodic boundary value problems with impulse effects

(1.1)











x′′ +Mx = f(t, x), t 6= tk, t ∈ J,

−∆x|t=tk = Ik(x(tk)), ∆x′|t=tk = Jk(x(tk)), k = 1, 2, . . . , l,

x(0) = x(2π), x′(0) = x′(2π).

and

(1.2)











x′′ +Mx = g(t, x, x′), t 6= tk, t ∈ J,

−∆x|t=tk = Ik(x(tk)), ∆x′|t=tk = Jk(x(tk)), k = 1, 2, . . . , l,

x(0) = x(2π), x′(0) = x′(2π).

Here, J = [0, 2π], 0 = t0 < t1 < t2 < · · · < tl < tl+1 = 2π, ∆x|t=tk = x(t+k ) − x(t−k ),

∆x′|t=tk = x′(t+k ) − x′(t−k ), where xi(t+k ) (respectively xi(t−k )) denotes the right limit

(respectively left limit) of xi(t) at t = tk, i = 0, 1. Throughout this paper, assume

Supported by grant 10671012 from National Natural Sciences Foundation of P.R. China and grant

20050007011 from Foundation for PhD Specialities of Educational Department of P.R. China.

Received November 23, 2006 1056-2176 $15.00 c©Dynamic Publishers, Inc.



168 Y. TIAN, D. JIANG, AND W. GE

that 0 < M < 1
4
, f ∈ C(J × R+, R+), g ∈ C(J × R+ × R,R+), Ik ∈ C(R+, R), Jk ∈

C(R+, R+), R+ = [0,∞) with |Ik(x)| ≤ sin 2mπ
2m(1−cos 2mπ)

Jk(x), x ∈ R+, m =
√
M .

In recent years, impulsive and periodic boundary value problems have been stud-

ied extensively in the literature, please see [3–14].

In [3, 5, 6, 13], periodic boundary value problems were studied extensively. Jiang

[5] has applied the Krasnosel’skii fixed point theorem to establish the existence of

positive solution to problem

(1.3)

{

x′′ +Mx = f(t, x), t ∈ [0, 2π],

x(0) = x(2π), x′(0) = x′(2π).

He proved that there exists at least one positive solution provided one of the following

conditions holds:

(i) lim
x→0

max
t∈[0,2π]

f(t,x)
x

= 0 and lim
x→∞

min
t∈[0,2π]

f(t,x)
x

= +∞;

(ii) lim
x→0

min
t∈[0,2π]

f(t,x)
x

= +∞ and lim
x→∞

max
t∈[0,2π]

f(t,x)
x

= 0.

On the other hand, impulsive differential equations were studied extensively. In

[7, 8, 10, 11, 12], authors used the method of lower and upper solutions with the

monotone iterative technique to study impulsive differential equations. In [1, 9],

authors used the Krasnosel’skii fixed point theorem in a cone to impulsive differential

equations and obtained the existence of positive solutions.

However, in [1, 7, 9, 10, 11, 12], the authors made the condition that the nonlin-

earity f depends only on x and not on the first derivative of x. In [8], the equation

x
′′

= f(t, x, x′), t ∈ [a, b], t 6= ti, i = 1, 2, . . . , p

with impulsive effects and nonlinear boundary conditions was studied by upper and

lower solutions methods. The existence of at least one solution was obtained. By so

far, very few multiplicity positive solutions were established for impulsive boundary

value problem with nonlinear terms depending on the first derivative. By using fixed

point theory [2], we establish the existence of positive solutions. This is the first time

to apply fixed point theory [2] to impulsive boundary value problem.

For the case of Ik = Jk = 0, k = 1, 2, . . . , l, (1.1) is reduced to (1.3). Our some

results extend the corresponding results in [5]. Besides, impulsive effect occur at both

x(ti) and ∆x(ti), which extend those in [9].

For convenience, we always use the notations:

f0 = lim inf
x→0+

min
t∈[0,2π]

f(t,x)
x
, J0(k) = lim inf

x→0+

Jk(x)
x
,

f∞ = lim sup
x→+∞

max
t∈[0,2π]

f(t,x)
x
, J∞(k) = lim sup

x→+∞

Jk(x)
x
,

f 0 = lim sup
x→0+

max
t∈[0,2π]

f(t,x)
x
, J0(k) = lim sup

x→0+

Jk(x)
x
,

f∞ = lim inf
x→+∞

min
t∈[0,2π]

f(t,x)
x
, J∞(k) = lim inf

x→+∞

Jk(x)
x
.
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In this paper, some of the following hypotheses are satisfied:

(H1) :
[

2πf0 +

l
∑

i=1

J0(i)

]

σ > 2πM,

[

2πf∞ +

l
∑

i=1

J∞(i)

]

σ > 2πM,

where σ = G(0)
2G(π)+G(0)

, G(0) = sin 2mπ
2m(1−cos 2mπ)

, G(π) = sinmπ
2m(1−cos 2mπ)

, m =
√
M .

(H2) :

2πf 0 +

l
∑

i=1

J0(i) < 2πσM, 2πf∞ +

l
∑

i=1

J∞(i) < 2πσM.

(H3) : There is a p > 0 such that 0 ≤ x ≤ p and 0 ≤ t ≤ 2π imply

f(t, x) ≤ ηp, Jk(x) ≤ ηkp,

where η, ηk ≥ 0 satisfy η +
l

∑

k=1

ηk > 0, 2πηG(π) +
(

G(π) + G(0)
2

) l
∑

i=1

ηi < 1.

