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ABSTRACT. In this paper we establish the existence of single and multiple solutions to the

singular discrete boundary value problem










∆2x(i − 1) + q1(i)f1(i, x(i), y(i)) = 0, i ∈ {1, 2, . . . , T},
∆2y(i − 1) + q2(i)f2(i, x(i), y(i)) = 0,

x(0) = x(T + 1) = y(0) = y(T + 1) = 0,

where nonlinear term fk(i, x, y) may be singular at (x, y) = (0, 0), k = 1, 2.
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theorem in cones, Lerary-Schauder alternative theorem.

2000 MR Subject Classification. 34B15

1. INTRODUCTION

In this paper we establish the existence of single and multiple solutions to the

singular discrete boundary value problem

(1.1)











∆2x(i− 1) + q1(i)f1(i, x(i), y(i)) = 0, i ∈ {1, 2, . . . , T},
∆2y(i− 1) + q2(i)f2(i, x(i), y(i)) = 0,

x(0) = x(T + 1) = y(0) = y(T + 1) = 0,

where nonlinearity term fk(i, x, y) may be singular at (0, 0), k = 1, 2. T ∈ {1, 2, . . . },
N = {1, . . . , T}, N+ = {0, 1, . . . , T +1} and x(i) : N+ → (0,∞), y(i) : N+ → (0,∞).

Throughout this paper we will assume fk : N × ([0,∞)2\{O}) → (0,∞) is

continuous, k = 1, 2. (O = (0, 0)).

Remark 1.1. Recall a map fk : N×([0,∞)2\{O}) → (0,∞) is continuous if it is

continuous as a map of the topological space N × ([0,∞)2\{O}) into the topological
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space (0,∞), k = 1, 2. Throughout this paper the topology on N will be the discrete

topology.

We will let C(N+, [0,∞)2\{O}) denote the class of maps (x, y) continuous on

N+ (discrete topology), with norm ‖x‖ = maxi∈N+ |x(i)|, ‖y‖ = maxi∈N+ |y(i)|. By a

solution to (1.1) we mean a (x(i), y(i)) ∈ C(N+, [0,∞)2\{O}) such that (x, y) satisfies

(1.1) for i ∈ N and (x, y) satisfies the boundary conditions.

Recently, the singular boundary value problems have been studied extensively.

For details, see, for instance, papers [1,4] and the references therein. However, there

are only few works on singular boundary value problems for differential systems [9].

Agarwal and Regan [2] considered the singular boundary value problem
{

y′′(t) + q(t)[g(y(t)) + h(y(t))] = 0 t ∈ (0, 1)

y(0) = y(1) = 0,

where q(t) may be singular at t = 0 or t = 1, nonlinearity g may be singular at y = 0,

h may be superlinear at y = ∞. They showed that this problem has twin positive

solutions by using a Lerary-Shauder alternative and a fixed point theorem in cones.

Jiang and Xu [9] studied the singular continuous boundary value problem. They

also showed the existence of single and multiple positive solutions to the singular

continuous boundary value problems.

However, for the discrete case, the works on the existence of single and multiple

solutions to singular discrete boundary value problems for differential systems are

quite rarely seen.

In this paper we only consider existence theorem of single and multiple positive

solutions to singular discrete boundary value problems for differential systems (1.1).

2. PRELIMINARY LEMMAS

In this section, we give out some results which will be need in section 3.

Lemma 2.1.[1] Assume Ω is a relatively subset of a convex set K in a normal

space E. Let A : Ω̄ → K be a compact map with p ∈ Ω. Then either

(2.1) (A1) A has a fixed point in Ω̄; or

(2.2) (A2) there is an x ∈ ∂Ω with x = λA(x) + (1 − λ)p for some 0 < λ < 1.

Remark 2.1. By a map being compact we mean it is continuous with relatively

compact range.

