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1. INTRODUCTION

Given measurable and uniformly integrable bounded set-valued mappings F :

[0, T ]×R
d ×R

m → Cl(Rm) and H : [0, T ]×R
m → Cl(Rm) by a backward stochastic

differential inclusion BSDI(F,H) we mean relations

(1.1)





xs ∈ E
[
xt +

∫ t

s
F (τ, xτ , zτ )dτ |Fs

]

xT ∈
∫ T

0
H(t, zt)dt

that have to be satisfied a.s. for every 0 ≤ s ≤ t ≤ T by a pair (x, z) of cádlág processes

x = (xt)0≤t≤T and z = (zt)0≤t≤T defined on a complete filtered probability space

PIF = (Ω,F , P, IF) with a filtration IF = (Ft)0≤t≤T satisfying the usual hypothesis (see

[11]). E[xt +
∫ t

s
F (τ, xτ , zτ )dτ |Fs] denotes the set-valued conditional expectation (see

[3], [4]) of the set-valued mapping Ω 3 ω −→ xt(ω) +
∫ t

s
F (τ, xτ (ω), zτ(ω))dτ ⊂ R

m

with respect to the sub-σ-algebra Fs ⊂ F . If PIF and a cádlág process z are given

then x, satisfying conditions (1.1) with a filtration IFz generated by the process z

is said to be a strong solution to BSDI(F,H) with a driving process z. Usually

the driving process z is an m-dimensional Browian motion or a strong solution of

a forward stochastic differential equation. Let us recall that we call multifunctions

F and H uniformly p-integrably bounded if there is a m ∈ Lp([0, T ], IR+) such that

max[h(F (t, x, z), {0}), h(H(t, z), {0})] ≤ m(t) for (x, z) ∈ IRd × IRm and a.e. t ∈

[0, T ], where h denotes the Hausdorff metric (see [7]). In a general case for given

multifunctions F and H and a probability measure µ on a Borel σ-algebra of D(IRm)

we can look for systems (PIF, x, z) such that
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(i) Pz−1 = µ,

(ii) every IFz-martingale is also IF-martingale,

(iii) a pair (x, z) satisfies (1) on PIF a.s. for every 0 ≤ s ≤ t ≤ T .

Such systems are said to be weak solutions to BSDI(F,H) with a given distribu-

tion µ of the driving process. In what follows we denote the BSDI(F,H) with a given

driving process z or with a given distribution µ of this process by BSDI(F,H, z) and

BSDI(F,H, µ), respectively. It is clear that if x is a strong solution to BSDI(F,H, z)

on PIFz , then a system (PIFz , x, z) is a weak solution to BSDI(F,H, Pz−1). The back-

ward stochastic differential inclusions considered in this paper generalize the backward

stochastic differential equations considered in [1] and the backward stochastic differ-

ential inclusions with continuous solutions considered in [8]. In some special cases the

BSDI(F,H) describes a class of recursive utilities under uncertainty (see [5] and [8]).

The existence of weak solutions to BSDI(F,H, µ) and weak compactness of the set

of all such its solutions need some special topology on the space D(IRd+m) introduced

by Meyer and Zheng in [10]. We present it in the Section 2. Some properties of

Aumann’s integrals and their conditional expections are given in the Section 3. Some

existence theorems for BSDI(F,H) are contained in the Section 4. The main result

of the paper, dealling with the weak compactness of the set of all weak solutions to

BSDI(F,H) with respect to the Meyer-Zheng weak topology, is given in Section 5.

Throughout the paper we denote by PIF a complete filtered probability space

(Ω,F P, IF) with a filtration IF = (Ft)0≤t≤T satisfying the usual hypotheses. Given PIF

we denote by ID(IF,Rm) the space of all m-dimensional IF-adapted cádlág processes

on PIF and by S2(IF,Rm) the set of all m-dimensional IF-semimartingales x such that

||x||2S2 = E[sups∈[0,T ]|xs|
2] < ∞. We have S2(IF,Rm) ⊂ ID(IF,Rm). It can be proved

(see [11], Th.IV2.1.,Th.V.2.2.) that (S2(IF,Rm), || · ||S2) is a Banach space.