(H4) : There is a p > 0 such that σp ≤ x ≤ p and 0 ≤ t ≤ 2π imply

f(t, x) ≥ λp, Jk(x) ≥ λkp,

where λ, λk ≥ 0 satisfy λ+
l

∑

k=1

λk > 0 and 2πG(0)λ+ G(0)
2

l
∑

i=1

λi > 1.

For the remainder of this section, we present some results which will be needed

in Section 3 and Section 4.

Let E be a Banach space and K ⊂ E be a cone in E. Assume that Ω is a bounded

open subset of E and let ∂Ω be its boundary. Let Φ : K ∩ Ω̄ → K be a continuous

and completely continuous mapping. If Φu 6= u for every u ∈ K ∩ ∂Ω, then the fixed

point index i(Φ, K ∩Ω, K) is defined. If i(Φ, K ∩Ω, K) 6= 0, then Φ has a fixed point

in K ∩ Ω.

For r > 0, let Kr = {u ∈ K : ‖u‖PC < r} and ∂Kr = {u ∈ K : ‖u‖PC = r},
which is the relative boundary of Kr in K. The following three Lemmas are needed

in our argument.

Lemma 1.1 (11). Let Φ : K → K be a continuous and completely continuous map-

ping and Φu 6= u for u ∈ ∂Kr. Thus one has the following conclusions:

(i) If ‖u‖ ≤ ‖Φu‖ for u ∈ ∂Kr, then i(Φ, Kr, K) = 0;

(ii) If ‖u‖ ≥ ‖Φu‖ for u ∈ ∂Kr, then i(Φ, Kr, K) = 1.

Lemma 1.2 ([11]). Let Φ : K → K be a continuous and completely continuous

mapping with µΦu 6= u for every u ∈ ∂Kr and 0 < µ ≤ 1. Then i(Φ, Kr, K) = 1.

Lemma 1.3 ([11]). Let Φ : K → K be a continuous and completely continuous

mapping. Suppose that the following two conditions are satisfied:

(i) infu∈∂Kr
‖Φu‖ > 0;

(ii) µΦu 6= u for every u ∈ ∂Kr and µ ≥ 1.

Then, i(Φ, Kr, K) = 0.
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Definition 1.1. The map ψ is said to be a nonnegative continuous concave functional

on cone P provided that ψ : P → [0,∞) is continuous and

ψ(tx+ (1 − t)y) ≥ tψ(x) + (1 − t)ψ(y)

for all x, y ∈ P and 0 ≤ t ≤ 1. Similarly, we say the map α is a nonnegative

continuous convex functional on P provided that: α : P → [0,∞) is continuous and

α(tx + (1 − t)y) ≤ tα(x) + (1 − t)α(y)

for all x, y ∈ P and 0 ≤ t ≤ 1.

Let r > a > 0, L > 0 be constants, ψ is a nonnegative continuous concave

functional and α, β nonnegative continuous convex functionals on the cone P . Define

convex sets

P (α, r; β, L) = {y ∈ P |α(y) < r, β(y) < L},
P (α, r; β, L) = {y ∈ P |α(y) ≤ r, β(y) ≤ L},

P (α, r; β, L;ψ, a) = {y ∈ P |α(y) < r, β(y) < L, ψ(y) > a},
P (α, r; β, L;ψ, a) = {y ∈ P |α(y) ≤ r, β(y) ≤ L, ψ(y) ≥ a}.

The following assumptions about the nonnegative continuous convex functionals

α, β will be used:

(A1) there exists M > 0 such that ‖x‖ ≤ M max{α(x), β(x)}, for all x ∈ P ;

(A2) P (α, r; β, L) 6= ∅ for all r > 0, L > 0.

Lemma 1.4 (Bai and Ge [2]). Let E be a Banach space, P ⊂ E a cone and

r2 ≥ d > b > r1 > 0, L2 ≥ L1 > 0. Assume that α, β are nonnegative con-

tinuous convex functionals satisfying (A1) and (A2), ψ is a nonnegative continu-

ous concave functional on P such that ψ(y) ≤ α(y) for all y ∈ P (α, r2; β, L2), and

T : P (α, r2; β, L2) → P (α, r2; β, L2) is a completely continuous operator. Suppose

(B1) {y ∈ P (α, d; β, L2;ψ, b|ψ(y) > b} 6= ∅, ψ(Ty) > b for y ∈ P (α, d; β, L2;ψ, b);

(B2) α(Ty) < r1, β(Ty) < L1 for all y ∈ P (α, r1; β, L1);

(B3) ψ(Ty) > b for all y ∈ P (α, r2; β, L2;ψ, b) with α(Ty) > d.

Then T has at least three fixed points y1, y2 and y3 in P (α, r2; β, L2) with

y1 ∈ P (α, r1; β, L1), y2 ∈ {P (α, r2; β, L2;ψ, b)|ψ(y) > b}

and

y3 ∈ P (α, r2; β, L2)\(P (α, r2; β, L2;ψ, b) ∪ P (α, r1; β, L1)).

The paper is organized as follows: In Section 2, we give some important properties

for the Green’s function and some fundamental results for later use. In Section 3,

we establish the multiple existence results for (1.1). In Section 4, we establish the

existence results for (1.2). In Section 5, some example are present to illustrate our

main results.
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2. PRELIMINARIES

In order to define the solution of (1.1) and (1.2) we shall consider the following

spaces.

