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ABSTRACT. In this paper, we are concerned with the following Dirichlet boundary value problem

on a time scale T {
−u∆∆(t) = g(t, u(t)), t ∈ [0, T ]T,

u(0) = 0 = u(σ2(T )),

where g : [0, T ]T× [−σ(T )σ2(T )M, +∞) → [−M, +∞) is continuous and M > 0 is a constant, which

implies that this problem is semipositone. For an arbitrary positive integer n, some existence results

for n solutions and/or positive solutions are established by using the well-known Guo-Krasnosel’skii

fixed point theorem. Our conditions imposed on g are local. An example is also included to illustrate

the importance of the results obtained.
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1. INTRODUCTION

Let T be a time scale (arbitrary nonempty closed subset of the real numbers R).

For each interval I of R, we denote by IT = I∩T. For more details on time scales, one

can refer to [1, 3, 7, 8]. In this paper, we consider solutions and positive solutions to

the nonlinear Dirichlet boundary value problem (BVP for short) on a time scale T

(1.1)

{
−u∆∆(t) = g(t, u(t)), t ∈ [0, T ]T,

u(0) = 0 = u(σ2(T )),

where T > 0 is fixed and 0, T ∈ T. Here, the solution u of the BVP (1.1) is called

positive if u(t) > 0, t ∈ (0, σ2(T ))T. Throughout this paper, we assume that g :

[0, T ]T × [−σ(T )σ2(T )M,+∞) → [−M,+∞) is continuous and M > 0 is a constant;

this implies that the BVP (1.1) is semipositone.

The BVP (1.1) has been discussed extensively when M = 0 (i.e., positone prob-

lem); see [2, 4, 5, 10] and the references therein. Recently, by using fixed point index

theory, we [12] established some existence criteria for at least one positive solution

to the BVP (1.1) assuming M > 0 (i.e., semipositone problem) and global conditions
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on g (that is to say, these conditions are concerned with the growth of g on its whole

domain). This paper is a continuation of our study in [12]. Our results show that

the BVP ( 1.1) has at least n solutions and/or positive solutions provided that the

“heights” of g on some bounded sets of its domain are appropriate, i.e., such existence

results do not concern the growth of g outside these bounded sets. In other words,

our conditions imposed on g are local. Our main idea comes from [9, 13, 14], and our

main tool is the well-known Guo-Krasnosel’skii fixed point theorem, which we state

here for the convenience of the reader.

Theorem 1.1 ([6]). Let X be a Banach space and K be a cone in X. Assume

that Ω1 and Ω2 are bounded open subsets of X with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let Φ :

K ∩ (Ω2\Ω1) → K be a completely continuous operator such that either

(i) ‖Φu‖ ≤ ‖u‖ , ∀u ∈ K ∩ ∂Ω1 and ‖Φu‖ ≥ ‖u‖ , ∀u ∈ K ∩ ∂Ω2,

or

(ii) ‖Φu‖ ≥ ‖u‖ , ∀u ∈ K ∩ ∂Ω1 and ‖Φu‖ ≤ ‖u‖ , ∀u ∈ K ∩ ∂Ω2.

Then Φ has a fixed point in K ∩ (Ω2\Ω1).

2. MAIN RESULTS

Let

X =
{
u

∣∣u : [0, σ2(T )]T → R is continuous
}

be equipped with the norm

‖u‖ = max
t∈[0,σ2(T )]T

|u(t)| .

Then, X is a Banach space.

Define

K =
{
u ∈ X

∣∣u(t) ≥ q(t) ‖u‖ , t ∈ [0, σ2(T )]T
}
,

where q(t) =
t(σ2(T )−t)
(σ2(T ))2

, t ∈ [0, σ2(T )]T. Then, it is easy to see that K is a cone of X.

To obtain a solution of the BVP (1.1), we require a mapping whose kernel G(t, s)

is the Green’s function of the BVP

(2.1)

{
−u∆∆(t) = 0, t ∈ [0, T ]T,

u(0) = 0 = u(σ2(T )).

It is known that [3]

(2.2) G(t, s) =
1

σ2(T )

{
t (σ2(T ) − σ(s)) , t ≤ s,

σ(s) (σ2(T ) − t) , t ≥ σ(s).

For G(t, s), we have the following simple but important lemma.



SEMIPOSITONE DIRICHLET BVPS ON TIME SCALES 305

Lemma 2.1. For any t ∈ [0, σ2(T )]T and s ∈ [0, σ(T )]T,

(2.3) 0 ≤ G(t, s) ≤
t (σ2(T ) − t)

σ2(T )
.

Lemma 2.2. Let p(t) be the solution of the BVP

(2.4)

{
−p∆∆(t) = 1, t ∈ [0, T ]T,

p(0) = 0 = p(σ2(T )).

