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1. INTRODUCTION

This paper presents new antipodal fixed point theorem for compact Kakutani
maps between Fréchet spaces. The proofs rely on an antipodal fixed point theorem
for compact Kakutani maps due to O’'Regan and Peran [4] and viewing a Fréchet
space as the projective limit of a sequence of Banach spaces. In the literature [1, 2]
one usually assumes the map F' is defined on a subset X of a Fréchet space E and
its restriction (again called F) is well defined on X,, (see Section 2). In general of
course for Volterra operators the restriction is always defined on X, and in most
applications it is in fact defined on X,, and usually even on E, (see Section 2). In
this paper we make use of the fact that the restriction is well defined on X, and we
only assume it admits an extension (satisfying certain properties) on X,. We also
show in Section 2 how easily one can extend antipodal fixed point theory in Banach

spaces to fixed point theory in Fréchet spaces.

Existence in Section 2 will be based on an antipodal fixed point theorem for
compact Kakutani maps due to O’'Regan and Peran [4]. We state a particular case
of it here for the convenience of the reader. Let X and Y be topological vector
spaces. We say F': X — CK(Y) is a Kakutani map if F' is upper semicontinuous;
here CK(Y') denotes the family of nonempty compact convex subsets of Y. We write
Fe K(X,Y)if F is a compact Kakutani map.
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Theorem 1.1. Let E be a Banach space and M a closed, bounded, symmetric
subset of E with 0 € M and let F € K(M,E) with F(z)N (= F(—xz)) # 0 for all
x€dM. Then F has a fixed point in M.

Now let I be a directed set with order < and let {E,}.e; be a family of locally
convex spaces. For each a € I, # € I for which o < 3 let m,3: Eg — E, be a

continuous map. Then the set

{x: (xq) € H E,: xo =map(xg) Va, el a< ﬁ}
acl

is a closed subset of [],.; E, and is called the projective limit of {Eq,}q.e; and is

denoted by lim. E, (or lim. {E,, 7,3} or the generalized intersection [3, pp. 439]

ﬁozEI Ea-)

2. FIXED POINT THEORY IN FRECHET SPACES

Let E = (E,{] - |n}nen) be a Fréchet space with the topology generated by a
family of seminorms {|-|, : n € N}; here N = {1,2,...}. We assume that the family

of seminorms satisfies
(2.1) lz)y < zle < zlz < vvve e for every x € E.

A subset X of E is bounded if for every n € N there exists r, > 0 such that
|z, < 7, foral € X. For r >0 and z € E we denote B(z,r) = {y € E :
|z —yl|, <rV¥n e N}. To E we associate a sequence of Banach spaces {(E,,|-|.)}
described as follows. For every m € N we consider the equivalence relation ~,,
defined by

(2.2) x o~y iff |z —yl, =0.

We denote by E" = (E' / ~,,||.) the quotient space, and by (E,,|-|,) the completion
of E" with respect to |-|, (the norm on E™ induced by |-|, and its extension to E,
are still denoted by |- |,). This construction defines a continuous map p, : £ — E,.
Now since (2.1) is satisfied the seminorm |- |, induces a seminorm on E,, for every
m > n (again this seminorm is denoted by |- |,). Also (2.2) defines an equivalence
relation on E,, from which we obtain a continuous map ,, : E, — E, since
E,, / ~, can be regarded as a subset of E,. Now (i, m thmi = fns if n <m < k

and [ty = finm fm if n < m. We now assume the following condition holds:

(2.3) { for each m € N, there exists a Banach space (E,,|-|,)

and an isomorphism (between normed spaces) j, : E, — E,.

Remark 2.1. (i). For convenience the norm on E, is denoted by |- |,.

(ii). In our applications E, = E" for each n € N.
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(iii). Noteif x € E,, (or E") then « € E. However if x € E,, then x is not necessaily
in F and in fact FE, is easier to use in applications (even though FE, is isomorphic
to E,). For example if £ = C[0,00), then E™ consists of the class of functions in
E which coincide on the interval [0,n] and E,, = C[0, n].