Let J ′ = J \ {t1, t2, . . . , tl},

PC(J,R) = {x : J 7→ R : x|(tk ,tk+1) ∈ C(tk, tk+1), x(t
−
k ) = x(tk),

∃ x(t+k ), k = 1, 2, . . . , l}

is a Banach space with norm ‖x‖PC = sup
t∈[0,2π]

|x(t)|. Let

PC1(J,R) = {x : J 7→ R : x|(tk ,tk+1), x
′|(tk,tk+1) ∈ C(tk, tk+1), x(t

−
k ) = x(tk),

x′(t−k ) = x′(tk), ∃ x(t+k ), x′(t+k ), k = 1, 2, . . . , l}

with the norm ‖x‖PC1 = max{‖x‖PC , ‖x′‖PC}, then PC1(J,R) is also a Banach space.

Definition 2.1. A function x ∈ PC1(J,R) ∩ C2(J ′, R) is called a solution of (1.1)

(or (1.2)) if it satisfies the differential equation

x′′ +Mx = f(t, x), t ∈ J ′ (or x′′ +Mx = f(t, x, x′), t ∈ J ′)

and the function x satisfies the conditions ∆x|t=tk = x(t+k ) − x(t−k ) = Ik(x(tk)),

∆x′|t=tk = x′(t+k )−x′(t−k ) = −Jk(x(tk)), and the periodic boundary conditions x(0) =

x(2π), x′(0) = x′(2π).

Lemma 2.1 ([14]). A function x ∈ PC1(J) ∩ C2(J ′) is a solution of problem (1.1)

if and only if x ∈ PC(J) is a solution of the equation

x(t) =

∫ 2π

0

G(t, s)f(s, x(s))ds+
l

∑

k=1

G(t, tk)Jk(x(tk))(2.1)

+

l
∑

k=1

∂G(t, s)

∂s
|s=tkIk(x(tk)),

where G(t, s) is the Green’s function to the periodic boundary value problem x′′+Mx =

0, x(0) = x(2π), x′(0) = x′(2π), and

G(t, s) :=
1

Γ

{

sinm(t− s) + sinm(2π − t + s), 0 ≤ s ≤ t ≤ 2π,

sinm(s− t) + sinm(2π − s+ t), 0 ≤ t ≤ s ≤ 2π,

here Γ = 2m(1 − cos 2mπ).

Lemma 2.2. The Green’s function G(t, s) is defined in Lemma 2.1, then the following

inequalities holds

(a) sin 2mπ
2m(1−cos 2mπ)

= G(0) ≤ G(t, s) ≤ G(π) = sinmπ
2m(1−cos 2mπ)

;

(b)
∣

∣

∣

∂G(t,s)
∂s

∣

∣

∣
≤ 1

2
, t, s ∈ [0, 2π],

∣

∣

∣

∂G(t,s)
∂t

∣

∣

∣
≤ 1

2
, t, s ∈ [0, 2π];

(c) m2G(0) ≤ ∂
∂t

(

∂G(t,s)
∂s

)

≤ 2m2G(π), t, s ∈ [0, 2π].
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Proof. It is clear that (a) holds. Now we shall show that (b) holds. By computing,

∂G(t, s)

∂s
=

1

Γ

{

−m cosm(t− s) +m cosm(2π − t+ s), 0 ≤ s ≤ t ≤ 2π,

m cosm(s− t) −m cosm(2π − s+ t), 0 ≤ t ≤ s ≤ 2π.

Let h(θ) = 1
Γ

[−m cosmθ +m cosm(2π − θ)] , θ ∈ [0, 2π]. Then

h′(θ) =
1

Γ

[

m2 sinmθ +m2 sinm(2π − θ)
]

=
2m2

Γ
sinmπ cosm(θ − π) ≥ 0.

So −1
2

= h(0) ≤ h(θ) ≤ h(2π) = 1
2
, i.e. |h(θ)| ≤ 1

2
. So

∣

∣

∣

∂G(t,s)
∂s

∣

∣

∣
≤ 1

2
, t, s ∈ [0, 2π]. On

the other hand,

∂G(t, s)

∂t
=

1

Γ

{

m cosm(t− s) −m cosm(2π − t + s), 0 ≤ s ≤ t ≤ 2π,

−m cosm(s− t) +m cosm(2π − s+ t), 0 ≤ t ≤ s ≤ 2π.

Let l(θ) = 1
Γ

[m cosmθ −m cosm(2π − θ)] , θ ∈ [0, 2π]. Then

l′(θ) =
1

Γ

[

−m2 sinmθ −m2 sinm(2π − θ)
]

= −2m2

Γ
sinmπ cosm(θ − π) ≤ 0.

So −1
2

= l(2π) ≤ l(θ) ≤ l(0) = 1
2
, i.e. |l(θ)| ≤ 1

2
. So

∣

∣

∣

∂G(t,s)
∂t

∣

∣

∣
≤ 1

2
, t, s ∈ [0, 2π].

At last, we show that (c) holds. By computing,

∣

∣

∣

∣

∂

∂t

(

∂G(t, s)

∂s

)
∣

∣

∣

∣

=
1

Γ

{

m2 sinm(t− s) +m2 sinm(2π − t+ s), 0 ≤ s ≤ t ≤ 2π,

m2 sinm(s− t) +m2 sinm(2π − s+ t), 0 ≤ t ≤ s ≤ 2π.

Let p(θ) = 1
Γ

[m2 sinmθ +m2 sinm(2π − θ)], Then

p′(θ) =
1

Γ

[

m3 cosmθ −m3 cosm(2π − θ)
]

=
1

Γ

[

−2m3 sinmπ sinm(θ − π)
]

.

For θ ∈ [0, π], p′(θ) ≥ 0, thus m2G(0) = h(0) ≤ h(θ) ≤ h(π) = 2m2G(π);

For θ ∈ [π, 2π], p′(θ) ≤ 0, thus m2G(0) = h(2π) ≤ h(θ) ≤ h(π) = 2m2G(π).