Then,

(2.5) 0 ≤ p(t) ≤ q(t)σ(T )σ2(T ), t ∈ [0, σ2(T )]T.

In particular,

(2.6) 0 ≤ p(t) ≤ σ(T )σ2(T ), t ∈ [0, σ2(T )]T.

Proof. Since p(t) is the solution of the BVP (2.4), we know that

p(t) =

∫ σ(T )

0

G(t, s)∆s, t ∈ [0, σ2(T )]T.

In view of Lemma 2.1, we have

0 ≤ p(t) =

∫ σ(T )

0

G(t, s)∆s ≤
t (σ2(T ) − t) σ(T )

σ2(T )
= q(t)σ(T )σ2(T ), t ∈ [0, σ2(T )]T.

Let u0(t) = Mp(t), t ∈ [0, σ2(T )]T. We consider the following BVP

(2.7)

{
−u∆∆(t) = g(t, u(t) − u0(t)) +M, t ∈ [0, T ]T,

u(0) = 0 = u(σ2(T )).

It is easy to verify that if u(t) is a solution of the BVP (2.7), then u(t) − u0(t) is a

solution of the BVP (1.1). So, we will focus our attention on the BVP (2.7).

Since the BVP (2.7) is equivalent to the integral equation

(2.8) u(t) =

∫ σ(T )

0

G(t, s)[g(s, u(s)− u0(s)) +M ]∆s, t ∈ [0, σ2(T )]T,

we define the operator Φ : K → X as follows

(2.9) (Φu)(t) =

∫ σ(T )

0

G(t, s)[g(s, u(s)− u0(s)) +M ]∆s, t ∈ [0, σ2(T )]T.

Noticing that

(2.10) −σ(T )σ2(T )M ≤ u(t) − u0(t) < +∞ for u ∈ K and t ∈ [0, σ2(T )]T,

we know that Φ : K → X is well-defined.

Lemma 2.3. Φ : K → K is completely continuous.
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Proof. Let u ∈ K. By the definition of Φ, we know that (Φu)(0) = 0 = (Φu)(σ2(T )).

So, there exists a t0 ∈ (0, σ2(T ))T such that ‖Φu‖ = (Φu)(t0). Since

G(t, s)

G(t0, s)
=






t
t0
, t, t0 ≤ s,

t(σ2(T )−σ(s))
σ(s)(σ2(T )−t0)

, t ≤ s < t0,

σ(s)(σ2(T )−t)
t0(σ2(T )−σ(s))

, t0 ≤ s < t,

σ2(T )−t
σ2(T )−t0

, t, t0 ≥ σ(s),

we obtain that

(2.11)
G(t, s)

G(t0, s)
≥ q(t), t ∈ [0, σ2(T )]T and s ∈ [0, σ(T )]T.

So,

(Φu)(t) =

∫ σ(T )

0

G(t, s)[g(s, u(s)− u0(s)) +M ]∆s

=

∫ σ(T )

0

G(t, s)

G(t0, s)
G(t0, s)[g(s, u(s)− u0(s)) +M ]∆s

≥ q(t)

∫ σ(T )

0

G(t0, s)[g(s, u(s)− u0(s)) +M ]∆s

= q(t)(Φu)(t0)

= q(t) ‖Φu‖ , t ∈ [0, σ2(T )]T,

which shows that Φu ∈ K. Furthermore, by using similar arguments to those in [11],

we can prove that Φ : K → K is completely continuous.

In the remainder of this paper, we let ξ, η ∈ T be such that 0 < ξ < η < T and

denote

A =

[
max

t∈[0,σ2(T )]T

∫ σ(T )

0

G(t, s)∆s

]
−1

,

B =

[
max

t∈[0,σ2(T )]T

∫ η

ξ

G(t, s)∆s

]
−1

,

ϕ(r) = max
{
g(t, u) +M

∣∣t ∈ [0, T ]T, u ∈ [−σ(T )σ2(T )M, r]
}

and

ψ(r) = min

{
g(t, u) +M

∣∣∣∣t ∈ [ξ, η]T, u ∈

[
ξ(σ2(T ) − η)r

(σ2(T ))2
− σ(T )σ2(T )M, r

]}
.

It is obvious that 0 < A < B.

Now, we state and prove a basic existence criterion as follows:
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Theorem 2.4. Assume that there exist two positive numbers r1 and r2 such that

ϕ(r1) ≤ r1A and ψ(r2) ≥ r2B. Then, the BVP (1.1) has at least one solution u∗

satisfying u∗ + u0 ∈ K and

min {r1, r2} ≤ ‖u∗ + u0‖ ≤ max {r1, r2} .

