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ABSTRACT. Let T := {a+1, . . . , b+1}. We study the solvability of nonlinear discrete two-point

boundary value problem
{

∆2u(t − 1) + g(t, u(t)) = h(t), t ∈ T,

u(a) = u(b + 2) = 0

where h : T → R, g : T × R → R satisfies

α(t) ≤ lim inf
|x|→∞

x−1g(t, x) ≤ lim sup
|x|→∞

x−1g(t, x) ≤ β(t)

uniformly on T, and α and β satisfy some nonresonance conditions of nonuniform type with respect

to two consecutive eigenvalues of the associated linear problem. The proof is based on the Leray-

Schauder continuation theorem.
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1. PRELIMINARIES

Let a, b ∈ N with b − a > 2. Let T := {a + 1, . . . , b + 1} and T̂ := {a, a +

1, . . . , b+ 1, b + 2}.
Definition 1.1 Suppose that a function y : T̂ → R. If y(t) = 0 then t is a zero of y.

If y(t) = 0 and ∆y(t) 6= 0 then t is a simple zero of y. If y(t)y(t+ 1) < 0 then we say

that y has a node at the point s = ty(t+1)−(t+1)y(t)
y(t+1)−y(t)

∈ (t, t + 1). The nodes and simple

zeros of y are called the simple generalized zeros of y. �

Let µ be a real parameter. It is well-known that the linear eigenvalue problem

(1.1)

{

∆2y(t− 1) + µy(t) = 0, t ∈ T,

u(a) = u(b+ 2) = 0

has exactly N := b− a+ 1 eigenvalues

(1.2) µ1 < µ2 < · · · < µN ,

which are real and the eigenspace corresponding to any such eigenvalue is one dimen-

sional. The following Lemma is crucial to the study of the nonlinear perturbations of
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the linear problem (1.1). The required results are somewhat scattered in [3, Ch. 6∼
7], so we restate them here.

Lemma 1.1[3] Let (µi, ψi), i ∈ {1, . . . , N}, denote eigenvalue pairs of (1.1) with

(1.3)
b+1
∑

t=a+1

ψj(t)ψj(t) = 1, j ∈ {1, . . . , N}.

Then

(1) ψi has i− 1 simple generalized zeros in [a+ 1, b+ 1]; also if j 6= k, then

(1.4)

b+1
∑

t=a+1

ψj(t)ψk(t) = 0.

(2) if h : {a+ 1, . . . , b+ 1} → R is given, then the problem

(1.5)

{

∆2u(t− 1) + µku(t) = h(t), t ∈ T,

u(a) = u(b+ 2) = 0

has solutions if and only if
∑b+1

t=a+1 h(t)ψk(t) = 0. �

In this paper, we study the existence of solutions of the nonlinear discrete bound-

ary value problem

(1.6)

{

∆2u(t− 1) + g(t, u(t)) = h(t), t ∈ T,

u(a) = u(b+ 2) = 0

where g : T × R → R is a function.

Definition 1.2 By a solution of (1.6) we mean a function u : {a, a+1, . . . , b+1, b+

2} → R which satisfies the difference equation and the boundary value conditions in

(1.6). �

Theorem 1.1 Assume

(1.7) α(t) ≤ lim inf
|x|→∞

x−1g(t, x) ≤ lim sup
|x|→∞

x−1g(t, x) ≤ β(t)

uniformly on T, where α, β : T → R are such that there exists a positive integer

m ∈ {1, . . . , N − 1} with

(1.8) µm ≤ α(t) ≤ β(t) ≤ µm+1, t ∈ T,

(1.9) µm < α(τα), for some τα ∈ T \ {t ∈ T |ψm(t) = 0},

(1.10) β(τβ) < µm+1, for some τβ ∈ T \ {t ∈ T |ψm+1(t) = 0}.

