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ABSTRACT. Let T := {a+1, ..., b+1}. We study the solvability of nonlinear discrete two-point

boundary value problem
{ A?u(t — 1)+ g(t,u(t)) = h(t), teT,

u(a) =u(db+2)=0
where h : T — R, g : T x R — R satisfies

at) < liminfztg(t, ) <limsupz'g(t,z) < (1)

|z]—o0 || — o0
uniformly on T, and « and 3 satisfy some nonresonance conditions of nonuniform type with respect
to two consecutive eigenvalues of the associated linear problem. The proof is based on the Leray-

Schauder continuation theorem.

AMS (MOS) Subject Classification. 39A10.

1. PRELIMINARIES

Let a,b € Nwithb—a >2 Let T:={a+1, ..., b+1} and T := {a, a +
1,...,b+1, b+ 2}.
Definition 1.1 Suppose that a function y : T — R. If y(¢) = 0 then ¢ is a zero of y.
If y(t) = 0 and Ay(t) # 0 then t is a simple zero of y. If y(t)y(t + 1) < 0 then we say
WDV ¢ (4 ¢ 4 1). The nodes and simple

y(t+1)—y(t)
zeros of y are called the simple generalized zeros of y. O

that y has a node at the point s =

Let p be a real parameter. It is well-known that the linear eigenvalue problem
L) APy(t—1) +py(t) =0, teT,
1.1

u(a) =u(b+2)=0

has exactly N := b — a + 1 eigenvalues

(1.2) < pg < -+ < i,

which are real and the eigenspace corresponding to any such eigenvalue is one dimen-

sional. The following Lemma is crucial to the study of the nonlinear perturbations of
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the linear problem (1.1). The required results are somewhat scattered in [3, Ch. 6~

7], so we restate them here.

Lemma 1.1[3] Let (u;,v5), ¢ € {1,..., N}, denote eigenvalue pairs of (1.1) with

b+1
(1.3) >ty =1,  je{l,...,N}
t=a+1
Then
(1) ¢; has ¢ — 1 simple generalized zeros in [a + 1,0+ 1]; also if j # k, then
b+1
(1.4) D i(t)(t) = 0.
t=a+1

(2)ifh:{a+1,...,b+ 1} — R is given, then the problem

L5 Au(t — 1) + ppu(t) = h(t), teT,
1.5
u(a) =ub+2)=0
has solutions if and only if S0 L1 h(t)e(t) = 0. O

In this paper, we study the existence of solutions of the nonlinear discrete bound-
ary value problem
A*u(t — 1)+ g(t,u(t)) = h(t), teT,
(16) {um)zuw+a)=o
where g : T x R — R is a function.

Definition 1.2 By a solution of (1.6) we mean a function u : {a,a+1,..., b+ 1,0+

2} — R which satisfies the difference equation and the boundary value conditions in

(1.6). O
Theorem 1.1 Assume
(1.7) at) < llinllinfx_lg(t,x) < limsupz 'g(t,z) < B(t)

uniformly on T, where «, § : T — R are such that there exists a positive integer
me{l,...,N — 1} with

(18) Hm < a(t) < ﬁ(t> < Hm+1, le Ta

(1.9) o < (To), for some 7, € T\ {t € T|¢,,(t) =0},

(1.10) B(18) < ftmy1,  for some 75 € T\ {t € T|¢mi1(t) = 0}.

Then for each h: T — R, (1.6) has at least one solution. O

Theorem 1.2 Let g: T x R — R be such that

oft) < IV gy ez
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with a and § as in Theorem 1.1. Then (1.6) has a unique solution. U

Conditions (1.8)-(1.10) are known as the ‘asymptotic nonuniform nonresonance

condition’, whereas the stronger condition

(where 0 € (0,00) is fixed), is called the ‘uniform nonresonance condition’. The
analogue of Theorem 1.1 and 1.2 were obtained for periodic-Dirichlet problems of
semilinear wave equations by Mawhin and Ward [5], and for boundary value problems
of second order ordinary differential equations by Mawhin [6]. The main tool we use

is the Leray-Schauder continuation theorem [7].