Finally we assume

{ EiDE,D v and for each n € N,

(2.4) 4 .
[Jn Bt Jngt Tl < 2|1V @ € By
(here we use the notation from [3] i.e. decreasing in the generalized sense). Let
lim_ E, (or N{° E, where N is the generalized intersection [3]) denote the pro-
jective limit of {E,}nen (n0te Tpm = Jn thnm Jm’ @ Em — E, for m > n) and note
lim_ FE, = E, so for convenience we write £ =lim_ F,.

For each X C F and each n € N we set X,, = j, un(X), and we let X,,, int X,
and 0X,, denote respectively the closure, the interior and the boundary of X,, with

respect to |- |, in E,. Also the pseudo-interior of X is defined by
pseudo —int (X) ={x € X : j,pn(z) € X,,\ 0X,, for every n € N}.

The set X is pseudo-open if X = pseudo —int(X). For r > 0 and z € E, we
denote B, (z,7)={ye€ E,: |z —y|, <1}

Let M C E and consider the map F : M — 2¥. Assume for each n € N and
x € M that j, p, F (z) is closed. Let n € N and M,, = j, p,(M). Since we only

consider Volterra type operators we assume
(2.5) if z,ye F with |z —y|, =0 then H,(F (z),F (y)) = 0;

here H, denotes the appropriate generalized Hausdorff distance (alternatively we
could assume Vn € N, Va,y € M if j,p, () = jnpn (y) then j,p, F(x) =
Jn tin F' (y) and of course here we do not need to assume that j, pu, F' (z) is closed for
each n € N and x € M). Now (2.5) guarantees that we can define (a well defined)

F,, on M, as follows:

For y € M, there exists a x € M with y = j,, u,(z) and we let

Fo (y) = jn pin F (2)

(we could of course call it F'y since it is clear in the situation we use it); note F), :
M, — C(E,) and note if there exists a z € M with y = j,, u,(z) then j, p, F (x) =
Jn tin F' (2) from (2.5) (here C(E,) denotes the family of nonempty closed subsets
of E,). In this paper we assume F;,, will be defined on M,, i.e. we assume the F),
described above admits an extension (again we call it F,) F, : M, — 2 (we will

assume certain properties on the extension).

We now show how easily one can extend fixed point theory in Banach spaces to

applicable fixed point theory in Fréchet spaces.
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Theorem 2.1. Let E and E, be as described in the beginning of Section 2, M a
bounded symmetric subset of E, F:Y — 2F with Y C E and with j, p,(0) € M,
and M, C Y, for each n € N. Also assume for each n € N and x € Y that
Jn tin F (z) is closed and in addition for each n € N that F, : M, — 2P is as

described above. Suppose the following conditions are satisfied:

(2.6) for each n € N, F, € K(M,, E,)

(2.7) for each n € N, we have F,(z)N (= F,(=x)) #0 for x € OM,

and
(2.8) { for eac.h n 6.{2, 3,.. .}_z’f y € M,, solves ye F,y in E,
then i puen jn* (y) € My, for ke {l,...,n—1}.
Then F' has a fized point in E.
Remark 2.2. Note in Theorem 2.1 if x € M,, then x €Y, so there exists a y € Y
with x = j, pn (y) and so F, (z) = jp pin F(y).
PROOF: Fix n € N. We would like to apply Theorem 1.1. To do so we need to show

(2.9) M, is a bounded symmetric subset of E,.

To see that M, is symmetric let & € u,(M). Then for every = € u,'(#) we have

—x € M since M is symmetric and of course —2 = — p,(x). Now its easy to see
— pin(2) = pn(—2) s0

— & == pn(x) = (=) € pa(M).
As aresult p, (M) is symmetric and since j, is linear (in particular j,(—y) = — j.(vy)
for y € E,) we have that M, = j, u,(M) is symmetric and so M, is symmetric.
Also M, is bounded (so M,, is bounded) since M is bounded (note if y € M,, then
there exists x € M with y = j,pu,(x)). Thus (2.9) holds.