Lemma 2.2. [2] Let E = (E, ‖ · ‖) be a Banach space and let K ⊂ E be a cone

in E, and let ‖ · ‖ be increasing with respect to K. Also, r, R are constants with

0 < r < R. Suppose Φ : Ω̄R ∩K → K(here ΩR = {x ∈ E, ‖x‖ < R}) is a continuous,

compact map and assume the conditions

(2.3) x 6= λΦ(x), for λ ∈ [0, 1) and x ∈ ∂Ωr ∩K
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and

(2.4) ‖Φx‖ > ‖x‖, for x ∈ ∂ΩR ∩K

hold. Then Φ has a fixed point in K ∩ {x ∈ E : r ≤ ‖x‖ ≤ R}.
Remark 2.2. In Lemma 2.2 if (2.3) and (2.4) are replaced by

(2.3)∗ x 6= λΦ(x), for λ ∈ [0, 1) and x ∈ ∂ΩR ∩K

and

(2.4)∗ ‖Φx‖ > ‖x‖, for x ∈ ∂Ωr ∩K

then Φ has a fixed point in K ∩ {x ∈ E : r ≤ ‖x‖ ≤ R}.
Lemma 2.3 [6] Let y ∈ C(N+,R) satisfy y(i) ≥ 0 for i ∈ N+. If u ∈ C(N+,R)

satisfies

(2.5)

{

∆2u(i− 1) + y(i) = 0, i ∈ N,

u(0) = u(T + 1) = 0,

then

(2.6) u(i) ≥ µ(i)‖u‖ for i ∈ N+;

here

(2.7) µ(i) = min{T + 1 − i

T + 1
,
i

T
}.

In this paper, let ‖u‖ = maxi∈N+ |u(i)|, u(i) ∈ C(N+, R), then E1 = (C(N,R), ‖·
‖) is a Banach space. Let

(2.8) K1 = {u ∈ C(N+, [0,+∞)) : u(i) ≥ µ(i)‖u‖, i ∈ N+}.

Let E = E1 × E1, K = K1 × K1, and ‖z‖ = ‖(x, y)‖ = max{‖x‖, ‖y‖}, ∀z =

(x, y) ∈ E. Then (E, ‖ · ‖) is a Banach space and K is a cone in E.

3. EXISTENCE PRINCIPLES

Throughout this paper, we make the following hypotheses:

(H1): qk(i) ∈ C(N, (0,+∞)), k = 1, 2.

(H2): Let fk(i, x, y) ≤ gk(x, y) + hk(x, y) on N × ([0,+∞)2\{O}), with

gk > 0 continuous and nonincreasing on [0,∞)2\{O},
hk ≥ 0 continuous on [0,∞)2, and hk

gk
nondecreasing on [0,∞)2\{O}, k = 1, 2.

(H3): There exists a constant r > 0 such that
∫ r

0

du

g1(u, 0)
> {1 +

h1(r, r)

g1(r, r)
}b10,

∫ r

0

dv

g2(0, v)
> {1 +

h2(r, r)

g2(r, r)
}b20,

where bk0 = maxi∈N{
∑i

j=1 jqk(j),
∑T

j=i(T + 1 − j)qk(j)}, k = 1, 2.

(H4): For each constant H > 0 there exists a function ψH continuous on N+ and
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positive on N such that fk(i, x, y) ≥ ψ
(k)
H (i) for i ∈ N , O ≤ (x, y) ≤ H = (H1, H2),

k = 1, 2.

(H5): Let fk(i, x, y) ≥ ḡk(x, y) + h̄k(x, y) on N × ([0,+∞)2\{O}),
with ḡk > 0 continuous and nonincreasing on [0,∞)2\{O}, h̄k ≥ 0 continuous on

[0,∞)2, and h̄k

ḡk
nondecreasing on [0,∞)2\{O}, k = 1, 2.

(H6): There exists a constant R > r such that

R

ḡ1(R,R){1 +
h̄1( R

T+1
,0)

ḡ1(
R

T+1
,0)
}
<

T
∑

j=1

G(σ, j)q1(j),

R

ḡ2(R,R){1 +
h̄2(0, R

T+1
)

ḡ2(0, R
T+1

)
}
<

T
∑

j=1

G(σ, j)q2(j),

where
∑T

j=1G(σ, j) = maxi∈N+

∑T

j=1G(i, j), and

G(i, j) =

{

j(T+1−i)
T+1

, 0 ≤ j ≤ i− 1,
i(T+1−j)

T+1
, i ≤ j ≤ T + 1,

is following boundary value problem’s Green function

{

−∆2u(i− 1) = 0, i ∈ N,

u(0) = u(T + 1) = 0.

Here and henceforth, we denote (x1, y1) > (x2, y2) ((x1, y1) ≥ (x2, y2)) if (x1−x2, y1−
y2) ∈ R̄2

+((x1 − x2, y1 − y2) ∈ R2
+), (R̄2

+ = [0,+∞)2\{O}, R2
+ = [0,+∞)2).