So (c) holds.

For every positive solution of problem (1.1), one has

‖x‖PC = sup
t∈[0,2π]

|x(t)|.

Without loss of generality, we assume lim
t→ξ

|x(t)| = ‖x‖PC , ξ ∈ [tk, tk+1], k ∈ {0, 1, . . . , l},
then by Lemma 2.2(a),

‖x‖PC ≤ G(π)

∫ 2π

0

f(s, x(s))ds(2.2)
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+ lim
t→ξ

{
∣

∣

∣

∣

∣

l
∑

i=1

G(t, ti)Ji(x(ti)) +
l

∑

i=1

∂G(t, s)

∂s
|s=tiIi(x(ti))

∣

∣

∣

∣

∣

}

= G(π)

∫ 2π

0

f(s, x(s))ds+

l
∑

i=1

|G(ξ, ti)Ji(x(ti))|

+
l

∑

i=1

∣

∣

∣

∣

∂G(ξ, s)

∂s
|s=tiIi(x(ti))

∣

∣

∣

∣

≤ G(π)

∫ 2π

0

f(s, x(s))ds+G(π)

l
∑

i=1

Ji(x(ti)) +
1

2

l
∑

i=1

|Ii(x(ti))|

≤ G(π)

∫ 2π

0

f(s, x(s))ds+

(

G(π) +
G(0)

2

) l
∑

i=1

Ji(x(ti)).

For any t ∈ [0, 2π], without loss of generality, we assume that t ∈ [tk, tk+1), then

x(t) ≥ G(0)

∫ 2π

0

f(s, x(s))ds+

l
∑

i=1

G(t, ti)Ji(x(ti))(2.3)

+
l

∑

i=1

∂G(t, s)

∂s
|s=tiIi(x(ti))

≥ G(0)

∫ 2π

0

f(s, x(s))ds+G(0)

l
∑

i=1

Ji(x(ti)) −
1

2

l
∑

i=1

|Ii(x(ti))|

≥ G(0)

∫ 2π

0

f(s, x(s))ds+
G(0)

2

l
∑

i=1

|Ji(x(ti))|

=
G(0)

G(π)
G(π)

∫ 2π

0

f(s, x(s))ds

+
G(0)

2G(π) +G(0)

[

G(π) +
G(0)

2

] l
∑

i=1

Ji(x(ti))

≥ min

{

G(0)

G(π)
,

G(0)

2G(π) +G(0)

}

‖x‖PC

=
G(0)

2G(π) +G(0)
‖x‖PC := σ‖x‖PC .

Let K be a cone in PC(J,R) which is defined as

K = {x ∈ PC(J,R) : x(t) ≥ σ‖x‖PC , t ∈ J}.

Define an operator Φ : K → K as follows

(Φx)(t) =

∫ 2π

0

G(t, s)f(s, x(s))ds+
l

∑

k=1

G(t, tk)Jk(x(tk))
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+
l

∑

k=1

∂G(t, s)

∂s
|s=tkIk(x(tk)).

Then we have the following Lemma.

Lemma 2.3. Φ(K) ⊂ K.

Proof. For x ∈ K, we have the inequalities from (2.2) (2.3) that

‖Φx‖PC ≤ G(π)

∫ 2π

0

f(s, x(s))ds+

(

G(π) +
G(0)

2

) l
∑

i=1

Ji(x(ti)),

(Φx)(t) ≥ G(0)

2G(π) +G(0)
‖Φx‖PC := σ‖Φx‖PC , t ∈ [0, 2π]

Thus, Φ(K) ⊂ K.

It is clear that Φ : K → K is continuous and completely continuous.

3. MAIN RESULTS FOR (1.1)

The following theorems are our main results.

Theorem 3.1. Assume that (H1) and (H3) are satisfied. Then problem (1.1) has at

least two positive solutions x1 and x2 with

0 < ‖x1‖PC < p < ‖x2‖PC.

Corollary 3.2. The conclusion of Theorem 3.1 is valid if (H1) are replaced by:

(H∗
1 ) f0 = ∞ or

l
∑

i=1

J0(i) = ∞, f∞ = ∞ or
l

∑

i=1

J∞(i) = ∞.

Theorem 3.3. Assume that (H2) and (H4) are satisfied. Then problem (1.1) has at

least two positive solutions x1 and x2 with

0 < ‖x1‖PC < p < ‖x2‖PC.

Corollary 3.4. The conclusions of Theorem 3.3 is valid if (H2) is replaced by:

(H∗
2 ) f 0 = 0 and J0(i) = 0, f∞ = 0 and J∞(i) = 0, i = 1, 2, . . . , l.

Theorem 3.5. Assume the following conditions are satisfied:
[

2πf0 +
l

∑

i=1

J0(i)

]

σ > 2πM, 2πf∞ +
l

∑

i=1

J∞(i) < 2πσM.

Then (1.1) has at least one positive solution.

Corollary 3.6. Assume the following conditions are satisfied:

f0 = ∞ or

l
∑

i=1

J0(i) = ∞, f∞ = 0 and J∞(i) = 0, i = 1, . . . , l.

Then (1.1) has at least one positive solution.
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Theorem 3.7. Assume the following conditions are satisfied:

2πf 0 +

l
∑

i=1

J0(i) < 2πσM,

[

2πf∞ +

l
∑

i=1

J∞(i)

]

σ > 2πM.

Then (1.1) has at least one positive solution.

Corollary 3.8. Assume that

f 0 = 0 and J0(i) = 0, i = 1, . . . , l, f∞ = ∞ or

l
∑

i=1

J∞(i) = ∞.

