
Dynamic Systems and Applications 17 (2008) 325-330

ANTIPODAL FIXED POINT THEORY FOR VOLTERRA MAPS

YEOL JE CHO, DONAL O’REGAN, AND SVATOSLAV STANEK

Department of Mathematics Education and the RINS, College of Education,

Gyeongsang National University, Chinju 660-701, Korea

Department of Mathematics, National University of Ireland, Galway, Ireland

Department of Mathematical Analysis, Faculty of Science, Palacky University,

Tomkova 40, 779 00 Olomouc, Czech Republic

ABSTRACT. New antipodal fixed point theorems for compact Kakutani maps between Fréchet
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1. INTRODUCTION

This paper presents new antipodal fixed point theorem for compact Kakutani

maps between Fréchet spaces. The proofs rely on an antipodal fixed point theorem

for compact Kakutani maps due to O’Regan and Peran [4] and viewing a Fréchet

space as the projective limit of a sequence of Banach spaces. In the literature [1, 2]

one usually assumes the map F is defined on a subset X of a Fréchet space E and

its restriction (again called F ) is well defined on Xn (see Section 2). In general of

course for Volterra operators the restriction is always defined on Xn and in most

applications it is in fact defined on Xn and usually even on En (see Section 2). In

this paper we make use of the fact that the restriction is well defined on Xn and we

only assume it admits an extension (satisfying certain properties) on Xn. We also

show in Section 2 how easily one can extend antipodal fixed point theory in Banach

spaces to fixed point theory in Fréchet spaces.

Existence in Section 2 will be based on an antipodal fixed point theorem for

compact Kakutani maps due to O’Regan and Peran [4]. We state a particular case

of it here for the convenience of the reader. Let X and Y be topological vector

spaces. We say F : X → CK(Y ) is a Kakutani map if F is upper semicontinuous;

here CK(Y ) denotes the family of nonempty compact convex subsets of Y . We write

F ∈ K(X, Y ) if F is a compact Kakutani map.
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Theorem 1.1. Let E be a Banach space and M a closed, bounded, symmetric

subset of E with 0 ∈ M and let F ∈ K(M, E) with F (x) ∩ (−F (−x)) 6= ∅ for all

x ∈ ∂ M . Then F has a fixed point in M .

Now let I be a directed set with order ≤ and let {Eα}α∈I be a family of locally

convex spaces. For each α ∈ I, β ∈ I for which α ≤ β let πα,β : Eβ → Eα be a

continuous map. Then the set
{

x = (xα) ∈
∏

α∈I

Eα : xα = πα,β(xβ) ∀α, β ∈ I, α ≤ β

}

is a closed subset of
∏

α∈I Eα and is called the projective limit of {Eα}α∈I and is

denoted by lim← Eα (or lim← {Eα, πα,β} or the generalized intersection [3, pp. 439]

∩α∈I Eα.)

2. FIXED POINT THEORY IN FRÉCHET SPACES

Let E = (E, {| · |n}n∈N) be a Fréchet space with the topology generated by a

family of seminorms {|· |n : n ∈ N}; here N = {1, 2, . . .}. We assume that the family

of seminorms satisfies

(2.1) |x|1 ≤ |x|2 ≤ |x|3 ≤ · · · · · · for every x ∈ E.

A subset X of E is bounded if for every n ∈ N there exists rn > 0 such that

|x|n ≤ rn for all x ∈ X. For r > 0 and x ∈ E we denote B(x, r) = {y ∈ E :

|x − y|n ≤ r ∀n ∈ N}. To E we associate a sequence of Banach spaces {(En, | · |n)}

described as follows. For every n ∈ N we consider the equivalence relation ∼n

defined by

(2.2) x ∼n y iff |x − y|n = 0.

We denote by En = (E /∼n, |·|n) the quotient space, and by (En, |·|n) the completion

of En with respect to | · |n (the norm on En induced by | · |n and its extension to En

are still denoted by | · |n). This construction defines a continuous map µn : E → En.

Now since (2.1) is satisfied the seminorm | · |n induces a seminorm on Em for every

m ≥ n (again this seminorm is denoted by | · |n). Also (2.2) defines an equivalence

relation on Em from which we obtain a continuous map µn,m : Em → En since

Em /∼n can be regarded as a subset of En. Now µn,m µm,k = µn,k if n ≤ m ≤ k

and µn = µn,m µm if n ≤ m. We now assume the following condition holds:

(2.3)

{

for each n ∈ N, there exists a Banach space (En, | · |n)

and an isomorphism (between normed spaces) jn : En → En.

Remark 2.1. (i). For convenience the norm on En is denoted by | · |n.

(ii). In our applications En = En for each n ∈ N .
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(iii). Note if x ∈ En (or En) then x ∈ E. However if x ∈ En then x is not necessaily

in E and in fact En is easier to use in applications (even though En is isomorphic

to En). For example if E = C[0,∞), then En consists of the class of functions in

E which coincide on the interval [0, n] and En = C[0, n].