Further, we say that a vector (x, y) is positive (nonnegative) if (x, y) > (0, 0)((x, y) ≥
(0, 0)). The hypothesis (H2) allows fk(i, x, y) to have singularity at O = (0, 0).

For example,

fk(i, x, y) = [
√

x2(i) + y2(i)]−αk + γ[
√

x2(i) + y2(i)]βk

satisfy (H2), where 0 < αk < +∞, βk > 1, γ > 0, k = 1, 2.

We have the following main result:

Theorem 3.1 Let (H1)–(H3) hold. Then the problem (1.1) has one positive

solutions (x, y) with ‖(x, y)‖ < r.

Proof. Choose ε > 0, ε < r with

(3.1)

∫ r

ε

du

g1(u, 0)
> b10{1 +

h1(r, r)

g1(r, r)
} ,

∫ r

ε

dv

g2(0, v)
> b20{1 +

h2(r, r)

g2(r, r)
}.

Let m0 ∈ {1, 2, . . . } be chosen so that 1
m0

< ε, 1
m0

< r
T+1

, and let N0 = {m0, m0 +

1, . . . }.
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We first show that the following boundary value problem

(3.2)m











∆2x(i− 1) + q1(i)f1(i, x(i), y(i)) = 0, i ∈ {1, 2, . . . , T},
∆2y(i− 1) + q2(i)f2(i, x(i), y(i)) = 0,

x(0) = x(T + 1) = y(0) = y(T + 1) = 1
m
, m ∈ N0,

has a solution (xm(i), ym(i)) form ∈ N0, (xm(i), ym(i)) > ( 1
m
, 1

m
) onN and ‖(xm, ym)‖ <

r.

To show that (3.2)m has a solution for m ∈ N+, we will deal with the modified

boundary value problem

(3.3)m











∆2x(i− 1) + q1(i)F1(i, x(i), y(i)) = 0, i ∈ {1, 2, . . . , T},
∆2y(i− 1) + q2(i)F2(i, x(i), y(i)) = 0,

x(0) = x(T + 1) = y(0) = y(T + 1) = 1
m
, m ∈ N0,

where

F1(i, x, y) = f1(i,max{x, 1

m
}, max{0, y}), F2(i, x, y) = f2(i,max{x, 0}, max{y, 1

m
}).

Let Ω1 = Ωr × Ωr where Ωr = {x ∈ E1 : ‖x‖ < r}. Let A : Ω̄1 → E be defined by

A(x(i), y(i)) =(
T

∑

j=1

G(i, j)q1(j)F1(j, x(j), y(j)) +
1

m
,(3.4)

T
∑

j=1

G(i, j)q2(j)F2(j, x(j), y(j)) +
1

m
).

From the definition of A, we know that

(3.5)















(Ax)(i) =
T
∑

j=1

G(i, j)q1(j)F1(j, x(j), y(j)) + 1
m
,

(Ay)(i) =
T
∑

j=1

G(i, j)q2(j)F2(j, x(j), y(j)) + 1
m
,

then A : Ω̄1 → E is continuous and completely continuous.

We first show

(3.6) (x, y) 6= λA(x, y) + (1 − λ)
1

m
for λ ∈ (0, 1), (x, y) ∈ ∂Ω1 ∩K.

Suppose this is false, namely that there exist a λ ∈ (0, 1) and (x, y) ∈ ∂Ω1 ∩K with

(x, y) = λA(x, y) + (1 − λ) 1
m

. Then we have

(3.7)

{

x(i) = λ(Ax)(i) + (1 − λ) 1
m
,

y(i) = λ(Ay)(i) + (1 − λ) 1
m
,

that is

(3.8)











−∆2x(i− 1) = λq1(i)F1(i, x(i), y(i)), i ∈ {1, 2, . . . , T}
−∆2y(i− 1) = λq2(i)F2(i, x(i), y(i)),

x(0) = x(T + 1) = y(0) = y(T + 1) = 1
m
, m ∈ N0.
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Since ‖(x, y)‖ = max{‖x‖, ‖y‖} = r, without loss of generality, we assume that

‖x‖ = r.

Since ∆2x(i − 1) ≤ 0 on N and x(i) ≥ 1
m

on N+, there exists i0 ∈ N with

∆x(i) ≥ 0 on [0, i0) = {0, 1, . . . , i0 − 1}, ∆x(i) ≤ 0 on [i0, T + 1) = {i0, i0 + 1, . . . , T}
and x(i0) = ‖x‖ = r. Therefore

x(i) − 1

m
≥ µ(i)‖x− 1

m
‖ ≥ µ(i)‖x− 1

m
‖,

then

x(i) ≥ µ(i)‖x‖ = µ(i)r ≥ r

T + 1
>

1

m0
.