Then (1.1) has at least one positive solution.

Remark 3.1. Corollaries 3.6, 3.8 are the generalization of Theorem 1 of [5].

In order to prove the main results, we need the following two Lemmas.

Lemma 3.9. If (H3) is satisfied, then i(Φ, Kp, K) = 1.

Proof. Let x ∈ K with ‖x‖PC = p. It follows from (H3) and (2.2) that

‖Φx‖PC ≤
∫ 2π

0

G(π)f(s, x(s))ds+

[

G(π) +
G(0)

2

] l
∑

i=1

Ji(x(ti))

≤ p

[

2πηG(π) +

(

G(π) +
G(0)

2

) l
∑

i=1

ηi

]

< p = ‖x‖PC .

This shows that

‖Φx‖PC < ‖x‖PC, ∀ x ∈ ∂Kp.

It is obvious that Φx 6= x for x ∈ ∂Kp. Therefore, i(Φ, Kp, K) = 1 follows from

Lemma 1.1(ii).

Lemma 3.10. If (H4) is satisfied, then i(Φ, Kp, K) = 0.

Proof. Let x ∈ K with ‖x‖PC = p. Then by (H4) (2.3), we have

(Φx)(t) ≥ G(0)

∫ 2π

0

f(s, x(s))ds+
G(0)

2

l
∑

i=1

Ji(x(ti))

≥ p

[

2πG(0)λ+
G(0)

2

l
∑

i=1

λi

]

> p = ‖x‖PC .

This shows that

‖Φx‖PC > ‖x‖PC, ∀ x ∈ ∂Kp.

Also clearly Φx 6= x for x ∈ ∂Kp. Therefore, i(Φ, Kp, K) = 0 follows from

Lemma 1.1(i).
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Proof of Theorem 3.1. According to Lemma 3.9, we have that

(3.1) i(Φ, Kp, K) = 1.

Suppose that (H1) holds. There exists 0 < ε < 1 sufficiently small such that

(3.2) (1 − ε)σ

[

2πf0 +

l
∑

i=1

J0(i)

]

> 2πM, (1 − ε)σ

[

2πf∞ +

l
∑

i=1

J∞(i)

]

> 2πM.

By the notations f0, J0, one can find 0 < r0 < p such that

(3.3) f(t, x) ≥ f0(1 − ε)x, Jk(x) ≥ J0(k)(1 − ε)x, ∀ t ∈ [0, 2π], 0 < x < r0.

Let r ∈ (0, r0). Then for x ∈ ∂Kr we have

x(t) ≥ σ‖x‖PC = σr for t ∈ [0, 2π],

and so

(Φx)(t) =
∫ 2π

0
G(t, s)f(s, x(s))ds+

l
∑

k=1

G(t, tk)Jk(x(tk)) +
l

∑

k=1

∂G(t,s)
∂s

|s=tkIk(x(tk))

≥ G(0)
∫ 2π

0
f(s, x(s))ds+ G(0)

2

l
∑

k=1

Jk(x(tk))

≥ G(0)f0(1 − ε)
∫ 2π

0
x(s)ds+ G(0)

2
(1 − ε)

l
∑

k=1

J0(k)x(tk)

≥ (1 − ε)σr

[

2πf0G(0) + G(0)
2

l
∑

k=1

J0(k)

]

,

from which we see that inf
x∈∂Kr

‖Φx‖PC > 0, namely, hypothesis (i) of Lemma 1.3 holds.

Next we show that µΦx 6= x for any x ∈ ∂Kr and µ ≥ 1. If this is not true, then

there exist x0 ∈ ∂Kr and µ0 ≥ 1 such that µ0Φx0 = x0. Note that x0(t) satisfies

(3.4)











x′′0(t) +Mx0(t) = µ0f(t, x0(t)), t ∈ J ′,

−∆x0|t=tk = µ0Ik(x0(tk)), ∆x′0|t=tk = µ0Jk(x0(tk)), k = 1, 2, . . . , l,

x0(0) = x0(2π), x
′

0(0) = x
′

0(2π).

Integrating from 0 to 2π, use integration by parts in the left side, without loss of

generality we assume that tk ≤ π ≤ tk+1, k ∈ {0, 1, . . . , l}, then one has

(3.5)

∫ 2π

0
[x′′0(t) +Mx0(t)]dt = −

l
∑

i=1

∆x
′

0(ti) +M
∫ 2π

0
x0(t)dt

= −µ0

l
∑

i=1

Ji(x0(ti)) +M
∫ 2π

0
x0(t)dt.

Thus

(3.6)
M

∫ 2π

0
x0(t)dt = µ0

[

∫ 2π

0
f(t, x0(t))dt+

l
∑

i=1

Ji(x0(ti))

]

≥ (1 − ε)

[

2πf0 +
l

∑

i=1

J0(i)

]

σr.
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So we obtain

(3.7) 2πMr ≥ (1 − ε)

[

2πf0 +
l

∑

i=1

J0(i)

]

σr,

which contradicts with (3.2).

Hence Φ satisfies the hypothesis of Lemma 1.3 in Kr, we have

(3.8) i(Φ, Kr, K) = 0.

On the other hand, from (H1), there exists H > p such that

(3.9) f(t, x) ≥ f∞(1 − ε)x, Jk(x) ≥ J∞(k)(1 − ε)x, ∀t ∈ [0, 2π], x ≥ H.

Choose R > R0 := max{H
σ
, p}. Let x ∈ ∂KR. Since x(t) ≥ σ‖x‖PC = σR > H for

t ∈ [0, 2π], from (3.9) we see that

f(t, x(t)) ≥ f∞(1 − ε)x(t), ∀t ∈ [0, 2π],(3.10)

Jk(x(tk) ≥ J∞(k)(1 − ε)x(tk), k = 1, 2, . . . , l.