For results on the existence of solutions of discrete equations subject to diverse
boundary conditions, see Agarwal and O’Regan [1-2], Kelley and Peterson [3], Ro-
driguez [8], Thompson and Tisdell [9] and the references therein. However none of
these consider the problem under the ‘asymptotic nonuniform nonresonance’ condi-

tion, and no uniqueness results were proved.

2. EXISTENCE OF EXTREMAL SOLUTIONS
Let
(2.1) D :={(0,u(a+1),...,u(b+1),0) |u(t) e R, t € T}.

Then D is a Hilbert space under the inner product

b+1
(u,0) = > ut)v(),
t=a+1
and the corresponding norm is
b+1 12
ull = /Guuy = (3 wtyu(v))
t=a+1

Notice that D is also a Hilbert space under the inner product

b+1

(u,v)1 = Au(t)Auv(t),

t=a
and the corresponding norm is

b+1

lully = v/ )y = (ZM@)M@))W.

For v € D, let us write

(2.2) ult) = alt) + a(t)
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where
m N
(2.3) Z w (), ) = > (u )y (t)
j=1 j=m+1
Obviously, D = D & D with
(2.4) D = span{tr, ..., "m}, D= span{®m 11, ..., VN }-
Lemma 2.1 ([4, Lemma 2.3]) Let u,w € D. Then
b+1 b+1
> w(k)A%u(k Z Au(k)Aw(k
k=a+1

Lemma 2.2 Let a: T — R be a function such that

(2.5) o < a(t), teT,
with
(2.6) fm < a(Ty),  for some 1, € T\ {t € T|¢(t) = 0}.

Then there is a positive number ¢; > 0 such that for any p : T — R satisfying
(2.7) alt) <p(t), teT

and @ € D, we have

b+1 b+1

(2.8) S (- A%t —1) - p(a)a(t) < -5 S [l

t=a+1 a+1
Proof. We divided the proof into two cases.
Case 1. m > 2.

By assumption (2.7), it is sufficient to prove that

(2.9) > (=A%t - 1) —a@u)at) < -6 > [a@)’,  weD.

Suppose on the contrary that there is no such é; > 0. Then there is a sequence
{u} € D with ||ig|| = 1 and
b+1

(2.10) k< Y (= A%t — 1) — a(t)ug(t))ur(t),  k=1,2,....

t=a+1

For each k£ € N, we will write
(2.11) U, = UV, + Wy
where

(2.12) vk € span{vy, ..., U1}, wy € span{,,}.
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Now since «a(t) > p,, on T, we have from (2.10) that

b+1

—/{Z < Z uk t— 1) muk(t))ﬂk(t), k= 1,2, e

t=a+1

which reduces to

(2.13) —k7 < t:;l (= A%0(t = 1) = pmon(t)) v(t)
< (:um—l - Mm)||1}k||2.

so that ||vg|]| — 0 as k — 0.

Now since 1 = ||ug||? = ||vk||?+||wk||?, we have that a subsequence of {y}, which
we may relabel as {ux}, converges strongly to some w* := v, with v € {+, —}.
Consequently,

b+1
—k <Y (= APt — 1) — at)ug(t)) u(t)
t=a+1
b+1 b+1
= Y (=A%t — 1) — at)ue(®)vs(t) =2 > alt)or(t)wi(t)
t=a+1 t=a+1
b+1
(2.14) + 3 (= A%t — 1) — at)wg(t))wi(t)
t=a+1
b1
< (= pm-)[[el* =2 > alt)ve(t)wi(t)
t=a+1
b+1
+ > (u t))wi ().
t=a+1

Using vy — 0 in D and w, — w* as k — 0o, we obtain

b+1 b+1
(2.15) k<Y (e — @) [ (B = Y (o — a®) [ ()],

and since p,, < a(t) on T, we have

b+1

(2.16) Y (1 = a(®) [ ()] =0

t=a+1

However, (2.16) contradicts (2.6). This contradiction proves (2.9) and hence (2.8)
hold.