2. THE MEYER-ZHENG TOPOLOGY

Let T > 0 be given and let D(IRk) = D([0, T ], IRk) denote the space of all cádlág

functions x : [0, T ] → IRk, i.e. every x ∈ D(IRk) is right continuous with left-hand

limits such that x(T ) = limt↗T x(t), and by the convention x(0−) = 0. It is well

known (see [7], Th.IV.1.14) that there is a metrizable topology on D(IRk), called

the Skorokhod topology, for which this space is a Polish space. On the other hand

there are not very much functions defined on D(IRk) that are continuous for the

Skorokhod topology. For instance, the coordinate mapping π defined by πt(x) = x(t)

for x ∈ D(IRk) is not continuous on D(IRk). Hence in particular, it follows that a

function g(t, ·) defined for fixed t ∈ [0, T ] by setting g(t, x) = f(x(t)) for x ∈ D(IRk)

is not in general continuous on D(IRk) for a given continuous function f : IRk → IR.

Therefore we are interested in introducing on D(IRk) another topology by which much

more functions defined on D(IRk) is continuous. Such topology was defined on D(IRk)
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by Meyer and Zheng (see [10]) as the pseudopath topology. It was proved by Meyer

and Zheng (see [10], Lemma 1) that the convergence of sequences in the pseudopath

topology on D(IRk) is just convergence in the Lebesgue measure. Therefore (see [1],

[11]) the pseudopath topology is metrizable and a compatible matric is given by

(2.1) ρ(x, y) =

∫ T

0

(|x(t) − y(t)| ∧ 1)dt

for x, y ∈ D(IRk). The topology induced by this metric is called in [1] as the Meyer-

Zheng topology on D(IRk). It can be verified (see [10], p. 355–356) that (D(IRk), ρ) is

a separable metric space. But it is not complete. However (see [1], p. 33) it is a Lusin

space. Then for every embedding in a compact metric space K, D(IRk) is a Borel set

in K. It is easy to see that for every continuous function f : IRk → L([0, T ], IRk) a

function f ◦ π : D(IRk) → L([0, T ], IRk) is continuous for the Meyer-Zheng topology.

In particular, a function

Y k
t (x) =

1

δ

∫ T∧(t+δ)

t

πk
τ (x)dτ

with πk
t (x) = πt(x)[(k + 1 − |πt(x)|)

+ ∧ 1] for k ≥ 1, t ∈ [0, T ] and x ∈ D(IRd) is

bounded and continuous in the Meyer-Zheng topology for every δ > 0.

Similarly as in [1] we will consider D(IRk) as a measurable space with a natural

σ-algebra D(IRk) defined by the projection π, i.e. with D(IRk) = σ({πu : 0 ≤ u ≤ T}).

Similarly we define σ - algebras Dt(IR
k) = σ({πu : 0 ≤ u ≤ t}) and DT

t (IRk) = σ({πu :

t ≤ u ≤ T}) for fixed 0 ≤ t ≤ T . Throughout the paper we shall assume that the

natural filtrations (Dt(IR
k))0≤t≤T and (DT

t (IRk))t≤t≤T are augmented and satisfy the

usual hypotheses. We have the following result.

Proposition 2.1 ([1], Lemma 4.2.). Let β(D(IRk)) be the Borel σ-algebra of Borel

subsets of D(IRk) in the Meyer-Zheng topology. Then β(D(IRk)) = D(IRk).

In what follows we shall consider D(IRk) with k = d + m, i.e. D(IRd+m) =

D(IRd)×D(IRm). In such a case by πd and πm we denote partial coordinate mappings

defined on D(IRd+m) by settings πd
t (x, y) = x(t) and πm

t (x, y) = y(t) for fixed

0 ≤ t ≤ T and (x, y) ∈ D(IRd+m).