Essentially the same reasoning as above yields inf
x∈∂KR

‖Φx‖PC > 0. Next we show that

if R is large enough, then µΦx 6= x for any x ∈ ∂KR and µ ≥ 1. In fact, if there exist

x0 ∈ ∂KR and µ0 ≥ 1 such that µ0Φx0 = x0, then x0(t) satisfies equation (3.4).

Integrating from 0 to 2π, using integration by parts in the left side to obtain

(3.5). By (3.10),

M
∫ 2π

0
x0(t)dt = µ0

[

∫ 2π

0
f(t, x0(t))dt+

l
∑

i=1

Ji(x0(ti))

]

≥ (1 − ε)

[

2πf∞ +
l

∑

i=1

J∞(i)

]

σr.

So we obtain

(3.11) 2πMr ≥ (1 − ε)

[

2πf∞ +
l

∑

i=1

J∞(i)

]

σr,

which contradicts with (3.2).

Hence hypothesis (ii) of Lemma 1.3 is satisfied and

(3.12) i(Φ, KR , K) = 0.

In view of (3.1), (3.8) and (3.12), we obtain

i(Φ, KR \ K̄p, K) = −1, i(Φ, Kp \ K̄r, K) = 1.

Thus, Φ has fixed points x1 and x2 in Kp \ K̄r and KR \ K̄p, respectively, which

means x1(t) and x2(t) are positive solution of the problem (1.1) and 0 < ‖x1‖PC <

p < ‖x2‖PC.

Proof of Theorem 3.3. According to Lemma 3.10, we have that

(3.13) i(Φ, Kp, K) = 0.
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Suppose that (H2) holds, there exists 0 < ε < min{λ1 − f 0, λ1 − f∞} such that

(3.14) 2πσM > 2π(f 0 +ε)+
l

∑

i=1

(J0(i)+ε), 2πσM > 2π(f∞+ε)+
l

∑

i=1

(J∞(i)+ε).

One can find 0 < r0 < p such that

(3.15) f(t, x) ≤ (f 0 + ε)x, Jk(x) ≤ (J0(k) + ε)x, ∀t ∈ [0, 2π], 0 ≤ x ≤ r0.

Let r ∈ (0, r0). We now prove that µΦx 6= x for any x ∈ ∂Kr and 0 < µ ≤ 1.

If this is not true, then there exist x0 ∈ ∂Kr and 0 < µ0 ≤ 1 such that µ0Φx0 = x0.

Then x0(t) satisfies equation (3.4). Integrating from 0 to 2π ( use (3.5) (3.15)) to

obtain

(3.16)

M
∫ 2π

0
x0(t)dt = µ0

[

∫ 2π

0
f(t, x0(t))dt+

l
∑

i=1

Ji(x0(ti))

]

≤ (f 0 + ε)
∫ 2π

0
x0(t)dt+

l
∑

i=1

(J0(i) + ε)x0(ti)

≤ 2πr(f 0 + ε) +
l

∑

i=1

(J0(i) + ε)r.

So

2πσMr ≤
[

2π(f 0 + ε) +

l
∑

i=1

(J0(i) + ε)

]

r,

which is a contradiction with (3.14). By Lemma 1.2, we have

(3.17) i(Φ, Kr, K) = 1.

On the other hand, from (H2), there exists H > p such that

(3.18) f(t, x) ≤ (f∞ + ε)x, Jk(x) ≤ (J∞(k) + ε)x ∀t ∈ [0, 2π], x ≥ H.

Choose R > R0 = max{H
σ
, p}. Let x ∈ ∂KR, then (3.18) holds since x(t) ≥ σ‖x‖PC =

σR > H for t ∈ [0, 2π]. Now we will show that µΦx 6= x for any x ∈ ∂KR and

0 < µ ≤ 1. In fact, if there exist x0 ∈ ∂KR and 0 < µ0 ≤ 1 such that µ0Φx0 = x0,

then x0(t) satisfies equation (3.4).

Integrating from 0 to 2π ( use (3.5) (3.18)) to obtain

M
∫ 2π

0
x0(t)dt = µ0

[

∫ 2π

0
f(t, x0(t))dt−

l
∑

i=1

Ji(x0(ti))

]

≤ (f∞ + ε)
∫ 2π

0
x0(t)dt+

l
∑

i=1

(J∞(i) + ε)x0(ti)

≤ 2πr(f∞ + ε) + r
l

∑

i=1

(J∞(i) + ε)

= r

[

2π(f∞ + ε) +
l

∑

i=1

(J∞(i) + ε)

]

.

So

2πσMr ≤ r

[

2π(f∞ + ε) +
l

∑

i=1

(J∞(i) + ε)

]

,
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which is a contradiction with (3.14).

Let R > max{p, H
σ
}, then for any x ∈ ∂KR and 0 < µ ≤ 1, we have µΦx 6= x.

Hence hypothesis of Lemma 1.2 also holds. By Lemma 1.2,

(3.19) i(Φ, KR , K) = 1.

In view of (3.13), (3.17) and (3.19), we obtain

i(Φ, KR \ K̄p, K) = 1, i(Φ, Kp \ K̄r, K) = −1.

Thus, Φ has fixed points x1 and x2 in Kp \ K̄r and KR \ K̄p, respectively, which

means x1(t) and x2(t) are positive solution of the problem (1.1) and 0 < ‖x1‖PC <

p < ‖x2‖PC.