For each n € N (see Theorem 1.1) there exists v, € M, with y, € F, (y,). Lets
look at {y,}nen. Notice y; € My and jipix g (yx) € My for k € N\{1} from
(2.8). Note j1 pt1.nJn (yn) € F1 (1 pandn (yn)) in Ej; to see note for n € N fixed
there exists a = € E with y, = j, pin () S0 Jjn tin () € Fy (Yn) = Jn pin F(x) on E,

so on F; we have
Jibin gy (Un) = Gl dn dn e () € J1pan Gyt G e F(2)
= Jipanpn F(2) =511 F(2) = Fi(j1 1 (2))
= Fl(,jl /~L1,n j;l .]n Hn, («T)) == Fl (.]1 /~L1,n j;l(yn>>

As a result jipnndy (Yn) € Fir(jupndn ' (yn)) i By, jipand,' (yn) € My for
n € N, together with (2.6) implies there is a subsequence N} of N and a 2, € M;

with ji pt1.0 ;" (Yn) — 21 in By as n — oo in Nf and 2, € F} (z;) since F} is upper
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semicontinuous. Let Ny = Ny \ {1}. Now Jjo o it (yn) € My for n € Ny together
with (2.6) guarantees that there exists a subsequence Nj of N; and a 2z, € M, with
Jotonint (Yn) — 22 in By as n — oo in Ny and 23 € Fy(z2). Note from (2.4)
and the uniqueness of limits that j p19 j2_1 zg = z; in E; since NJ C Nj (note
ik gyt (Yn) = J1in2ds " 2 o Gt (yn) for m€ N3). Let No = N3\ {2}. Proceed
inductively to obtain subsequences of integers

Nf DN D e . N C{kk+1,..}

and 2, € M, with jj, P Jnt (Yn) — 2z In Ej as n — oo in N} and z; € Fj, ().
Note ]k lu’kvk‘f'ljk_-i}l Zk+1 = Rk in Ek for & € {1,2, .. } Also let Nk = N]:\{/{Z}

Fix k€ N. Now z; € Fi (z) in Ej. Note as well that

. . 1 . —1 - -1
k= Jk Mkk+1 Jgt1 #k+1 = Jk Bkk+1 Jpy1 Je+1 Mb+1,k+2 Jpy2 h+2

. —1 . -1
= Jk Mk k42 Jgpto k42 = " = Jk Hkom Jm Am = Tkym Zm

for every m > k. We can do this for each k € N. Asaresult y = (z;) € lim_ F,, = F
and also note 2z, € My C Y, for each k € N. Thus for each k € N we have

Jk b (y) = 2 € Fy (2) = Ji g F' (y) in Ej

soye F(y) in £. O

In Theorem 2.1 it is possible to replace M, C Y, with M, a subset of the closure
of Y,, in F, provided Y is a closed subset of E so in this case we could have Y = M
if M was closed. To see this note from y = (2;) € lim. E,, = E and 7y (Ym) — 2
in B, as m — oo we can conclude that y € Y =Y (note ¢ € Y iff for every
k € N there exists (Tgm) €Y, Trm = Ten (Tnm) for n >k with xx,, — Ji i (@)
in £, as m — o0). Thus z, = jip e (y) € Y and so jx i (v) € Jrpr F (y) in Ej
as before. For completeness we state these results.

Theorem 2.2. Let F and E, be as described in the beginning of Section 2, M a
bounded symmetric subset of E, F:Y — 2F with Y a closed subset of E and with
Jn tin(0) € M, and M, a subset of the closure of Y, in E, for each n € N. Also
assume for each n € N and x € Y that j, p, F (x) is closed and in addition for
each n € N that F, : M, — 25 is as described above. Suppose (2.6), (2.7) and
(2.8) hold. Then F has a fized point in E.

Corollary 2.1. Let E and E, be as described in the beginning of Section 2, M a
closed bounded symmetric subset of E, F : M — 2F with j, u,(0) € M,, for each
n € N. Also assume for each n € N and v € M that j, p, F (x) is closed and in
addition for each n € N that F, : M, — 2F is as described above. Suppose (2.6),
(2.7) and (2.8) hold. Then F' has a fized point in E.
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