3. SOME PROPERTIES OF AUMANN’S INTEGRALS AND ITS

CONDITIONAL EXPECTION

Given a measurable set-valued mapping G : [0, T ] → Cl(IRm), where Cl(IRm)

denotes a family of all nonempty closed subsets of IRm, we denote by S(G) the set of

all Lebesgue integrable selectors for G, i.e. Lebesgue integrable functions g : [0, T ] →

IRm such that g(t) ∈ G(t) for a.e. t ∈ [0, T ]. If S(G) 6= ∅ then G is said to be

Aumann integrable and a family {
∫ T

0
g(t)dt : g ∈ S(G)} is denoted by

∫ T

0
G(t)dt
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and called the Aumann’s integral of G on [0, T ]. Immediately from Kuratowski and

Ryll-Nardzewski measurable selection theorem (see [9], [6]) it follows that if G is

measurable and integrable bounded then it is Aumann integrable. We shall need the

following properties of Aumann’s integrals.

Proposition 3.1 ([6], Th. II.3.20). Let G : [0, T ] → Cl(IRm) be Aumann integrable.

Then
∫ T

0
G(t)dt =

∫ T

0
coG(t)dt and both integrals are convex and compact subsets of

IRm.

Proposition 3.2 ([6], Th. II.3.21). Let G : [0, T ] → Cl(IRm) be Aumann integrable.

Then
∫
U
σ(p,G(t))dt = σ(p,

∫
U
G(t)dt) for every p ∈ IRm and a measurable set U ⊂

[0, T ], where σ(p, ·) denotes the support function on IRm, where coG(t) denotes the

convex hull of G(t).

It can be verified ([6], Th. III.1.2) that a space A (equivalence classes of) all

Aumann integrable set-valued mappings is a complete metric space with a metric

d defined by d(F,G) =
∫ T

0
h(F (t), G(t))dt for F,G ∈ A, where h is the Hausdorff

metric on the space Comp(IRm) of all nonempty compact subsets of IRm. In what

follows we shall deal with set-valued mappings F : [0, T ] × X → Cl(IRm) where

(X, ρ) is a given metric space. If F (·, x) is measurable and uniformly integrable

bounded then we can define a set-valued mapping S(F ) : X → P(L([0, T ], IRm))

by setting S(F )(x) = {f ∈ L([0, T ], IRm) : f(t) ∈ F (t, x) a.e.} for x ∈ X, where

P(L([0, T ], IRm)) denotes a space of all nonempty subsets of L([0, T ], IRm). We say

that F is A-continuous with respect to its second argument if a mapping X 3 x →

F (·, x) ∈ A is continuous as a mapping from (X, ρ) into (A, d). It can be verified (see

[6], Lemma III.2.8.) that S(F ) is continuous if F is A-continuous with respect to its

second variable. We say that F is A-lower semicontinuous with respect to its second

variable if for every x ∈ X and every sequence (xn)∞n=1 of (X, ρ) converging to x one

has limn→∞

∫ T

0
supu∈F (t,x) dist(u, F (t, xn))dt = 0. It can be proved (see [6], Lemma

III.2.9.) that if F is A-lower semicontinuous with respect to its second variable then

S(F ) is lower semicontinuous onX. Furthermore (see [2], Th. 42) if (X, ρ) is separable

then S(F ) admits an A-continuous selector.

Let (Ω,F , P ) be a probability space and let G be a sub-σ-algebra of F . Given

an F -measurable set-valued mapping Φ : Ω → Cl(Rm) with a nonempty set S(Φ) of

all its F -measurable and integrable selectors there exists (see [3], [4]) an unique (in

the a.s. sense) G- measurable set-valued mapping E[Φ|G] satisfying

(3.1) S(E[Φ|G]) = clL{E[ϕ|G] : ϕ ∈ S(Φ)}

where clL denotes the closure operation in L(Ω,G,Rm). We call E[Φ|G] the multi-

valued conditional expectation of Φ relative to G. This conditional expectation has

properties similar to those of the usual ones. For example, we have
∫

A
E[Φ|G]dP =
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∫
A

ΦdP for every A ∈ G, where integrals are understood in the Aumann’s sense

(see [4], Prop. 6.8). It can be proved (see [4], Prop. 6.2.) that for given mea-

surable and integrably bounded set-valued mappings Φ,Ψ : Ω → Cl(Rm) one has

Eh(E[Φ|G], E[Ψ|G]) ≤ Eh(Φ,Ψ).