Also notice that

F1(i, x(i), y(i)) = f1(i, x(i), y(i)) ≤ g1(x(i), y(i)) + h1(x(i), y(i)), i ∈ N,

then for z ∈ N , we have

(3.9) −∆2x(z − 1) ≤ g1(x(z), y(z)){1 +
h1(x(z), y(z))

g1(x(z), y(z))
}q1(z).

We sum the inequation (3.9) from i + 1(i ≤ i0) to i0 to obtain

(3.10) ∆x(i) ≤ ∆x(i0) + {1 +
h1(r, r)

g1(r, r)
}

i0
∑

z=i+1

g1(x(z), y(z))q1(z),

since ∆x(i0) ≤ 0, then we have

∆x(i) ≤ {1 +
h1(r, r)

g1(r, r)
}g1(x(i + 1), 0)

i0
∑

z=i+1

q1(z), i < i0,

i.e.,

∆x(i)

g1(x(i+ 1), 0)
≤ {1 +

h1(r, r)

g1(r, r)
}

i0
∑

z=i+1

q1(z), i < i0.

Since g1(x(i + 1), 0) ≤ g1(u, 0) ≤ g1(x(i), 0) for (x(i + 1), 0) ≥ (u, 0) ≥ (x(i), 0)

when i < i0, then we have

(3.11)

∫ x(i+1)

x(i)

du

g1(u, 0)
≤ {1 +

h1(r, r)

g1(r, r)
}

i0
∑

z=i+1

q1(z), i < i0,

and then we sum the above from 0 to i0 − 1 to obtain

(3.12)
∫ r

1

m

du
g1(u,0)

≤ {1 + h1(r,r)
g1(r,r)

}
∑i0−1

i=0

∑i0
z=i+1 q1(z) = {1 + h1(r,r)

g1(r,r)
}

∑i0
i=1 iq1(i).

Similarly, if we sum the inequation (3.9) from i0 to i(i ≥ i0) to obtain

−∆x(i) ≤ −∆x(i0 − 1) + {1 +
h1(r, r)

g1(r, r)
}

i
∑

i=i0

g1(x(z), y(z))q1(z), i ≥ i0,
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since ∆x(i0 − 1) ≥ 0, then we have

−∆x(i) ≤ {1 +
h1(r, r)

g1(r, r)
}g1(x(i), 0)

i
∑

i=i0

q1(z), i ≥ i0,

i.e.,

−∆x(i)

g1(x(i), 0)
≤ {1 +

h1(r, r)

g1(r, r)
}

i
∑

z=i0

q1(z), i ≥ i0,

so we have

(3.13)

∫ x(i)

x(i+1)

du

g1(u, 0)
≤ {1 +

h1(r, r)

g1(r, r)
}

i
∑

z=i0

q1(z), i ≥ i0,

and then we sum the above from i0 to T to obtain

(3.14)
∫ r

1

m

du
g1(u,0)

≤ {1 + h1(r,r)
g1(r,r)

}
∑T

i=i0

∑i

z=i0
q1(z) = {1 + h1(r,r)

g1(r,r)
}

∑T

i=i0
(T + 1 − i)q1(i).

Now (3.12), (3.14) imply

(3.15)

∫ r

ε

du

g1(u, 0)
≤ {1 +

h1(r, r)

g1(r, r)
}b10.

If we assume that ‖y‖ = r, we have also

(3.16)

∫ r

ε

dv

g2(0, v)
≤ {1 +

h2(r, r)

g2(r, r)
}b20.

This contradicts (3.1) and consequently (3.6) is true.

Now Lemma 2.1 imply A has a fixed point (xm(i), ym(i)) ∈ Ω̄1, i.e. 1
m

≤ ‖(xm, ym‖ <
r (note if ‖(xm, ym)‖ = r, then following essentially the same argument from (3.9)-

(3.16) will yield a contradiction). It follows from the fact (xm, ym) ≥ ( 1
m
, 1

m
), we can

obtain (xm(i), ym(i)) is a solution of (3.2)m too.

Next we obtain a sharper lower bound on xm, namely we will show that there exist

constant Ck > 0 independent on m (k = 1, 2), with xm(i) ≥ C1µ(i), ym(i) ≥ C2µ(i)

for i ∈ N+, where µ(i) is as in Lemma 2.3.