Case 2. m = 1.
In this case, (2.11) reduces to

ﬂk:vk+wk20+wk
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with v, € {0} and wy, € span{#;}. It is easy to see that the argument used in Case

1 still works in this case. U
Using a similar method with obvious changes, we get the following

Lemma 2.3 Let #: T — R be a function such that
B(t) < fmt1, teT,
with
B(Ta) < ptmy1, forsome 7, € T\ {t € T|¢mi1(t) =0}.
Then there is a positive number d, > 0 such that for any p: T — R satisfying
p(t) <B@), teT

and @ € D, we have

S (=A%t — 1) — pya(t)act) > 6 Y @) g
t=a+1 t—at1

Lemma 2.4 Let a, §: T — R be functions such that

(2.17) pon < at) < B(t) < fmat, teT,
(2.18) o < (To), for some 7, € T\ {t € T|¢,(t) =0},
(2.19) B(13) < ptms1,  forsome 75 € T\ {t € T|p41(t) =0}

Then there are 6 > 0 and € > 0 such that for any p : T — R satisfying

(2.20) a(t) —e<p(t)<p(t)+e teT,
we have

(2.21) (=A% = p)u()l| = dlull, weD,
where

pu(t) :==ut —1), A%pu(a) =0, A%pu(b+2):=0,
(so that (—A%p — p)u € D for each u € D).

Proof. Suppose the conclusion of the lemma is false. Then there exists a sequence
{ug} in D with ||ug|| =1 and a sequence {py : T — R} with

1 1
(2.22) alt) = L <o) B+, teT,
for £ € N, and

1
(2.23) [[(=A%p — plug|| < = k=1,2,....
That is

(224) —Azuk(t — 1) — puk(t) = fk(t), teT
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with fr € D, ||fe]| < k7' and ||ug|| =1 for k € N.

Write u, = @y, + @y, where @, € D and @y € D for k € N. By (2.24), we have
that

(= A%ui(t — 1) = pr()un(t) (@) — ax(t) = > fult)(@n(t) — ta(t)
t=a+1 t=a+1

which reduces upon expansion to

b+1
> (= A%i(t — 1) — pr(t)iin(t)) in(t)
b+1
(2.25) - Z — A%yt — 1) — pr(t)an(t)) un(t)
= > filt) — U(t)).
t=a+1
Now by (2.22),
(2.26) oft) Splt)+ 7, pult)—p <O, tET,

for kK € N. So, using Lemma 2.2 and 2.3, we obtain the existence of 4; > 0 and d5 > 0
such that for all £ € N, we have

b+1

1

ST (= A%yt —1) — (pu(t) + =) k() W) < 0[],
and
bl 1
Z (— A%t — 1) — (pi(t) — E)ﬁk(t))ﬁk(t) > 0|t

Combining with (2.25) and using Schwarz inequality, this gives

i 1, i 1, -
Oallel* = ikl * + Su|@el* = —llawl[* < [ fell ll@x — all,

and hence

Solln+ 8 <
which implies that uy = @+ 1y, converges strongly to zero. This contradicts ||ug|| = 1
and thus proves the lemma. O

3. PROOF OF THE MAIN RESULTS

We now proceed to the proofs of Theorem 1.1 and 1.2 stated in the introduction.

Proof of Theorem 1.1. Let 6 > 0 and € > 0 be given by Lemma 2.4. By (1.7) we can
find r > 0 such that for ¢t € T and all u with |u| > r, we have

(3.1) alt) —e<ulg(t,u) < B(t) +¢
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This implies that
|9(t, w)| < max{[pm | + € [pm| + €}ul + ho(t), t €T, ueR,
where h, : T — R is a fixed function. Consequently, the mapping G defined on D by
(Gu)(t) = g(t,u(?), teT; (Gu)(a)=(Gu)(b+2)=0,

will map D continuously into itself and take bounded sets into bounded sets.