Let G : [0, T ] × Ω → Cl(Rm) be measurable and integrably bounded. Similarly

as above we denote by S(G) the set of all integrable selectors of G. It is easy to verify

(see [6]) that S(G) is nonempty and decomposable, i.e. that for every f, g ∈ S(G)

and E ∈ βT ⊗F one has
�

Ef +
�

E∼g ∈ S(G), where βT denotes the Borel σ-algebra

of [0, T ] and E∼ is the complement of E. In particular, if G(t, ω) are convex subsets

of R
m for (t, ω) ∈ [0, T ] × Ω, the set S(G) is a convex weakly compact subset of

L([0, T ] × Ω,Rm). Then it is also a closed subset of this space. For the given above

G we can define an Aumann integral Φ(ω) =
∫ T

0
G(t, ω)dt depending on a parameter

ω ∈ Ω. By virtue of Lemma 2 a set-valued integral
∫ T

0
G(t, ω)dt is a nonempty convex

compact subset of R
m for every ω ∈ Ω. Furthermore,

∫ T

0
G(t, ω)dt =

∫ T

0
coG(t, ω)dt

for ω ∈ Ω. Hence and Lemma 3 we obtain the following result.

Proposition 3.3. Let G : [0, T ]×Ω → Cl(Rm) be measurable and integrably bounded.

Then a set-valued mapping Φ : Ω → Conv(Rm) defined by Φ(ω) =
∫ T

0
G(t, ω)dt for

ω ∈ Ω is measurable.

Proof. By virtue of ([6],Th. II.3.8) it is enough only to verify that the function Ω 3

ω → s(p,Φ(ω)) ∈ R is measurable for every p ∈ R
n, where s(·, A) denotes a support

function of A ∈ Cl(Rm). By the measurability of G and its integrably boundedness

a function [0, T ] × Ω 3 (t, ω) → s(p,G(t, ω)) ⊂ R is measurable for every p ∈ R
m

(see [8], Remark II.3.5). By virtue of Proposition 3.2 for every p ∈ R
m one has

s(p,Φ(ω)) =
∫ T

0
s(p,G(t, ω))dt for ω ∈ Ω. Hence the measurability of the function

Ω 3 ω → s(p,Φ(ω)) ∈ R follows for every p ∈ R
m. Therefore Φ is F -measurable.

Proposition 3.4. Let G : [0, T ]×Ω → Cl(Rm) be measurable and integrably bounded

and let Φ(ω) =
∫ T

0
G(t, ω)dt for ω ∈ Ω. Then S(Φ) is a nonempty convex weakly

compact subset of L(Ω,F ,Rm). Furthermore, ϕ ∈ S(Φ) if and only if there is g ∈

S(co G) such that ϕ(ω) =
∫ T

0
g(t, ω)dt for a.e. ω ∈ Ω.

Proof. By Proposition 3.3, Φ is F -measurable. It is also integrably bounded, because

‖Φ(ω)‖ ≤
∫ T

0
m(t, ω)dt for a.e. ω ∈ Ω. Therefore (see [6], Th. III.2.3) S(Φ) is a

nonempty convex weakly compact subset of L(Ω,F ,Rm). For every g ∈ S(co G) a

function ϕ(ω) =
∫ T

0
g(t, ω)dt is a measurable selector for Φ, because of Proposition 3.1

we have Φ(ω) =
∫ T

0
co G(t, ω)dt for ω ∈ Ω. It is also integrably bounded, because

|ϕ(ω)| ≤
∫ T

0
m(t, ω)dt for a.e. ω ∈ Ω. Then ϕ ∈ S(Φ) for every g ∈ S(co G). Assume

now ϕ ∈ S(Φ). Then for every A ∈ F one has EAϕ ∈ EAΦ, where EAϕ =
∫

A
ϕdP

and EAΦ =
∫

A
ΦdP . Let ε > 0 be given and select a measurable partition (Aε

n)Nε

n=1 of
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Ω such that EAε
n

∫ T

0
m(t, ·)dt < ε/2n+1. For every n = 1, . . . , Nε there is a gε

n ∈ S(G)