To see this, notice (H4) guarantees the existence of a function ψ
(k)
r (i) continuous

on N+and positive on N with fk(i, x, y) ≥ ψ
(k)
r (i) (k = 1, 2) for (i, x, y) ∈ N × (0, r]2.

Since G(j, j) ≥ G(i, j) ≥ µ(i)G(j, j), i, j ∈ N+, then for i ∈ N+

xm(i) ≥ 1

m
+

T
∑

j=1

G(i, j)q1(j)ψ
(1)
r (j)(3.17)

≥ 1

m
+ µ(i)

T
∑

j=1

G(j, j)q1(j)ψ
(1)
r (j) ≥ µ(i)C1 ≥

C1

T + 1
,
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ym(i) ≥ 1

m
+

T
∑

j=1

G(i, j)q2(j)ψ
(2)
r (j)(3.18)

≥ 1

m
+ µ(i)

T
∑

j=1

G(j, j)q1(j)ψ
(2)
r (j) ≥ µ(i)C2 ≥

C2

T + 1
,

where C1 =
∑T

j=1G(j, j)q1(j)ψ
(1)
r (j), C2 =

∑T

j=1G(j, j)q2(j)ψ
(2)
r (j).

The Arzela-Ascoli theorem guarantees the existence of subsequence N1 ⊂ N0,

and x(i) ∈ C(N+, [0,+∞)) with xm → x in C(N+, [0,+∞)) as m→ ∞ through N1,

y(i) ∈ C(N+, [0,+∞)) with ym → y in C(N+, [0,+∞)) as m → +∞ through N1.

Then (xm, ym) is converging uniformly on N+ to (x, y) as m → +∞, for m ∈ N1.

Also, we have x(0) = x(T +1) = y(0) = y(T +1) = limm→+∞
1
m

= 0 and ‖(x, y)‖ ≤ r

for i ∈ N+. In particular x(i) ≥ µ(i)C1 ≥ C1

T+1
, y(i) ≥ µ(i)C2 ≥ C2

T+1
on N .

Fix i ∈ N and we obtain −∆2xm(i − 1) = ∆(xm(i) − xm(i − 1)) = ∆xm(i) −
∆xm(i−1) = xm(i+1)−2xm(i)+xm(i−1) → x(i+1)−2x(i)+x(i−1) = ∆2x(i−1)

for i ∈ N , m ∈ N1, m → ∞, k = 1, 2, and fk(i, xm(i), ym(i)) → fk(i, x(i), y(i)) for

i ∈ N , m ∈ N1, m→ ∞, k = 1, 2.

Thus











∆2x(i− 1) + q1(i)f1(i, x(i), y(i)) = 0, i ∈ {1, 2, . . . , T},
∆2y(i− 1) + q2(i)f2(i, x(i), y(i)) = 0,

x(0) = x(T + 1) = y(0) = y(T + 1) = 0.

Finally it is easy to see that max{‖x‖, ‖y‖} < r (note if ‖x‖ = r or ‖y‖ = r,

then following essentially the same argument from (3.9)–(3.16) will yield a contradic-

tion again). Thus we have proved that problem (1.1) has one solution (x(i), y(i)) ∈
C(N+, [0,+∞)2 \ {O}) and 0 ≤ ‖(x(i), y(i))‖ ≤ r.

Theorem 3.2. Let (H1) − (H3)and (H5), (H6) hold, then (1.1) has a solution

(x, y) ∈ C(N+, [0,+∞)2 \ {O}) with r < ‖(x, y)‖ ≤ R on N .

Proof. Choose ε > 0, ε < r such that (3.1) hold. Let m0 ∈ {1, 2, · · · } be chosen

so that 1
m0

< ε, 1
m0

< r
T+1

, and let N0 = {m0, m0 + 1, . . . }. First we will show that

the following boundary value problem

(3.2)m











∆2x(i− 1) + q1(i)f1(i, x(i), y(i)) = 0, i ∈ {1, 2, . . . , T},
∆2y(i− 1) + q2(i)f2(i, x(i), y(i)) = 0,

x(0) = x(T + 1) = y(0) = y(T + 1) = 1
m
, m ∈ N0,

has a solution (xm(i), ym(i)) for each m ∈ N0 with (xm(i), ym(i)) > ( 1
m
, 1

m
) on N and

r < ‖(xm, ym)‖ ≤ R.
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To show that (3.2)m has a solution for each m ∈ N0, we will deal with the

mondified boundary value problem

(3.3)m











∆2x(i− 1) + q1(i)F1(i, x(i), y(i)) = 0, i ∈ {1, 2, . . . , T},
∆2y(i− 1) + q2(i)F2(i, x(i), y(i)) = 0,

x(0) = x(T + 1) = y(0) = y(T + 1) = 1
m
, m ∈ N0,

where F1 and F2 are as in Theorem 3.1.