Moreover, if min {r1, r2} > σ(T )σ2(T )M, then u∗ is a positive solution of the BVP

(1.1).

Proof. Since 0 < A < B, it is easy to see that r1 6= r2. Without loss of generality, we

assume that r1 < r2. Let

Ωi = {u ∈ X | ‖u‖ < ri} , i = 1, 2.

If u ∈ K ∩ ∂Ω1, i.e., u ∈ K and ‖u‖ = r1, then 0 ≤ u(t) ≤ r1, t ∈ [0, σ2(T )]T. So,

−σ(T )σ2(T )M ≤ u(t) − u0(t) ≤ r1, t ∈ [0, σ2(T )]T.

And so,

(2.12) g(t, u(t) − u0(t)) +M ≤ ϕ(r1) ≤ r1A, t ∈ [0, T ]T.

It follows that

(Φu)(t) =

∫ σ(T )

0

G(t, s)[g(s, u(s)− u0(s)) +M ]∆s

≤ r1A

∫ σ(T )

0

G(t, s)∆s

≤ r1A max
t∈[0,σ2(T )]T

∫ σ(T )

0

G(t, s)∆s

= r1, t ∈ [0, σ2(T )]T,

which shows that

(2.13) ‖Φu‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω1.

If u ∈ K ∩ ∂Ω2, i.e., u ∈ K and ‖u‖ = r2, then for t ∈ [ξ, η]T, we have

ξ (σ2(T ) − η) r2

(σ2(T ))2 ≤ q(t)r2 ≤ u(t) ≤ r2

and
ξ(σ2(T ) − η)r2

(σ2(T ))2
− σ(T )σ2(T )M ≤ u(t) − u0(t) ≤ r2.

So,

(2.14) g(t, u(t) − u0(t)) +M ≥ ψ(r2) ≥ r2B, t ∈ [ξ, η]T.
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It follows that

‖Φu‖ = max
t∈[0,σ2(T )]T

∫ σ(T )

0

G(t, s)[g(s, u(s)− u0(s)) +M ]∆s

≥ max
t∈[0,σ2(T )]T

∫ η

ξ

G(t, s)[g(s, u(s)− u0(s)) +M ]∆s

≥ r2B max
t∈[0,σ2(T )]T

∫ η

ξ

G(t, s)∆s

= r2,

i.e.,

(2.15) ‖Φu‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω2.

In view of (2.13), (2.15), Lemma 2.3, and Theorem 1.1, we know that the operator

Φ has at least one fixed point u ∈ K ∩ (Ω2\Ω1), which implies that the BVP (2.7)

has at least one solution u ∈ K such that r1 ≤ ‖u‖ ≤ r2. Therefore, u∗ = u− u0 is a

solution of the BVP (1.1) such that

(2.16) u∗ + u0 ∈ K and r1 ≤ ‖u∗ + u0‖ ≤ r2.

Moreover, if r1 > σ(T )σ2(T )M, then for any t ∈ (0, σ2(T ))T, by (2.16) and

Lemma 2.2, we have

u∗(t) = [u∗(t) + u0(t)] − u0(t) = [u∗(t) + u0(t)] −Mp(t)

≥ q(t) ‖u∗ + u0‖ − q(t)σ(T )σ2(T )M

≥ q(t)r1 − q(t)σ(T )σ2(T )M

=
[
r1 − σ(T )σ2(T )M

]
q(t)

> 0,

which shows that u∗ is a positive solution of the BVP (1.1).

Next, based on Theorem 2.4, we establish some criteria which ensure the existence

of n solutions and/or positive solutions to the BVP (1.1); here n is an arbitrary

positive integer.

Corollary 2.5. Suppose that there exist three positive numbers r1, r2 and r3 with

r1 < r2 < r3 such that one of the following conditions is satisfied:

(a) ϕ(r1) ≤ r1A, ψ(r2) > r2B, ϕ(r3) ≤ r3A,

or

(b) ψ(r1) ≥ r1B, ϕ(r2) < r2A, ψ(r3) ≥ r3B.
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Then the BVP (1.1) has at least two solutions u∗

1, u
∗

2 satisfying u∗1 + u0, u
∗

2 + u0 ∈ K

and

r1 ≤ ‖u∗1 + u0‖ < r2 < ‖u∗2 + u0‖ ≤ r3.

Moreover, if r2 > σ(T )σ2(T )M, then u∗2 is a positive solution of the BVP (1.1), and

if r1 > σ(T )σ2(T )M, then u∗1, u
∗

2 are both positive solutions of the BVP (1.1).