such that EAε
n
ϕ = EAε

n

∫ T

0
gε

n(t, ·)dt. Let gε =
∑Nε

n=1

�
Aε

n
gε

n. By the decomposability

of S(G) one has gε ∈ S(G). We have gε ∈ S(co G) because S(G) ⊂ S(co G). Taking

a sequence (εk)
∞
k=1 of positive numbers converging to zero we can select g ∈ S(co G)

and a subsequence, denoted again by (gεk)∞k=1, of (gεk)∞k=1 weakly converging to g in

L([0, T ]×Ω,Rn), because S(co G) is a weakly compact subset of L([0, T ]×Ω,Rn). For

every A ∈ F and k = 1, 2, . . . there is a subset {n1, . . . , np} of {1, . . . , Nεk
} such that

A ∩ Aεk
ni

6= ∅ for i = 1, 2, . . . , p and A ∩ Ar = ∅ for r ∈ {1, 2, . . . , Nεk
} \ {n1, . . . , np}.

Therefore ∣∣∣∣EAϕ− EA

∫ T

0

gεk(t, ·)dt

∣∣∣∣ ≤

≤

Nεk∑

n=1

∣∣∣∣EA∩A
εk
n
ϕ− EA∩A

εk
n

∫ T

0

gεk
n (t, ·)dt

∣∣∣∣ =

=

p∑

i=1

∣∣∣∣EA∩A
εk
ni
ϕ− EA∩A

εk
ni

∫ T

0

gεk
n (t, ·)dt

∣∣∣∣ ≤

≤ 2

p∑

i=1

EA
εk
ni

∫ T

0

m(t, ·)dt ≤ εk

for every k = 1, 2, . . . . On the other hand for every A ∈ F we also have

∣∣∣∣EAϕ− EA

∫ T

0

g(t, ·)dt

∣∣∣∣ ≤

≤

∣∣∣∣EAϕ− EA

∫ T

0

gεk(t, ·)dt

∣∣∣∣ +

∣∣∣∣EA

∫ T

0

gεk(t, ·)dt− EA

∫ T

0

g(t, ·)dt

∣∣∣∣

≤ εk +

∣∣∣∣EA

∫ T

0

gεk(t, ·)dt− EA

∫ T

0

g(t, ·)dt

∣∣∣∣

for k = 1, 2, . . . . Hence it follows that EAϕ = EA

∫ T

0
g(t, ·)dt for every A ∈ F ,

because εk → 0 and |EA

∫ T

0
gεk(t, ·)dt − EA

∫ T

0
g(t, ·)dt| → 0 as k → ∞. Therefore

ϕ(ω) =
∫ T

0
g(t, ·)dt for a.e. ω ∈ Ω.

Corollary 3.5. If G : [0, T ] × Ω → Cl(Rm) is measurable and integrably bounded

then

S

( ∫ T

0

G(t, ·)dt

)
=

{∫ T

0

g(t, ·)dt : g ∈ S(co G)

}
.

Corollary 3.6. If G : [0, T ]×Ω → Cl(Rm) is measurable and integrably bounded and

G is a sub-σ-algebra of F then

S

(
E

[∫ T

0

G(t, ·)dt|G

])
=

{
E

[∫ T

0

g(t, ·)dt|G

]
: g ∈ S(co G)
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Proof. It is enough only to see that the set H = {E[
∫ T

0
g(t, ·)dt|G] : g ∈ S(co G)} is a

closed subset of L(Ω,G,Rm). By the properties of conditional expectations and the

properties of the set S(co G) it follows that H is a convex weakly compact subset of

L(Ω,G,Rm). Therefore H is a closed subset of L(Ω,G,Rm).

