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ABSTRACT. In this paper, we are concerned with the following Dirichlet boundary value problem
on a time scale T
—uBA(t) = g(t,u(t)), t €[0,T]r,
{ u(0) = 0 =u(0*(7)),

where g : [0, T]r x [—o(T)o?(T)M, +o0) — [—M, +00) is continuous and M > 0 is a constant, which
implies that this problem is semipositone. For an arbitrary positive integer n, some existence results
for n solutions and/or positive solutions are established by using the well-known Guo-Krasnosel’skii
fixed point theorem. Our conditions imposed on g are local. An example is also included to illustrate

the importance of the results obtained.
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1. INTRODUCTION

Let T be a time scale (arbitrary nonempty closed subset of the real numbers R).
For each interval I of R, we denote by It = INT. For more details on time scales, one
can refer to [1, 3, 7, 8]. In this paper, we consider solutions and positive solutions to

the nonlinear Dirichlet boundary value problem (BVP for short) on a time scale T
—utA(t) = g(t,u(t)), t € [0, T]r,
u(0) =0 = u(c*(T)),
where T > 0 is fixed and 0, T € T. Here, the solution u of the BVP (1.1) is called
positive if u(t) > 0, t € (0,0%(T))r. Throughout this paper, we assume that g :
0, 7]y x [—o(T)o*(T)M, +00) — [—M, +00) is continuous and M > 0 is a constant;
this implies that the BVP (1.1) is semipositone.

(1.1)

The BVP (1.1) has been discussed extensively when M = 0 (i.e., positone prob-
lem); see [2, 4, 5, 10] and the references therein. Recently, by using fixed point index
theory, we [12] established some existence criteria for at least one positive solution
to the BVP (1.1) assuming M > 0 (i.e., semipositone problem) and global conditions

Received June 10, 2007 1056-2176 $15.00 @Dynamic Publishers, Inc.



304 J-P. SUN AND W-T. LI

on g (that is to say, these conditions are concerned with the growth of g on its whole
domain). This paper is a continuation of our study in [12]. Our results show that
the BVP ( 1.1) has at least n solutions and/or positive solutions provided that the
“heights” of g on some bounded sets of its domain are appropriate, i.e., such existence
results do not concern the growth of g outside these bounded sets. In other words,
our conditions imposed on g are local. Our main idea comes from [9, 13, 14], and our
main tool is the well-known Guo-Krasnosel’skii fixed point theorem, which we state

here for the convenience of the reader.

Theorem 1.1 ([6]). Let X be a Banach space and K be a cone in X. Assume
that Q0 and Qs are bounded open subsets of X with 0 € Qq, Q; C Qy, and let ® :
KN (Q\Q1) — K be a completely continuous operator such that either

(i) |®u]| < ||ul|, Yu € K N0 and ||Bu| > ||u]|, Yu € K Ny,

or

(ii) || Pul| > ||ull, Vu € KN Oy and || Pul < |lull, YVu € K N IQy.
Then ® has a fized point in K N (Q\ Q).

2. MAIN RESULTS

Let
X = {u|u:[0,6*(T)]r — R is continuous }

be equipped with the norm

Jul = s Ju®)].
Then, X is a Banach space.
Define
K = {ueXu(t) 2 q(t)ull, ¢ € 0.0%(T)}r}

t(o(T)—t)
(02(T))* 7
To obtain a solution of the BVP (1.1), we require a mapping whose kernel G(t, s)

is the Green’s function of the BVP

{ —ut2(t) =0, t €[0,T]r,
u(0) = 0 = u(o*(T)).

where ¢(t) = t € [0,0%(T)]r. Then, it is easy to see that K is a cone of X.

(2.1)

)

It is known that [3]

(2.2) G(t,s) =

{ t(0*(T) —o(s)), t <5,

o(T) | o(s) (o*(T) - t), t > o(s).

For G(t, s), we have the following simple but important lemma.
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Lemma 2.1. For any t € [0,0*(T)|r and s € [0,0(T)]r,

t(o*(T) — 1)
a*(T)

Lemma 2.2. Let p(t) be the solution of the BVP

(2.3) 0<Glt,s) <

(2.4) { —p2A(t) =1, t €0, T)r,
p(0) = 0 = p(a?(T)).
Then,
25 0 < plt) < a0 (T)o(T), € [0, 0*(Ts.

In particular,
(2.6) 0 < p(t) < a(T)o*(T), t €10,0*(T)]r.

Proof. Since p(t) is the solution of the BVP (2.4), we know that

o(T)
p(t) = /0 G(t,s)As, t € [0,0%(T)]r.

In view of Lemma 2.1, we have

t(o*(T) —t) o(T)

o2(T) = q(t)o(T)o*(T), t € [0,0%(T)]r.

o(T)
0<p(t) = / G(t,s)As <
0

O

Let ug(t) = Mp(t), t € [0,0*(T)]r. We consider the following BVP

_UAA(t) = g(t, u(t> - uo(t)) + M, te [Ov T]T’
(2.7) { u(0) = 0 = u(a?(T)).