Then for each h : T → R, (1.6) has at least one solution. �

Theorem 1.2 Let g : T × R → R be such that

α(t) ≤ g(t, u) − g(t, v)

u− v
≤ β(t), t ∈ T, u 6= v
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with α and β as in Theorem 1.1. Then (1.6) has a unique solution. �

Conditions (1.8)-(1.10) are known as the ‘asymptotic nonuniform nonresonance

condition’, whereas the stronger condition

µm + δ ≤ α(t) ≤ β(t) ≤ µm+1 − δ, t ∈ T,

(where δ ∈ (0,∞) is fixed), is called the ‘uniform nonresonance condition’. The

analogue of Theorem 1.1 and 1.2 were obtained for periodic-Dirichlet problems of

semilinear wave equations by Mawhin and Ward [5], and for boundary value problems

of second order ordinary differential equations by Mawhin [6]. The main tool we use

is the Leray-Schauder continuation theorem [7].

For results on the existence of solutions of discrete equations subject to diverse

boundary conditions, see Agarwal and O’Regan [1-2], Kelley and Peterson [3], Ro-

driguez [8], Thompson and Tisdell [9] and the references therein. However none of

these consider the problem under the ‘asymptotic nonuniform nonresonance’ condi-

tion, and no uniqueness results were proved.

2. EXISTENCE OF EXTREMAL SOLUTIONS

Let

(2.1) D := {
(

0, u(a+ 1), . . . , u(b+ 1), 0
)

| u(t) ∈ R, t ∈ T}.

Then D is a Hilbert space under the inner product

〈u, v〉 =

b+1
∑

t=a+1

u(t)v(t),

and the corresponding norm is

||u|| :=
√

〈u, u〉 =
(

b+1
∑

t=a+1

u(t)u(t)
)1/2

.

Notice that D is also a Hilbert space under the inner product

〈u, v〉1 =

b+1
∑

t=a

∆u(t)∆v(t),

and the corresponding norm is

||u||1 :=
√

〈u, u〉1 =
(

b+1
∑

t=a

∆u(t)∆u(t)
)1/2

.

For u ∈ D, let us write

(2.2) u(t) = ū(t) + ũ(t)
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where

(2.3) ū(t) =

m
∑

j=1

〈u, ψj〉ψj(t), ũ(t) =

N
∑

j=m+1

〈u, ψj〉ψj(t)

Obviously, D = D̄ ⊕ D̃ with

(2.4) D̄ = span{ψ1, . . . , ψm}, D̃ = span{ψm+1, . . . , ψN}.

Lemma 2.1 ([4, Lemma 2.3]) Let u, w ∈ D. Then

b+1
∑

k=a+1

w(k)∆2u(k − 1) = −
b+1
∑

k=a

∆u(k)∆w(k).

Lemma 2.2 Let α : T → R be a function such that

(2.5) µm ≤ α(t), t ∈ T,

with

(2.6) µm < α(τα), for some τα ∈ T \ {t ∈ T |ψm(t) = 0}.

Then there is a positive number δ1 > 0 such that for any p : T → R satisfying

(2.7) α(t) ≤ p(t), t ∈ T

and ū ∈ D̄, we have

(2.8)

b+1
∑

t=a+1

(

− ∆2ū(t− 1) − p(t)ū(t)
)

ū(t) ≤ −δ1
b+1
∑

a+1

[ū(t)]2.

Proof. We divided the proof into two cases.

Case 1. m ≥ 2.

By assumption (2.7), it is sufficient to prove that

(2.9)
b+1
∑

t=a+1

(

− ∆2ū(t− 1) − α(t)ū(t)
)

ū(t) ≤ −δ1
b+1
∑

t=a+1

[ū(t)]2, u ∈ D̄.

Suppose on the contrary that there is no such δ1 > 0. Then there is a sequence

{ūk} ∈ D̄ with ||ūk|| = 1 and

(2.10) −k−1 ≤
b+1
∑

t=a+1

(

− ∆2ūk(t− 1) − α(t)ūk(t)
)

ūk(t), k = 1, 2, . . . .

For each k ∈ N, we will write

(2.11) ūk = vk + wk

where

(2.12) vk ∈ span{ψ1, . . . , ψm−1}, wk ∈ span{ψm}.
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Now since α(t) ≥ µm on T, we have from (2.10) that

−k−1 ≤
b+1
∑

t=a+1

(

− ∆2ūk(t− 1) − µmūk(t)
)

ūk(t), k = 1, 2, . . . .

which reduces to

(2.13)
−k−1 ≤

b+1
∑

t=a+1

(

− ∆2vk(t− 1) − µmvk(t)
)

vk(t)

≤ (µm−1 − µm)||vk||2.

so that ||vk|| → 0 as k → ∞.