4. MEASURABLE SELECTION THEOREM

Let x = (xt)0≤t≤T be an IF-adapted m-dimensional cádlág process on PIF. Given a

measurable, IF-adapted and integrably bounded multivalued mappingG : [0, T ]×Ω →

Cl(Rm) we denote by SIF(G) a set of all measurable and IF-adapted selectors for G.

Let us observe that G is measurable and IF-adapted if and only if it is ΣIF-measurable,

where ΣIF = {A ∈ βT ⊗ F : At ∈ Ft for 0 ≤ t ≤ T} and At denotes a section of

a set A ∈ βT ⊗ F at t ∈ [0, T ]. Therefore, immediately from Kuratowski and Ryll-

Nardzewski measurable selection theorem (see [6], Th. II.3.10) it follows that for the

given above G the set SIF(G) is nonempty. Similarly as above we can verify that

SIF(co G) is a nonempty convex and weakly compact subset of L([0, T ]×Ω,ΣIF,R
m).

We have proved in [8] the following measurable selection theorem.

Theorem 4.1. Let G : [0, T ]×Ω → Cl(Rm) be a measurable IF-adapted and integrably

bounded set-valued mapping. Assume x = (xt)0≤t≤T is an m-dimensional measurable

process on PIF such that E|xT | <∞. Then

(4.1) xs ∈ E

[
xt +

∫ t

s

G(τ, ·)dτ |Fs

]
a.s.

for every 0 ≤ s ≤ t ≤ T if and only if there is g ∈ SIF(co G) such that

(4.2) xt = E

[
xT +

∫ T

t

g(τ, ·)dτ |Ft

]
a.s.

for every 0 ≤ t ≤ T .

Proof. Suppose there is g ∈ SIF(co G) such that (4.2) is satisfied. Then for every

0 ≤ s ≤ t ≤ T one has

xs = E

[
xT +

∫ T

s

g(τ, ·)dτ |Fs

]
= E

[∫ t

s

g(τ, ·)dτ |Fs

]

+E

[
xT +

∫ T

t

g(τ, ·)dτ |Fs

]

and

E[xt|Fs] = E

[
xT +

∫ T

t

g(τ, ·)dτ |Fs

]

a.s. Therefore

xs = E

[
xt +

∫ t

s

g(τ, ·)dτ |Fs

]
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a.s. for 0 ≤ s ≤ t ≤ T . Hence by Corollary 3.6 it follows that

xs ∈ S

(
E

[
xt +

∫ t

s

G(τ, ·)dτ |Fs

])

for 0 ≤ s ≤ t ≤ T . Therefore, (4.1) is satisfied a.s. for 0 ≤ s ≤ t ≤ T .

Assume that (4.1) is satisfied for every 0 ≤ s ≤ t ≤ T a.s. and let m ∈

L([0, T ]×Ω,R+) be such that ‖G(t, ω)‖ ≤ m(t, ω) for a.e. (t, ω) ∈ [0, T ]×Ω. For every

0 ≤ t ≤ T one has E|xt| ≤ E|xT |+E
∫ T

0
m(t, ·)dt <∞. By virtue of Corollary 3.6, a

process x is IF-adapted. Let η > 0 be arbitrarily fixed and select δ > 0 such that δ < T

and sup0≤t≤T−δ E
∫ t+δ

t
m(τ, ·)dτ < η/2. For fixed t ∈ [0, T − δ] and t ≤ τ ≤ t + δ we

have xt ∈ E[xτ +
∫ τ

t
G(s, ·)ds|Ft] a.s. Therefore, for every A ∈ Ft we get EA(xt−xτ ) ∈

EA

∫ τ

t
G(s, ·)ds. Then |EA(xt − xτ )| ≤ EA

∫ τ

t
‖G(s, ·)‖ds ≤ E

∫ t+δ

t
m(s, ·)ds < η/2

for every 0 ≤ t ≤ T − δ and A ∈ Ft. Therefore, supt≤τ≤t+δ |EA(xt − xτ )| ≤ η/2 for

every A ∈ Ft and fixed 0 ≤ t ≤ T − δ.