It is easy to verify that if u(t) is a solution of the BVP (2.7), then wu(t) — ug(t) is a
solution of the BVP (1.1). So, we will focus our attention on the BVP (2.7).

Since the BVP (2.7) is equivalent to the integral equation

(2.8) u(t) = /OJ(T) G(t,8)[g(s,u(s) — ug(s)) + M]As, t € [0,0*(T)]r,

we define the operator ® : K — X as follows

(2.9) (Pu)(t) = /OU(T) G(t,8)[g(s,u(s) —ug(s)) + M]As, t € [0,0%(T)]r.
Noticing that

(2.10) —o(T)o*(T)M < u(t) — ug(t) < +oo for u € K and t € [0,0*(T)|r,
we know that ® : K — X is well-defined.

Lemma 2.3. & : K — K is completely continuous.
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Proof. Let u € K. By the definition of ®, we know that (®u)(0) = 0 = (du)(c*(T)).
So, there exists a ty € (0,02(T))r such that ||Pul| = (Pu)(ty). Since

( %a tv tO S S,
t(o%(T)—0(s))
sz LS s <lo,

G(t, s) B o(s)(o2(T)—to)
G(to S) N
’ o(s)(*(T)—t)
REM o) 0S8 <t
o2(T)—
| S b to > a(s),

we obtain that

(2.11) > q(t), t € [0,0%(T)]r and s € [0,0(T)]r.

So,

o(T) .
B /0 (C;((tt(;, S))G(tOvS)[g(&U(S) — u(s)) + M]As

o(T)
_— / Gt 3)g(s, uls) — un(s)) + M]As

= q()(Pu)(to)
= () [|Pull, t €[0,0*(T)]r,

which shows that ®u € K. Furthermore, by using similar arguments to those in [11],

we can prove that ¢ : K — K is completely continuous. O

In the remainder of this paper, we let £, n € T be such that 0 < £ <n < T and

denote
o(T) -1
A=| max / G(t,s)As|
te(0,02(T)lr Jo
n 1
B = { max / G(t, S)As] :
t€[070'2(T)]']I‘ ¢
©(r) = max {g(t,u) + M ‘t € [0, T, u € [~o(T)o*(T)M, r]}
and

te ¢, ue [W —o(T)o*(T)M, r] }

It is obvious that 0 < A < B.

Y (r) = min {g(t,u) + M

Now, we state and prove a basic existence criterion as follows:
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Theorem 2.4. Assume that there exist two positive numbers ri and ro such that
o(r1) < rmA and ¥(ry) > r9B. Then, the BVP (1.1) has at least one solution u*
satisfying u* +ug € K and

min {ry, e} < [|[u* + ug|| < max {ry,r}.

Moreover, if min {ry,ro} > o(T)o?(T)M, then u* is a positive solution of the BVP

(1.1).

Proof. Since 0 < A < B, it is easy to see that r; # ry. Without loss of generality, we

assume that r; < r9. Let
Q={veX| |ul|<r}, 1=1,2.
Ifue KNy, ie., u€ K and |Ju|| = rq, then 0 < u(t) <1y, t € [0,0%(T)]r. So,
—o(T)o*(T)M < u(t) —ug(t) <7y, t €1[0,0%(T)]r.
And so,
(2.12) g(t,u(t) —uo(t)) + M < @(r1) <rA, t€|0,T]r.

It follows that
o(T)
(Pu)(t) = /0 G(t,s)[g(s,u(s) —uo(s)) + M]As
< rlA/U(T) G(t,s)As

o(T)
< rA max / G(t,s)As
t€0,02(D)r J
= T, t e [0,0’2(T)]']1*,
which shows that

(2.13) | Pul| < ||u|| for u e K NoQ,.

If ue KNoS, ie, ue K and ||u|| = 7, then for ¢t € [€, n]r, we have

§(o*(T) —n)rs

< q(t)ry < u(t) <rg

(02(T))* -
and
AT )y e
(02(T))2 (T)o™(T)M < u(t) —uo(t) <o
So,

(2.14) g(t,u(t) —uo(t)) + M = ¢(r2) 2 r2B, t € [§, nlr.
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It follows that

o(T)
|Pu|| = max / G(t, s)g(s,u(s) — up(s)) + M]As
t€[0,02(T)]r
> max / G(t, s)[g(s,u(s) —up(s)) + M]As
telo, 0’2 )|t
> ryB  max / G(t, s)
t€[0,02(T)|r
= T2,
ie.,
(2.15) || Du|| > [Jul| for u e K N ONy.

In view of (2.13), (2.15), Lemma 2.3, and Theorem 1.1, we know that the operator
® has at least one fixed point u € K N (Q2\Qy), which implies that the BVP (2.7)
has at least one solution u € K such that r; < ||u|| < r9. Therefore, u* = u — g is a
solution of the BVP (1.1) such that

(2.16) u +ug € K and m < [Ju” + upl| < ro.