Proof. It is enough to prove case (a). Since ψ(r)
r

: (0,+∞) → [0,+∞) is continuous

and ψ(r2)
r2

> B, there exist two positive numbers r̃2 and r2 with r1 < r̃2 < r2 < r2 < r3

such that ψ(r̃2) ≥ r̃2B and ψ(r2) ≥ r2B. It follows from Theorem 2.4 that the BVP

(1.1) has at least two solutions u∗1, u
∗

2 satisfying u∗1 + u0, u
∗

2 + u0 ∈ K and

r1 ≤ ‖u∗1 + u0‖ ≤ r̃2 < r2 < r2 ≤ ‖u∗2 + u0‖ ≤ r3.

Corollary 2.6. Suppose that there exist four positive numbers r1, r2, r3 and r4 with

r1 < r2 < r3 < r4 such that one of the following conditions is satisfied:

(a) ϕ(r1) ≤ r1A, ψ(r2) > r2B, ϕ(r3) < r3A, ψ(r4) ≥ r4B,

or

(b) ψ(r1) ≥ r1B, ϕ(r2) < r2A, ψ(r3) > r3B, ϕ(r4) ≤ r4A.

Then the BVP (1.1) has at least three solutions u∗

1, u
∗

2, u
∗

3 satisfying u∗1 + u0, u
∗

2 + u0,

u∗3 + u0 ∈ K and

r1 ≤ ‖u∗1 + u0‖ < r2 < ‖u∗2 + u0‖ < r3 < ‖u∗3 + u0‖ ≤ r4.

Moreover, if r3 > σ(T )σ2(T )M, then u∗3 is a positive solution of the BVP (1.1), if

r2 > σ(T )σ2(T )M, then u∗2, u
∗

3 are both positive solutions of the BVP (1.1), and if

r1 > σ(T )σ2(T )M, then u∗1, u
∗

2, u
∗

3 are all positive solutions of the BVP (1.1).

Proof. We only prove case (a). Since ψ(r)
r

: (0,+∞) → [0,+∞), ϕ(r)
r

: (0,+∞) →

[0,+∞) are continuous and ψ(r2)
r2

> B,
ϕ(r3)
r3

< A, there exist four positive numbers

r̃2, r2, r̃3, r3 with r1 < r̃2 < r2 < r2 < r̃3 < r3 < r3 < r4 such that ψ(r̃2) ≥ r̃2B,

ψ(r2) ≥ r2B, ϕ(r̃3) ≤ r̃3A, ϕ(r3) ≤ r3A. It follows from Theorem 2.4 that the BVP

(1.1) has at least three solutions u∗1, u
∗

2, u
∗

3 satisfying u∗1 + u0, u
∗

2 + u0, u
∗

3 + u0 ∈ K

and

r1 ≤ ‖u∗1 + u0‖ ≤ r̃2 < r2 < r2 ≤ ‖u∗2 + u0‖ ≤ r̃3 < r3 < r3 ≤ ‖u∗3 + u0‖ ≤ r4.

Similarly, for arbitrary positive integer n, the existence results of n solutions

and/or positive solutions to the BVP (1.1) still hold.
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Example 2.7. Consider the following BVP

(2.17)

{
−u∆∆(t) = 128

√
t(u(t) + 1) − 1, t ∈ [0, 1]T,

u(0) = 0 = u(1),

where T =
{
0, 1

4

}
∪ [1

2
, 1].

Let T = 1, ξ = 1
4

and η = 1
2
. We first compute the values of A and B. In view of

∫ 1

2

0

G(t, s)∆s =
∑

s∈[0, 1
2
)T

µ(s)G(t, s) =





0, t = 0,
5
64
, t = 1

4
,

3(1−t)
16

, t ≥ 1
2
,

and
∫ 1

1

2

G(t, s)∆s =

{
t
8
, t ≤ 1

2
,

− t2

2
+ 5t

8
− 1

8
, t ≥ 1

2
,

we have

∫ 1

0

G(t, s)∆s =





0, t = 0,
7
64
, t = 1

4
,

− t2

2
+ 7t

16
+ 1

16
, t ≥ 1

2
.

So,

A =

[
max
t∈[0,1]T

∫ 1

0

G(t, s)∆s

]−1

=
32

5
.

Since
∫ 1

2

1

4

G(t, s)∆s =
∑

s∈[ 1
4
, 1
2
)T

µ(s)G(t, s) =

{
t
8
, t ≤ 1

4
,

1−t
8
, t ≥ 1

2
,

we get

B =

[
max
t∈[0,1]T

∫ 1

2

1

4

G(t, s)∆s

]
−1

= 16.

Then, it is easy to verify that all the conditions of Theorem 2.4 are satisfied if we let

g(t, u) = 128
√
t(u+ 1) − 1, (t, u) ∈ [0, 1]T × [−1,+∞), M = 1, r1 = 104 and r2 = 2.

So, the BVP (2.17) has at least one positive solution.
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