Finally we assume

(2.4)

{

E1 ⊇ E2 ⊇ · · · · · · and for each n ∈ N,

|jn µn,n+1 j−1

n+1 x|n ≤ |x|n+1 ∀ x ∈ En+1

(here we use the notation from [3] i.e. decreasing in the generalized sense). Let

lim← En (or ∩∞1 En where ∩∞1 is the generalized intersection [3]) denote the pro-

jective limit of {En}n∈N (note πn,m = jn µn,m j−1
m : Em → En for m ≥ n) and note

lim← En
∼= E, so for convenience we write E = lim← En.

For each X ⊆ E and each n ∈ N we set Xn = jn µn(X), and we let Xn, int Xn

and ∂Xn denote respectively the closure, the interior and the boundary of Xn with

respect to | · |n in En. Also the pseudo-interior of X is defined by

pseudo − int (X) = {x ∈ X : jn µn(x) ∈ Xn \ ∂Xn for every n ∈ N}.

The set X is pseudo-open if X = pseudo − int (X). For r > 0 and x ∈ En we

denote Bn(x, r) = {y ∈ En : |x − y|n ≤ r}.

Let M ⊆ E and consider the map F : M → 2E. Assume for each n ∈ N and

x ∈ M that jn µn F (x) is closed. Let n ∈ N and Mn = jn µn(M). Since we only

consider Volterra type operators we assume

(2.5) if x, y ∈ E with |x − y|n = 0 then Hn(F (x), F (y)) = 0;

here Hn denotes the appropriate generalized Hausdorff distance (alternatively we

could assume ∀n ∈ N, ∀x, y ∈ M if jn µn (x) = jn µn (y) then jn µn F (x) =

jn µn F (y) and of course here we do not need to assume that jn µn F (x) is closed for

each n ∈ N and x ∈ M). Now (2.5) guarantees that we can define (a well defined)

Fn on Mn as follows:

For y ∈ Mn there exists a x ∈ M with y = jn µn(x) and we let

Fn (y) = jn µn F (x)

(we could of course call it F y since it is clear in the situation we use it); note Fn :

Mn → C(En) and note if there exists a z ∈ M with y = jn µn(z) then jn µn F (x) =

jn µn F (z) from (2.5) (here C(En) denotes the family of nonempty closed subsets

of En). In this paper we assume Fn will be defined on Mn i.e. we assume the Fn

described above admits an extension (again we call it Fn) Fn : Mn → 2En (we will

assume certain properties on the extension).

We now show how easily one can extend fixed point theory in Banach spaces to

applicable fixed point theory in Fréchet spaces.
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Theorem 2.1. Let E and En be as described in the beginning of Section 2, M a

bounded symmetric subset of E, F : Y → 2E with Y ⊆ E and with jn µn(0) ∈ Mn

and Mn ⊆ Yn for each n ∈ N . Also assume for each n ∈ N and x ∈ Y that

jn µn F (x) is closed and in addition for each n ∈ N that Fn : Mn → 2En is as

described above. Suppose the following conditions are satisfied:

(2.6) for each n ∈ N, Fn ∈ K(Mn, En)

(2.7) for each n ∈ N, we have Fn(x) ∩ (−Fn(−x)) 6= ∅ for x ∈ ∂ Mn

and

(2.8)

{

for each n ∈ {2, 3, . . . } if y ∈ Mn solves y ∈ Fn y in En

then jk µk,n j−1
n (y) ∈ Mk for k ∈ {1, . . . , n − 1}.

Then F has a fixed point in E.

Remark 2.2. Note in Theorem 2.1 if x ∈ Mn then x ∈ Yn so there exists a y ∈ Y

with x = jn µn (y) and so Fn (x) = jn µn F (y).

PROOF: Fix n ∈ N . We would like to apply Theorem 1.1. To do so we need to show

(2.9) Mn is a bounded symmetric subset of En.

To see that Mn is symmetric let x̂ ∈ µn(M). Then for every x ∈ µ−1
n (x̂) we have

−x ∈ M since M is symmetric and of course − x̂ = −µn(x). Now its easy to see

−µn(x) = µn(−x) so

− x̂ = −µn(x) = µn(−x) ∈ µn(M).

As a result µn(M) is symmetric and since jn is linear (in particular jn(−y) = − jn(y)

for y ∈ En) we have that Mn = jn µn(M) is symmetric and so Mn is symmetric.

Also Mn is bounded (so Mn is bounded) since M is bounded (note if y ∈ Mn then

there exists x ∈ M with y = jnµn(x)). Thus (2.9) holds.