Let τ0 = 0, τ1 = δ, . . . , τN−1 = (N − 1)δ < T ≤ Nδ. Immediately from (4.1) and

Corollary 3.6 it follows that for every i = 1, 2, . . . , N − 1 there is gη
i ∈ SIF(co G) such

that

E

∣∣∣∣xτi−1
− E

[
xτi

+

∫ τi

τi−1

gη
i (s, ·)ds|Fτi−1

] ∣∣∣∣ = 0.

Furthermore, there is gη
N ∈ SIF(co G) such that

E

∣∣∣∣xτN−1
− E

[
xT +

∫ T

τN−1

gη
N(s, ·)ds|FτN−1

]∣∣∣∣ = 0.

Define gη =
∑N−1

i=1

�
[τi−1,τi)g

η
i +

�
[τN−1,T ]g

η
N . By the decomposability of SIF(co G) we

have gη ∈ SIF(co G). For fixed t ∈ [0, T ] there is p ∈ {1, 2, . . . , N − 1} or p = N such

that t ∈ [τp−1, τp) or t ∈ [τN−1, T ]. Let t ∈ [τp−1, τp) with 1 ≤ p ≤ N − 1. For every

A ∈ Ft one has
∣∣∣∣EA

(
xt − E

[
xT +

∫ T

t

gη(s, ·)dsFt

])∣∣∣∣

≤ |EA(xt − xτp
)| + E

∣∣∣∣xτp
− E

[
xτp+1

+

∫ τp+1

τp

gη(s, ·)dτ |Fτp

]∣∣∣∣

+ |EA(E[xτp+1
|Fτp

] − xτp+1
)| + E

∣∣∣∣
∫ τp

t

gη(s, ·)ds

∣∣∣∣+

+

∣∣∣∣EA

(
E

[∫ τp+1

τp

gη(s, ·)ds|Fτp

]
− E

[ ∫ τp+1

τp

gη(s, ·)dτ |Ft

])∣∣∣∣ + · · ·+

+ E

∣∣∣∣xτN−1
− E

[
xT +

∫ T

τN−1

gη(s, ·)dτ |FτN−1

]∣∣∣∣

+ |EA(E[xτN−1
|FτN−1

] − xτN−1
)| + EA

(
E

[ ∫ T

τN−1

gη(s, ·)ds|FτN−1

]
−
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− E

[∫ T

τN−1

gη(s, ·)ds|Ft

])∣∣∣∣ ≤ sup
t≤τ≤t+δ

|EA(xt − xτ )| + E

∫ t+δ

t

m(s, ·)ds+

+
N−2∑

i=p

E

∣∣∣∣xτi
− E

[
xτi+1

+

∫ τi+1

τi

gη(s, ·)ds|Fτi

]∣∣∣∣

+ E

∣∣∣∣xτN−1
− E

[
xT +

∫ T

τN−1

gη(s, ·)dτ |FτN−1

]∣∣∣∣

+
N−2∑

i=p

|EA(E[xτi+1
|Fτi

] − xτi+1
)| +

N−2∑

i=p

∣∣∣∣EA

(
E

[∫ τi+1

τi

gη(s, ·)ds|Fτi

]
−

− E

[∫ τi+1

τi

gη(s, ·)ds|Ft

])∣∣∣∣

+

∣∣∣∣EA

(
E

[∫ T

τN−1

gη(s, ·)ds|FτN−1

]
− E

[∫ T

τN−1

gη(s, ·)ds|Ft

])∣∣∣∣.