Fixed m ∈ N0, Let A : K → E be defined by

A(x(i), y(i)) = (

T
∑

j=1

G(i, j)q1(j)F1(j, x(j), y(j)) +
1

m
,(3.19)

T
∑

j=1

G(i, j)q2(j)F2(j, x(j), y(j)) +
1

m
),

then A : K → E is continuous and completely continuous.

Moreover, we have










∆2(Ax)(i− 1) + q1(i)F1(i, x(i), y(i)) = 0, i ∈ {1, 2, . . . , T},
∆2(Ay)(i− 1) + q2(i)F2(i, x(i), y(i)) = 0,

(Ax)(0) = (Ax)(T + 1) = (Ay)(0) = (Ay)(T + 1) = 1
m
, m ∈ N0.

This imples that ∆2(Ax)(i−1) ≤ 0, ∆2(Ay)(i−1) ≤ 0, i ∈ N , and (Ax)(i) ≥ 1
m

,

(Ay)(i) ≥ 1
m

.

Consequently, we have (from Lemma 2.3)

(Ax)(i) − 1

m
≥ µ(i)‖Ax− 1

m
‖,

thus

(Ax)(i) ≥ 1

m
+ µ(i)(‖Ax‖ − 1

m
) ≥ µ(i)‖Ax‖, i ∈ N+.

Similarly, we have

(Ay)(i) ≥ µ(i)‖Ay‖, i ∈ N+

and so A : K → K. Let Ω2 = ΩR × ΩR where ΩR = {x ∈ E1 : ‖x‖ < R}.
We first show

(3.20) (x, y) 6= λA(x, y) for λ ∈ (0, 1), (x, y) ∈ ∂Ω1 ∩K,

where Ω1 is defined above. Suppose this is false, namely that there exist a λ ∈ [0, 1)

and (x, y) ∈ ∂Ω1 ∩K with (x, y) = λA(x, y). Then we have

(3.21)

{

x(i) = λ(Ax)(i),

y(i) = λ(Ay)(i),
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that is

(3.22)











−∆2x(i− 1) = λq1(i)F1(i, x(i), y(i)), i ∈ N,

−∆2y(i− 1) = λq2(i)F2(i, x(i), y(i)),

x(0) = x(T + 1) = y(0) = y(T + 1) = λ
m
, m ∈ N0.

Since ‖(x, y)‖ = max{‖x‖, ‖y‖} = r, without loss of generality, we assume that

‖x‖ = r. Since ∆2x(i − 1) ≤ 0 on N and x(i) ≥ λ
m

on N+, there exists i0 ∈ N with

∆x(i) ≥ 0 on [0, i0) = {0, 1, . . . , i0 − 1}, ∆x(i) ≤ 0 on [i0, T + 1) = {i0, i0 + 1, . . . , T}
and x(i0) = ‖x‖ = r.

Therefore

x(i) − λ

m
≥ µ(i)‖x− λ

m
‖ ≥ µ(i)‖x− λ

m
‖,

then

x(i) ≥ µ(i)‖x‖ = µ(i)r ≥ r

T + 1
>

1

m0

.

Also notice that

Fk(i, x(i), y(i)) ≤ gk(x(i), y(i)) + hk(x(i), y(i)), for i ∈ N, k = 1, 2.

then for z ∈ N , we have

(3.23) −∆2x(z − 1) ≤ g1(x(z), y(z)){1 +
h1(x(z), y(z))

g1(x(z), y(z))
}q1(z),

we sum the inequation (3.23) from i+ 1(i ≤ i0) to i0 to obtain

(3.24) ∆x(i) ≤ ∆x(i0) + {1 +
h1(r, r)

g1(r, r)
}

i0
∑

z=i+1

g1(x(z), y(z))q1(z).

Since ∆x(i0) ≤ 0, then we have

∆x(i) ≤ {1 +
h1(r, r)

g1(r, r)
}g1(x(i + 1), 0)

i0
∑

z=i+1

q1(z), i < i0,

i.e.