For each n ∈ N (see Theorem 1.1) there exists yn ∈ Mn with yn ∈ Fn (yn). Lets

look at {yn}n∈N . Notice y1 ∈ M1 and j1 µ1,k j−1

k (yk) ∈ M1 for k ∈ N\{1} from

(2.8). Note j1 µ1,n j−1
n (yn) ∈ F1 (j1 µ1,n j−1

n (yn)) in E1; to see note for n ∈ N fixed

there exists a x ∈ E with yn = jn µn (x) so jn µn (x) ∈ Fn (yn) = jn µn F (x) on En

so on E1 we have

j1 µ1,n j−1

n (yn) = j1 µ1,n j−1

n jn µn (x) ∈ j1 µ1,n j−1

n jn µn F (x)

= j1 µ1,n µn F (x) = j1 µ1 F (x) = F1(j1 µ1 (x))

= F1(j1 µ1,n j−1

n jn µn (x)) = F1 (j1 µ1,n j−1

n (yn)).

As a result j1 µ1,n j−1
n (yn) ∈ F1 (j1 µ1,n j−1

n (yn)) in E1, j1 µ1,n j−1
n (yn) ∈ M1 for

n ∈ N , together with (2.6) implies there is a subsequence N ?
1 of N and a z1 ∈ M1

with j1 µ1,n j−1
n (yn) → z1 in E1 as n → ∞ in N?

1 and z1 ∈ F1 (z1) since F1 is upper
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semicontinuous. Let N1 = N?
1 \ {1}. Now j2 µ2,n j−1

n (yn) ∈ M2 for n ∈ N1 together

with (2.6) guarantees that there exists a subsequence N ?
2 of N1 and a z2 ∈ M2 with

j2 µ2,n j−1
n (yn) → z2 in E2 as n → ∞ in N?

2 and z2 ∈ F2 (z2). Note from (2.4)

and the uniqueness of limits that j1 µ1,2 j−1

2 z2 = z1 in E1 since N?
2 ⊆ N1 (note

j1 µ1,n j−1
n (yn) = j1 µ1,2 j−1

2 j2 µ2,n j−1
n (yn) for n ∈ N?

2 ). Let N2 = N?
2 \ {2}. Proceed

inductively to obtain subsequences of integers

N?
1 ⊇ N?

2 ⊇ · · · · · · , N?
k ⊆ {k, k + 1, . . . }

and zk ∈ Mk with jk µk,n j−1
n (yn) → zk in Ek as n → ∞ in N?

k and zk ∈ Fk (zk).

Note jk µk,k+1 j−1

k+1
zk+1 = zk in Ek for k ∈ {1, 2, . . . }. Also let Nk = N?

k \ {k}.

Fix k ∈ N . Now zk ∈ Fk (zk) in Ek. Note as well that

zk = jk µk,k+1 j−1

k+1
zk+1 = jk µk,k+1 j−1

k+1
jk+1 µk+1,k+2 j−1

k+2
zk+2

= jk µk,k+2 j−1

k+2
zk+2 = · · · = jk µk,m j−1

m zm = πk,m zm

for every m ≥ k. We can do this for each k ∈ N . As a result y = (zk) ∈ lim←En = E

and also note zk ∈ Mk ⊆ Yk for each k ∈ N . Thus for each k ∈ N we have

jk µk (y) = zk ∈ Fk (zk) = jk µk F (y) in Ek

so y ∈ F (y) in E. �

In Theorem 2.1 it is possible to replace Mn ⊆ Yn with Mn a subset of the closure

of Yn in En provided Y is a closed subset of E so in this case we could have Y = M

if M was closed. To see this note from y = (zk) ∈ lim←En = E and πk,m (ym) → zk

in Ek as m → ∞ we can conclude that y ∈ Y = Y (note q ∈ Y iff for every

k ∈ N there exists (xk,m) ∈ Y , xk,m = πk,n (xn,m) for n ≥ k with xk,m → jk µk (q)

in Ek as m → ∞). Thus zk = jk µk (y) ∈ Yk and so jk µk (y) ∈ jk µk F (y) in Ek

as before. For completeness we state these results.

Theorem 2.2. Let E and En be as described in the beginning of Section 2, M a

bounded symmetric subset of E, F : Y → 2E with Y a closed subset of E and with

jn µn(0) ∈ Mn and Mn a subset of the closure of Yn in En for each n ∈ N . Also

assume for each n ∈ N and x ∈ Y that jn µn F (x) is closed and in addition for

each n ∈ N that Fn : Mn → 2En is as described above. Suppose (2.6), (2.7) and

(2.8) hold. Then F has a fixed point in E.

Corollary 2.1. Let E and En be as described in the beginning of Section 2, M a

closed bounded symmetric subset of E, F : M → 2E with jn µn(0) ∈ Mn for each

n ∈ N . Also assume for each n ∈ N and x ∈ M that jn µn F (x) is closed and in

addition for each n ∈ N that Fn : Mn → 2En is as described above. Suppose (2.6),

(2.7) and (2.8) hold. Then F has a fixed point in E.
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