Proof of Theorems 3 and 4. The proof follows the ideas in the proof of

Theorems 1 and 2.

4. MAIN RESULTS FOR (1.2)

Let P be a cone in PC1(J,R) which is defined as

P = {x ∈ PC1(J,R) : x(t) ≥ σ‖x‖PC , t ∈ J}.

Define an operator Φ : P → P as follows

(Tx)(t) =

∫ 2π

0

G(t, s)g(s, x(s), x′(s))ds+
l

∑

k=1

G(t, tk)Jk(x(tk))

+

l
∑

k=1

∂G(t, s)

∂s
|s=tkIk(x(tk)).

A function x ∈ PC1(J) ∩ C2(J ′) is a solution of (1.2) if and only if x ∈ PC1(J,R) is

a fixed point of the operator T . Define the functionals

α(x) = sup
t∈J

|x(t)|, β(x) = sup
t∈J

|x′(t)|, ψ(x) = inf
t∈J

|x(t)|.

Then α, β : P → [0,∞) are nonnegative continuous convex functionals satisfying

(A1), (A2); ψ is a nonnegative continuous concave functional with ψ(x) ≤ α(x) for

all x ∈ P .

Theorem 4.1. Suppose that there exists r2 ≥ b
σ
> b > r1 > 0, L2 > L1 > 0 satisfying

2

[

1 + max

{

G(0)

2G(π)
, 4m2G(0)G(π)

}]

b

G(0)
< min

{

r2

G(π)
, 2L2

}

.

If the following assumptions hold:

(C1) max
(t,x,y)∈J×[0,r1]×[−L1,L1]

g(t, x, y) +

(

1 + max

{

G(0)

2G(π)
, 4m2G(0)G(π)

})

max
x∈[0,r1]

l
∑

i=1

Ji(x)
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< min

{

r1

G(π)
, 2L1

}

;

(C2) min
(t,x,y)∈J×[b, b

σ
]×[−L2,L2]

g(t, x, y) + 1
2

min
x∈[b, b

σ
]

l
∑

i=1

Ji(x) >
b

G(0)
;

(C3) max
(t,x,y)∈J×[0,r2]×[−L2,L2]

g(t, x, y) +

(

1 + max

{

G(0)

2G(π)
, 4m2G(0)G(π)

})

max
x∈[0,r2]

l
∑

i=1

Ji(x)

< min

{

r2

G(π)
, 2L2

}

.

Then problem (1.2) has at least three positive solutions x1, x2, x3 with

x1 ∈ P (α, r1; β, L1), x2 ∈ {P (α, r2; β, L2;ψ, b)|ψ(y) > b}

and

x3 ∈ P (α, r2; β, L2)\(P (α, r2; β, L2;ψ, b) ∪ P (α, r1; β, L1)).

Proof. We will apply Lemma 1.4 to verify the existence of fixed points of the operator

T . It is clear that T : P → P is completely continuous. Now we will verify that

all the conditions of Lemma 1.4 are satisfied. First we show T : P (α, r2; β, L2) →
P (α, r2; β, L2). If x ∈ P (α, r2; β, L2), then α(x) ≤ r2, β(x) ≤ L2. By (2.2), (B3),

Lemma 2.2 (b)(c), one has

α(Tx) = sup

{
∣

∣

∣

∣

∣

∫ 2π

0

G(t, s)g(s, x(s), x′(s))ds

+
l

∑

i=1

G(t, ti)Ji(x(ti)) +
l

∑

i=1

∂G(t, s)

∂s
|s=tiIi(x(ti))

∣

∣

∣

∣

∣

}

≤ G(π)

∫ 2π

0

g(s, x(s), x′(s))ds+

(

G(π) +
G(0)

2

) l
∑

i=1

Ji(x(ti))

≤ G(π) max
(t,x,y)∈J×[0,r2]×[−L2,L2]

g(t, x, y) +

(

G(π) +
G(0)

2

)

max
x∈[0,r2]

l
∑

i=1

Ji(x)

= G(π)

{

max
(t,x,y)∈J×[0,r2]×[−L2,L2]

g(t, x, y) +

(

1 +
G(0)

2G(π)

)

max
x∈[0,r2]

l
∑

i=1

Ji(x)

}

≤ G(π)

{

max
(t,x,y)∈J×[0,r2]×[−L2,L2]

g(t, x, y)

+

(

1 + max

{

G(0)

2G(π)
, 4m2G(0)G(π)

})

max
x∈[0,r2]

l
∑

i=1

Ji(x)

}

< r2.

β(Tx) = sup
t∈J

{
∣

∣

∣

∣

∫ 2π

0

∂G(t, s)

∂t
g(s, x(s), x′(s))ds
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+
l

∑

i=1

∂G(t, ti)

∂t
Ji(x(ti)) +

l
∑

i=1

∂

∂t

(

∂G(t, s)

∂s
|s=ti

)

Ii(x(ti))

∣

∣

∣

∣

∣

}

≤ 1

2
max

(t,x,y)∈J×[0,r2]×[−L2,L2]
g(t, x, y) +

1

2
max

x∈[0,r2]

l
∑

i=1

Ji(x)

+2m2G(π) max
x∈[0,r2]

l
∑

i=1

|Ii(x)|

≤ 1

2

{

max
(t,x,y)∈J×[0,r2]×[−L2,L2]

g(t, x, y) +
(

1 + 4m2G(π)G(0)
)

max
x∈[0,r2]

l
∑

i=1

Ji(x)

}

≤ 1

2
max

(t,x,y)∈J×[0,r2]×[−L2,L2]
g(t, x, y)

+

(

1 + max

{

G(0)

2G(π)
, 4m2G(0)G(π)

})

max
x∈[0,r2]

l
∑

i=1

Ji(x)

}

< L2.