∆x(i)

g1(x(i+ 1), 0)
≤ {1 +

h1(r, r)

g1(r, r)
}

i0
∑

z=i+1

q1(z), i < i0,

since g1(x(i + 1), 0) ≤ g1(u, 0) ≤ g1(x(i), 0) for (x(i + 1), 0) ≥ (u, 0) ≥ (x(i), 0) when

i < i0, then we have

(3.25)

∫ x(i+1)

x(i)

du

g1(u, 0)
≤ {1 +

h1(r, r)

g1(r, r)
}

i0
∑

z=i+1

q1(z), i < i0

and then we sum the above from 0 to i0 − 1 to obtain

(3.26)
∫ r

λ
m

du
g1(u,0)

≤ {1 + h1(r,r)
g1(r,r)

}
∑i0−1

i=0

∑i0
z=i+1 q1(z) = {1 + h1(r,r)

g1(r,r)
}

∑i0
i=1 iq1(i).
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Similarly, if we sum the inequation (3.23) from i0 to i(i ≥ i0) to obtain

−∆x(i) ≤ −∆x(i0 − 1) + {1 +
h1(r, r)

g1(r, r)
}

i
∑

i=i0

g1(x(z), y(z))q1(z), i ≥ i0,

since ∆x(i0 − 1) ≥ 0, then we have

−∆x(i) ≤ {1 +
h1(r, r)

g1(r, r)
}g1(x(i), 0)

i
∑

i=i0

q1(z), i ≥ i0,

i.e.,

−∆x(i)

g1(x(i), 0)
≤ {1 +

h1(r, r)

g1(r, r)
}

i
∑

z=i0

q1(z), i ≥ i0,

so we have

(3.27)

∫ x(i)

x(i+1)

du

g1(u, 0)
≤ {1 +

h1(r, r)

g1(r, r)
}

i
∑

z=i0

q1(z), i ≥ i0,

and then we sum the above from i0 to T to obtain

(3.28)

∫ r

λ
m

du

g1(u, 0)
≤ {1+

h1(r, r)

g1(r, r)
}

T
∑

i=i0

i
∑

z=i0

q1(z) = {1+
h1(r, r)

g1(r, r)
}

T
∑

i=i0

(T +1− i)q1(i).

Now (3.26), (3.28) imply

(3.29)

∫ r

ε

du

g1(u, 0)
≤ {1 +

h1(r, r)

g1(r, r)
}b10.

If we assume that ‖y‖ = r, we have also

(3.30)

∫ r

ε

dv

g2(0, v)
≤ {1 +

h2(r, r)

g2(r, r)
}b20.

This contradicts (3.1) and consequently (3.20) is true.

Next we will show

(3.31) ‖A(x, y)‖ ≥ ‖(x, y)‖ for (x, y) ∈ ∂Ω2 ∩K.

To see this let (x, y) ∈ ∂Ω2

⋂

K such that ‖(x, y)‖ = R. Without loss of generality,

we assume that ‖x‖ = R. Also since (x, y) ∈ ∂Ω2

⋂

K then

x(i) ≥ µ(i)‖x(i)‖ = µ(i)R ≥ R

T + 1
>

1

m0

,

y(i) ≥ µ(i)‖y(i)‖ = µ(i)R ≥ R

T + 1
>

1

m0
∀ i ∈ N.

Thus

Fk(i, x(i), y(i)) = fk(i, x(i), y(i)) ≥ ḡk(x(i), y(i)) + h̄k(x(i), y(i)) ∀ i ∈ N, k = 1, 2,
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so we have (from (H5))

(Ax)(σ) =
T

∑

j=1

G(σ, j)q1(j)F1(j, x(j), y(j)) +
λ

m

≥
T

∑

j=1

G(σ, j)q1(j)ḡ1(x(j), y(j)){1 +
h̄1(x(j), y(j))

ḡ1(x(j), y(j))
}

≥ ḡ1(R,R){1 +
h̄1(

R
T+1

, 0)

ḡ1(
R

T+1
, 0)

}
T

∑

j=1

G(σ, j)q1(j) > R = ‖x‖,

if we assume that ‖y‖ = R, we have also (Ay)(σ) > R = ‖y‖. Thus ‖(A(x, y))‖ >
R = ‖(x, y)‖ for (x, y) ∈ ∂Ω2

⋂

K.