Using that fact that D is finite dimensional and according to the Leray-Schauder
continuation theorem [6], we have that (1.6) have solutions if the set of possible
solutions of the family of equations

2 alt) + A(t) B
(3.2) A%u(t = 1) + (1= N)=F—u(t) + Ag(t, u(t)) = M(t),

u(a) =ub+2)=0
(teT, Ael0,1]),is a priori bounded independently of A. Define I' on T x R by

( ug(t,u), lu| >,
Nty={ o))+ (1 —un 3P0 g e,
gt )+ (@I

and 0 on T x R by
o(t,u) =g(t,u) — T'(t,u)u.

It is easy to check that
(3.3) a(t) —e <T(t) < B(t) + e, teT, uek,
and there exists a constant M; > 0, such that

(3.4) lo(t,u)| < M.
If w: D — R is a solution of (3.2) for some A € [0, 1], then

A%u(t —1) +[(1 - A)M%ﬂ AT, u(6))]u(t)

(3.5) = Ah(t) — a(t, u(t))],
u(a) =u(b+2)=0.

(teT, Ae]0,1]). Using (3.3) and the fact that
o) < OO 5y e,
it follows that

alt) —e<[(1—=2X)

M + AL(t, u(t))] < B(t) + e,
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and hence using Lemma 2.4, (3.5) and (3.4), we obtain
My + |[p]] Z [IAAC) = o (5 uC)]]
al-) + B(-
= flau 1)+ (1 - NI e u)|
2> Olful],
ie.
[Jul] < 671 (My + ||A]])-
This completes the proof of Theorem 1.1. O

Proof of Theorem 1.2. Obviously, existence follows as in Theorem 1.1.

Now let u and v are solutions of (1.6), then, letting w = u — v will be a solution

of
{A%u—w+mwwm—gwwmhw,tem
(3.6)
w(a) =w(b+2)=0.
Setting
w™ g(t, u(t)) — g(t, v(1))], w # 0,
vt w(t) = a(t) + A(t) .y
2 =

we see that (3.6) can be written

A*w(t —1) +y(t,wt))w(t) =0, teT,
(3.) { u(a) = u(b+2) = 0,
with
(3.8) a(t) <~(t,w(t)) < B(t), teT.
Therefore, by Lemma 2.4, there exist 6 > 0 and € > 0 such that for any p: T — R
satisfying
(3.9) a(t) —e<p(t) <p(t)+e teT,
we have
(3.10) (=A% = p)uC)|| = d|Jull, we€ D,

where pu(t) := u(t — 1). This together with (3.8) and implies that
(3.11) (=A% = ~(t, w(t)))w(-)|] = 6| |w]|.
Combining (3.11) with (3.7), it follows that

0 = offwl],

and subsequently w = 0, i.e. u = v, and the proof is complete. Il



280 R. MA AND D. O'REGAN

4. EXAMPLE AND REMARK

From [3, Example 4.1], we know that the linear eigenvalues and the eigenfunctions

of the problem

{ APyt —1) + py(t) =0, t Ty,
(4.1)

u(0) =u(4) =0

are as follows:

3T
—t

s =1—+2, Ua(t) = sin(=;1), €T,

Obviously
{teTy|va(t) =0} =0; {teTi|va(t) =0} ={2}; {te€Ti|uvs(t)=0}=0.

Example 4.1. Let us consider the discrete boundary value problem

{ A%yt —1) +golt,y(t)) = h(t), teTy,

4.2
(4.2) u(0) =u(4)=0

where h : Ty — R, and

+ —
(4.3) go(t,s) = A 5 2y B2 5 ,u1 sin(7t)(s + ).

It is easy to verify that g satisfies all conditions of Theorem 1.1 with

1+ 52

aft) = M1 ; B2 B2 in(r) = Ae),

Therefore (4.2) has at least one solution for every h: T; — R. O

Remark 4.1 Condition (1.9) and (1.10) are necessary to guarantee the existence
of solutions of (1.6). In fact, the function g(¢,s) = uis satisfies all conditions in
Theorem 1.1 except the condition (1.9). Since 377 [t (t)]? # 0, we see from Lemma
1.1 (ii) that the problem

{ Ayt —1) +py(t) =i (t), teTy,

4.4
(44) u(0) =u(4) =0

has no solutions. O
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