Now since 1 = ||ūk||2 = ||vk||2+||wk||2, we have that a subsequence of {ūk}, which

we may relabel as {ūk}, converges strongly to some w∗ := νψm with ν ∈ {+,−}.
Consequently,

(2.14)

−k−1 ≤
b+1
∑

t=a+1

(

− ∆2ūk(t− 1) − α(t)ūk(t)
)

ūk(t)

=

b+1
∑

t=a+1

(

− ∆2vk(t− 1) − α(t)vk(t)
)

vk(t) − 2

b+1
∑

t=a+1

α(t)vk(t)wk(t)

+

b+1
∑

t=a+1

(

− ∆2wk(t− 1) − α(t)wk(t)
)

wk(t)

≤ −(µm − µm−1)||vk||2 − 2
b+1
∑

t=a+1

α(t)vk(t)wk(t)

+
b+1
∑

t=a+1

(

µm − α(t)
)

|wk(t)|2.

Using vk → 0 in D̄ and wk → w∗ as k → ∞, we obtain

(2.15) −k−1 ≤
b+1
∑

t=a+1

(

µm − α(t)
)

|w∗(t)|2 =

b+1
∑

t=a+1

(

µm − α(t)
)

|ψm(t)|2,

and since µm ≤ α(t) on T, we have

(2.16)

b+1
∑

t=a+1

(

µm − α(t)
)

|ψm(t)|2 = 0.

However, (2.16) contradicts (2.6). This contradiction proves (2.9) and hence (2.8)

hold.

Case 2. m = 1.

In this case, (2.11) reduces to

ūk = vk + wk = 0 + wk
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with vk ∈ {0} and wk ∈ span{ψ1}. It is easy to see that the argument used in Case

1 still works in this case. �

Using a similar method with obvious changes, we get the following

Lemma 2.3 Let β : T → R be a function such that

β(t) ≤ µm+1, t ∈ T,

with

β(τα) < µm+1, for some τα ∈ T \ {t ∈ T |ψm+1(t) = 0}.
Then there is a positive number δ2 > 0 such that for any p : T → R satisfying

p(t) ≤ β(t), t ∈ T

and ũ ∈ D̃, we have

b+1
∑

t=a+1

(−∆2ũ(t− 1) − p(t)ũ(t))ũ(t) ≥ δ2

b+1
∑

t=a+1

[ũ(t)]2. �

Lemma 2.4 Let α, β : T → R be functions such that

(2.17) µm ≤ α(t) ≤ β(t) ≤ µm+1, t ∈ T,

(2.18) µm < α(τα), for some τα ∈ T \ {t ∈ T |ψm(t) = 0},

(2.19) β(τβ) < µm+1, for some τβ ∈ T \ {t ∈ T |ψm+1(t) = 0}.

Then there are δ > 0 and ε > 0 such that for any p : T → R satisfying

(2.20) α(t) − ε ≤ p(t) ≤ β(t) + ε, t ∈ T,

we have

(2.21) ||(−∆2ρ− p)u(·)|| ≥ δ||u||, u ∈ D,

where

ρu(t) := u(t− 1), ∆2ρu(a) := 0, ∆2ρu(b+ 2) := 0,

(so that (−∆2ρ− p)u ∈ D for each u ∈ D).

Proof. Suppose the conclusion of the lemma is false. Then there exists a sequence

{uk} in D with ||uk|| = 1 and a sequence {pk : T → R} with

(2.22) α(t) − 1

k
≤ pk(t) ≤ β(t) +

1

k
, t ∈ T,

for k ∈ N, and

(2.23) ||(−∆2ρ− p)uk|| ≤
1

k
, k = 1, 2, . . . .

That is

(2.24) −∆2uk(t− 1) − puk(t) = fk(t), t ∈ T
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with fk ∈ D, ||fk|| ≤ k−1 and ||uk|| = 1 for k ∈ N.