Now Lemma 2.2 implies A has a fixed point (xm(i), ym(i)) ∈ K ∩ (Ω̄2 \ Ω1), i.e.,

r < ‖(xm(i), ym(i))‖ ≤ R. Clearly, ‖(xm(i), ym(i))‖ 6= r.

Consequently (3.3)m has solution (xm(i), ym(i)) with

(3.32) (xm(i), ym(i)) ≥ (
1

m
,

1

m
) for i ∈ N+ and r < ‖(xm, ym)‖ ≤ R,

which shows that (3.2)m has a positive solution (xm(i), ym(i)).

By the same way above, (xm(i), ym(i)) have subsequences N1ofN0, with (xm(i),

ym(i)) converging uniformly on N+ to (x(i), y(i)) as m→ +∞ through N1.

Also, (x(0), y(0)) = (x(T + 1), y(T + 1)) = (0, 0). It is easy to show that

(x(i), y(i)) ∈ C(N+, [0,+∞)2 \ {O}) is apositive solution of (1.1) and r < ‖(x, y)‖ ≤
R. Thus the proof Theorem 3.2 is complete.

Theorem 3.3. Let (H1)–(H6) hold, then (1.1) have two positive solutions

(xk(i), yk(i)) ∈ C(N+, [0,+∞)2 \ {O}) with (xk(i), yk(i)) > (0, 0) for each i ∈ N ,

k = 1, 2, and 0 < ‖(x1(i), y1(i))‖ < r < ‖(x2(i), y2(i))‖ ≤ R.

Proof. The existence of (x1, y1) follows from Theorem 3.1 and the existence of

(x2, y2) follows from Theorem 3.2.

4. AN EXAMPLE

Example 4.1. Consider the singular discrete boundary value problem

(4.1)











∆2x(i− 1) + δ[(
√

x2(i) + y2(i))−α + γ(
√

x2(i) + y2(i))β] = 0, i ∈ N

∆2y(i− 1) + δ[(
√

x2(i) + y2(i))−α + γ(
√

x2(i) + y2(i))β] = 0,

x(0) = x(T + 1) = y(0) = y(T + 1) = 0,

with α > 0, β > 1, γ = ( 1√
2
)α+β is such that

(4.2) δ < [
2

T (T + 1)(α+ 1)
] sup
c∈(0,+∞)

(
cα+1

1 + cα+β
)
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hold, then (4.1) have two positive solutions (xk(i), yk(i)) (k = 1, 2) with

0 < ‖(x1(i), y1(i))‖ < r < ‖(x2(i), y2(i))‖ ≤ R ∀ i ∈ N.

To see this, we will apply Theorem 3.3 with qk(i) = δ,

gk(x(i), y(i)) = ḡk(x(i), y(i)) = (
√

x2(i) + y2(i))−α,

hk(x(i), y(i)) = h̄k(x(i), y(i)) = γ(
√

x2(i) + y2(i))β (k = 1, 2).

Clearly (H1), (H2), (H4) and (H5) hold. Also note,

bk0 = max{
i0

∑

i=1

iδ,

T
∑

i=i0

(T + 1 − i)δ} =
T (T + 1)

2
δ, k = 1, 2,

1

{1 + h1(r,r)
g1(r,r)

}

∫ r

0

du

g1(u, 0)
=

1

{1 + h2(r,r)
g2(r,r)

}

∫ r

0

dv

g2(0, v)
=

1

α+ 1

rα+1

1 + rα+β
.

Since (4.2) implies there exists r > 0 such that

δ < [
2

T (T + 1)(α+ 1)
](

rα+1

1 + rα+β
).

Consequently (H3) holds.

Finally, notice that (since β > 1)

lim
R→+∞

R

ḡ1(R,R)(1 +
h̄1(

R
T+1

, 0)

ḡ1(
R

T+1
, 0)

)
= lim

R→+∞

(
√

2)αRα+1

1 + ( R√
2(T+1)

)α+β
= 0,

lim
R→+∞

R

ḡ2(R,R)(1 +
h̄2(0, R

T+1
)

ḡ2(0, R
T+1

)
)

= lim
R→+∞

(
√

2)αRα+1

1 + ( R√
2(T+1)

)α+β
= 0,

so there exists R > r with (H6) holding.

Thus all the conditions of Theorem 3.3 are satisfied so existence is guaranteed.

Remark 4.1: If β < 1, since supc∈(0,+∞)(
cα+1

1+cα+β ) = ∞, then 4.2 is automatically

satisfied.
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