So T : P (α, r2; β, L2) → P (α, r2; β, L2). In the same way we can show T : P (α, r1;

β, L1) → P (α, r1; β, L1), so the condition (B2) is satisfied. To check the condition

(B1) in Lemma 1.4, we choose x(t) = b
σ
, t ∈ J . It is easy to see that x(t) = b

σ
∈

P (α, b
σ
; β, L2;ψ, b), ψ(x) = b

σ
> b, and consequently, {x ∈ P (α, b

σ
; β, L2;ψ, b) : ψ(x) >

b} 6= ∅. For x ∈ P (α, b
σ
; β, L2;ψ, b), then ‖x‖PC ≤ b

σ
, ‖x′‖PC ≤ L2, x(t) ≥ b, t ∈ J .

Now we show ψ(Tx) > b. By (C2)

ψ(Tx) = inf
t∈J

{

∫ 2π

0

G(t, s)g(s, x(s), x′(s))ds+

l
∑

i=1

G(t, ti)Ji(x(ti))

+

l
∑

i=1

∂G(t, s)

∂s
|s=tiIi(x(ti))

}

≥ G(0)

∫ 2π

0

g(s, x(s), x′(s))ds+
G(0)

2

l
∑

i=1

Ji(x(ti))

≥ G(0) min
(t,x,y)∈J×[b, b

σ
]×[−L2,L2]

g(t, x, y) +
G(0)

2
min

x∈[b, b

σ
]

l
∑

i=1

Ji(x)

> b.

Finally, we verify that the condition (B3) in Lemma 1.4 holds. For x ∈ P (α, r2; β, L2;ψ, b)

with α(Tx) > b
σ
, then by the definition ψ and (2.3) we have

ψ(Tx) = min
t∈[l1,l2]

(Tx)(t) = min
t∈[l1,l2]

∫ ∞

0

G(t, s)g(s, x(s), x′(s))ds

≥ σ sup
t∈J

∫ 2π

0

G(t, s)g(s, x(s), x′(s))ds

≥ σα(Tx) > b.
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Therefore, the operator T has three fixed points xi ∈ P (α, r2; β, L2), i = 1, 2, 3, with

x1 ∈ P (α, r1; β, L1), x2 ∈ {P (α, r2; β, L2;ψ, b)|ψ(y) > b}

and

x3 ∈ P (α, r2; β, L2)\(P (α, r2; β, L2;ψ, b) ∪ P (α, r1; β, L1)).

5. EXAMPLE

Example 5.1. Consider the following impulsive boundary value problem

(5.1)











x′′(t) + 1
16
x(t) = xα + xβ, t ∈ J ′, 0 < α < 1 < β,

−∆x|t=tk = ckx(tk), ∆x′|t=tk = ckx(tk), (ck ≥ 0)

x(0) = x(2π), x′(0) = x′(2π).

Then problem (5.1) has at least two positive solutions x1 and x2 with

0 < M <
1

4
, 0 < ‖x1‖PC < 1 < ‖x2‖PC

provided

(5.2)

(

G(π) +
G(0)

2

) l
∑

i=1

ci < 1.

To see this we will apply Corollary 3.2.

By (5.2), η > 0 is chosen such that

0 < η <
1

2πG(0)

[

1 −
(

G(π) +
G(0)

2

) l
∑

i=1

ci

]

.

Set

f(t, x) = xα + xβ.

Note

f0 = ∞, f∞ = ∞,

so (H∗
1 ) holds.

Let ηk = ck then η, ηk satisfy (5.2) and

2πηG(0) +

(

G(π) +
G(0)

2

) l
∑

i=1

ηi < 1.

Let p = 1, then for 0 ≤ x ≤ p, we have

f(t, x) = xα + xβ ≤ pα + pβ = 2 < ηp,

and

Jk(x) ≤ ck = ηk = ηkp,

thus (H3) holds. The result follows from Corollary 3.2.
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Example 5.2. Consider the following periodic boundary value problem with impulse

effects

(5.3)











x
′′

(t) + 1
16
x(t) = g(t, x(t), x′(t)), t ∈ [0, 2π], t 6= ti, i = 1, 2,

−∆x(ti) = Ii(x(ti)), ∆x′(ti) = Ji(x(ti)),

x(0) = x(2π), x′(0) = x′(2π),

where

g(t, x, y) =























x2 + y

10000
+ 0.005, (t, x, y) ∈ [0, 2π] × [0, 3] × [−50, 50],

x
10

+ 8.7 + y

10000
+ 0.005, (t, x, y) ∈ [0, 2π] × [3,∞) × [−100, 100],

x
10

+ 8.7 +
√

y

10
+ 0.005, (t, x, y) ∈ [0, 2π] × [3,∞) × [100,∞),

x
10

+ 8.7 +
√
−y

10
+ 0.005, (t, x, y) ∈ [0, 2π] × [3,∞) × (−∞,−100],

|Ii(x)| ≤ 2Ji(x), Ji(x) =











0, x ∈ [0, 1],

2x− 2, x ∈ [1, 2],
x
10

+ 9
5
, x ∈ [2,+∞),

x ∈ R+, i = 1, 2.

By computing G(0) = 2, G(π) =
√

2, σ =
√

2 − 1,max
{

G(0)
2G(π)

, 4m2G(0)G(π)
}

=
√

2
2

.

Let b = 1, r1 = 1
4
, r2 = 100, L1 = 50, L2 = 100. The conditions of Theorem 4.1

are satisfied. So problem (5.3) has at least three positive solutions.
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