Moreover, if r; > o(T)o*(T)M, then for any ¢t € (0,0%(T))r, by (2.16) and
Lemma 2.2, we have

w'(t) = [u(t) +uo(t)] — uo(t) = [u(t) + uo(t)] — Mp(t)
> q(t) lu" + uol| — q(t)o(T)o*(T) M
> q(t)r — q(t)o(T)o*(T)M
= [rn—o(T)e*(T)M] q(t)
0,
which shows that u* is a positive solution of the BVP (1.1). O

Next, based on Theorem 2.4, we establish some criteria which ensure the existence
of n solutions and/or positive solutions to the BVP (1.1); here n is an arbitrary

positive integer.

Corollary 2.5. Suppose that there exist three positive numbers ry, ro and r3 with

r1 < ro < 13 such that one of the following conditions is satisfied:

(a) p(r1) <A, P(ra) > 1B, ¢(r3) <34,

or

(b) w(r1) > rB, @(ry) < 1A, (rs) > r3B.
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Then the BVP (1.1) has at least two solutions uy, u satisfying uj + ug, uj +ug € K
and

1 < |lul + uol| < 1o < ||ud + ugl] < 73
Moreover, if ro > o(T)o*(T)M, then u} is a positive solution of the BVP (1.1), and
if r1 > o(T)o*(T)M, then uj, u} are both positive solutions of the BVP (1.1).

Proof. Tt is enough to prove case (a). Since ¢£r) : (0,400) — [0,400) is continuous
and #’;‘2) > B, there exist two positive numbers ro and 75 with 1 < 75 < 1y <75 <13
such that ¢(r3) > roB and 1(72) > 7 B. It follows from Theorem 2.4 that the BVP

(1.1) has at least two solutions uf, u} satisfying u} + wug, uj + ug € K and
r1 < JJul +ugl| <y <y < T < Jud + upl| < rs.
U

Corollary 2.6. Suppose that there exist four positive numbers r1, ro, 3 and r4 with

r1 < ro <13 <14 such that one of the following conditions is satisfied:

(a) o(r1) < mA, P(r2) > raB, ¢(r3) <r3A, ¥(ry) > raB,

or

(b) ¥(r1) = B, @(ra) <raA, P(r3) > r3B, ¢(r4) < riA.
Then the BVP (1.1) has at least three solutions u¥, uj, u} satisfying uj + uo, ui + ug,
uz +up € K and

1 < JJul + upl| < re < ||ul + wol| < r3 < ||uf + uol < 74

Moreover, if r3 > o(T)o*(T)M, then u} is a positive solution of the BVP (1.1), if
ry > o(T)o?(T)M, then ul, u} are both positive solutions of the BVP (1.1), and if
r1 > o(T)o?(T)M, then uf, ul, uj are all positive solutions of the BVP (1.1).

Proof. We only prove case (a). Since @ : (0,400) — [0, +00), @ : (0, +00) —
[0, +00) are continuous and #’;‘2) > B, %’;3) < A, there exist four positive numbers
T, T, T3, T3 With r; < 1y < ry < T3 < r3 < r3 < T3 < ry such that ¥(rs) > 1B,
W(T3) > 1B, ¢(r3) < r3A, p(73) < T3A. It follows from Theorem 2.4 that the BVP
(1.1) has at least three solutions wuf, ul, u} satisfying u} + wug, ud + wg, vl +up € K

and
r < |lul +uol| < 7a <1y < T < ||uh +ugl] <75 <1y < T3 < ||uf 4+ ugl| < 74

O

Similarly, for arbitrary positive integer n, the existence results of n solutions
and/or positive solutions to the BVP (1.1) still hold.
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Example 2.7. Consider the following BVP

(2.17) { —uBA (1) = 128 /u(t) + 1) — 1, £ € [0, Lz

u(0) =0 =wu(l),

where T = {0,1} U[3,
Let T=1,¢= i nd n = % We first compute the values of A and B. In view of

1 0, t =0,
2
[ euon= 3 weatn=1 &=t
3(1—t 1
s€[0,3) =, t> 5
and
1 t 1
t o<1
87 —_ 27
froens={ o 55
we have
1 07 t= ’
7,1
/0 G(t,s)A Cat=h
t o, 1 1
2T T 22
So,
1 —1
32
A= [max / G(t,s)As} =,
te[0,1]r Jg 5
Since
: Lttt
— _ 87 = 7>
/l G(t,s)As = Z w(s)G(t, s) = S
4 SG[%,%)T 8 7 - 2
we get
= max/ G(t, s) = 16.
tel0,1]

Then, it is easy to verify that all the conditions of Theorem 2.4 are satisfied if we let
g(t,u) = 128/t(u+1) — 1, (t,u) € [0, 1] x [-1,+00), M =1, r; = 10* and ry = 2.
So, the BVP (2.17) has at least one positive solution.
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