Write uk = ūk + ũk, where ūk ∈ D̄ and ũk ∈ D̃ for k ∈ N. By (2.24), we have

that

b+1
∑

t=a+1

(

− ∆2uk(t− 1) − pk(t)uk(t)
)

(ũk(t) − ūk(t)) =
b+1
∑

t=a+1

fk(t)(ũk(t) − ūk(t))

which reduces upon expansion to

(2.25)

b+1
∑

t=a+1

(

− ∆2ũk(t− 1) − pk(t)ũk(t)
)

ũk(t)

−
b+1
∑

t=a+1

(

− ∆2ūk(t− 1) − pk(t)ūk(t)
)

ūk(t)

=
b+1
∑

t=a+1

fk(t)(ũk(t) − ūk(t)).

Now by (2.22),

(2.26) α(t) ≤ pk(t) +
1

k
, pk(t) −

1

k
≤ β(t), t ∈ T,

for k ∈ N. So, using Lemma 2.2 and 2.3, we obtain the existence of δ1 > 0 and δ2 > 0

such that for all k ∈ N, we have

b+1
∑

t=a+1

(

− ∆2ūk(t− 1) −
(

pk(t) +
1

k

)

ūk(t)
)

ūk(t) ≤ −δ1||ūk||2,

and
b+1
∑

t=a+1

(

− ∆2ũk(t− 1) −
(

pk(t) −
1

k

)

ũk(t)
)

ũk(t) ≥ δ2||ũk||2.

Combining with (2.25) and using Schwarz inequality, this gives

δ2||ũk||2 −
1

k
||ũk||2 + δ1||ūk||2 −

1

k
||ūk||2 ≤ ||fk|| ||ũk − ūk||,

and hence

δ2||ũk||2 + δ1||ūk||2 ≤
4

k
which implies that uk = ūk+ũk converges strongly to zero. This contradicts ||uk|| = 1

and thus proves the lemma. �

3. PROOF OF THE MAIN RESULTS

We now proceed to the proofs of Theorem 1.1 and 1.2 stated in the introduction.

Proof of Theorem 1.1. Let δ > 0 and ε > 0 be given by Lemma 2.4. By (1.7) we can

find r > 0 such that for t ∈ T and all u with |u| ≥ r, we have

(3.1) α(t) − ε ≤ u−1g(t, u) ≤ β(t) + ε.
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This implies that

|g(t, u)| ≤ max{|µm+1| + ε, |µm| + ε}|u| + hr(t), t ∈ T, u ∈ R,

where hr : T → R is a fixed function. Consequently, the mapping G defined on D by

(Gu)(t) = g(t, u(t)), t ∈ T; (Gu)(a) = (Gu)(b+ 2) = 0,

will map D continuously into itself and take bounded sets into bounded sets.

Using that fact that D is finite dimensional and according to the Leray-Schauder

continuation theorem [6], we have that (1.6) have solutions if the set of possible

solutions of the family of equations

(3.2)







∆2u(t− 1) + (1 − λ)
α(t) + β(t)

2
u(t) + λg(t, u(t)) = λh(t),

u(a) = u(b+ 2) = 0

(t ∈ T, λ ∈ [0, 1]), is a priori bounded independently of λ. Define Γ on T × R by

Γ(t, u) =



























u−1g(t, u), |u| ≥ r,

r−1g(t, r)(u/r) + (1 − u/r)
α(t) + β(t)

2
, 0 ≤ u ≤ r,

r−1g(t,−r)(u/r) + (1 + u/r)
α(t) + β(t)

2
, − r ≤ u ≤ 0,

and σ on T × R by

σ(t, u) = g(t, u) − Γ(t, u)u.

It is easy to check that

(3.3) α(t) − ε ≤ Γ(t) ≤ β(t) + ε, t ∈ T, u ∈ R,

and there exists a constant M1 ≥ 0, such that

(3.4) |σ(t, u)| ≤M1.

If u : D → R is a solution of (3.2) for some λ ∈ [0, 1], then

(3.5)



















∆2u(t− 1) + [(1 − λ)
(α(t) + β(t))

2
+ λΓ(t, u(t))]u(t)

= λ[h(t) − σ(t, u(t))],

u(a) = u(b + 2) = 0.

(t ∈ T, λ ∈ [0, 1]). Using (3.3) and the fact that

α(t) ≤ (α(t) + β(t))

2
≤ β(t), t ∈ T,

it follows that

α(t) − ε ≤ [(1 − λ)
(α(t) + β(t))

2
+ λΓ(t, u(t))] ≤ β(t) + ε,
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and hence using Lemma 2.4, (3.5) and (3.4), we obtain

M1 + ||h|| ≥ ||λ[h(·) − σ(·, u(·))]||

= ||∆2u(· − 1) + [(1 − λ)
α(·) + β(·)

2
+ λΓ(·, u(·))]u(·)||

≥ δ||u||,
i.e.

||u|| ≤ δ−1(M1 + ||h||).
This completes the proof of Theorem 1.1. �

Proof of Theorem 1.2. Obviously, existence follows as in Theorem 1.1.

Now let u and v are solutions of (1.6), then, letting w = u− v will be a solution

of

(3.6)

{

∆2w(t− 1) + [g(t, u(t)) − g(t, v(t))] = 0, t ∈ T,

w(a) = w(b+ 2) = 0.

Setting

γ(t, w(t)) =







w−1[g(t, u(t)) − g(t, v(t))], w 6= 0,

α(t) + β(t)

2
, w = 0,

we see that (3.6) can be written

(3.7)

{

∆2w(t− 1) + γ(t, w(t))w(t) = 0, t ∈ T,

u(a) = u(b+ 2) = 0,

with

(3.8) α(t) ≤ γ(t, w(t)) ≤ β(t), t ∈ T.

Therefore, by Lemma 2.4, there exist δ > 0 and ε̄ > 0 such that for any p : T → R

satisfying

(3.9) ᾱ(t) − ε̄ ≤ p(t) ≤ β(t) + ε̄, t ∈ T,

we have

(3.10) ||(−∆2ρ− p)u(·)|| ≥ δ||u||, u ∈ D,

where ρu(t) := u(t− 1). This together with (3.8) and implies that

(3.11) ||(−∆2ρ− γ(t, w(t)))w(·)|| ≥ δ||w||.

Combining (3.11) with (3.7), it follows that

0 ≥ δ||w||,

and subsequently w = 0, i.e. u = v, and the proof is complete. �
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4. EXAMPLE AND REMARK

From [3, Example 4.1], we know that the linear eigenvalues and the eigenfunctions

of the problem

(4.1)

{

∆2y(t− 1) + µy(t) = 0, t ∈ T0,

u(0) = u(4) = 0

are as follows:

µ1 = 2 −
√

2, ψ1(t) = sin(
π

4
t), t ∈ T1 := {1, 2, 3};

µ2 = 2, ψ2(t) = sin(
π

2
t), t ∈ T1;

µ3 = 1 −
√

2, ψ3(t) = sin(
3π

4
t), t ∈ T1.

Obviously

{t ∈ T1 |ψ1(t) = 0} = ∅; {t ∈ T1 |ψ2(t) = 0} = {2}; {t ∈ T1 |ψ3(t) = 0} = ∅.

Example 4.1. Let us consider the discrete boundary value problem

(4.2)

{

∆2y(t− 1) + g0(t, y(t)) = h(t), t ∈ T1,

u(0) = u(4) = 0

where h : T1 → R, and

(4.3) g0(t, s) =
µ1 + µ2

2
+
µ2 − µ1

2
sin(πt)(s+

s

1 + s2
).

It is easy to verify that g0 satisfies all conditions of Theorem 1.1 with

α(t) =
µ1 + µ2

2
+
µ2 − µ1

2
sin(πt) = β(t).

Therefore (4.2) has at least one solution for every h : T1 → R. �

Remark 4.1 Condition (1.9) and (1.10) are necessary to guarantee the existence

of solutions of (1.6). In fact, the function g(t, s) = µ1s satisfies all conditions in

Theorem 1.1 except the condition (1.9). Since
∑3

t=1[ψ1(t)]
2 6= 0, we see from Lemma

1.1 (ii) that the problem

(4.4)

{

∆2y(t− 1) + µ1y(t) = ψ1(t), t ∈ T1,

u(0) = u(4) = 0

has no solutions. �
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