But Ft ⊂ Fτi
for i = p, p+ 1, . . . , N − 1. Then for A ∈ Ft one has

N−2∑

i=p

|EA(E[xτi+1
|Fτi

] − xτi+1
)| = 0,

N−2∑

i=p

∣∣∣∣EA

(
E

[∫ τi+1

τi

gη(s, ·)ds|Fτi

]
− E

[∫ τi+1

τi

gη(s, ·)ds|Ft

])∣∣∣∣ = 0

and ∣∣∣∣EA

(
E

[∫ T

τN−1

gη(s, ·)ds|FτN−1

]
− E

[∫ T

τN−1

gη(s, ·)ds|Ft

])∣∣∣∣ = 0.

Hence it follows

(4.3)

∣∣∣∣EA

(
xt − E

[
xT +

∫ T

t

gη(s, ·)ds|Ft

])∣∣∣∣ ≤ η

for fixed 0 ≤ t ≤ T and A ∈ Ft. Let (ηj)
∞
j=1 be a sequence of positive numbers

converging to zero. For every j = 1, 2, . . . we can select gηj ∈ SIF(co G) such that (4.3)

is satisfied with η = ηj. By the weak compactness of SIF(co G) there are g ∈ SIF(co G)

and a subsequence (gηk)∞k=1 of gηj )∞j=1 weakly converging to g in L([0, T ]×Ω,ΣIF,R).

Then for every A ∈ Ft ⊂ F one has limk→∞EA

∫ T

t
gηk(s, ·)ds = EA

∫ T

t
g(s, ·)ds. On

the other hand for every fixed t ∈ [0, T ] and A ∈ Ft we have
∣∣∣∣EA

(
xt − E

[
xT +

∫ T

t

g(s, ·)ds|Ft

])∣∣∣∣

≤

∣∣∣∣EA

(
xt − E

[
xT +

∫ T

t

gηk(s, ·)ds|Ft

])∣∣∣∣

+

∣∣∣∣EA

(
E

[∫ T

t

gηk(s, ·)ds|Ft

]
− E

[
+

∫ T

t

g(s, ·)ds|Ft

])∣∣∣∣

≤ ηk +

∣∣∣∣EA

∫ T

t

gηk(s, ·)ds− EA

∫ T

t

g(s, ·)ds

∣∣∣∣
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for k = 1, 2, . . . . Therefore

EA

(
xt − E

[
xT +

∫ T

t

g(s, ·)ds|Ft

])
= 0

for every A ∈ Ft and fixed 0 ≤ t ≤ T . But xt and E[xT +
∫ T

t
g(s, ·)ds|Ft] are

Ft-measurable. Then xt = E[xT +
∫ T

t
g(s, ·)ds|Ft], P-a.s., for 0 ≤ t ≤ T .

5. EXISTENCE THEOREMS

Given measurable and uniformly integrable bounded set-valued mappings F :

[0, T ] × IRd × IRm → Cl(IRm) and H : [0, T ] × IRm → Cl(IRd) and a pair (x, z) ∈

ID(IF, IRd) × ID(IF, IRm) with IF = (Ft)0≤t≤T we denote by SIF(F )(x, z) the set of all

measurable and IF-adapted selectors to the set-valued mapping Gxz : [0, T ] × Ω →

Cl(IRd) defined by Gxz(t, ω) = F (t, xt(ω), zt(ω)) for 0 ≤ t ≤ T and ω ∈ Ω. It is

clear that Gxz is measurable and IF-adapted that is equivalent to ΣIF-measurability.

It is also integrable bounded. Then by Kuratowski and Ryll-Nardzewski measurable

selection theorem we have SIF(F )(x, z) 6= ∅ and SIF(F )(x, z) ⊂ L([0, T ]×Ω,ΣIF, IR
d).

If F takes on convex values then SIF(F )(x, z) is a convex weakly compact subset of

this space.

Proposition 5.1. Let F : [0, T ]× IRd × IRm → Cl(IRm) be measurable and uniformly

integrable bounded and let (x, z) ∈ ID(IF, IRd)× ID(IF, IRm). Assume Y = (Yt)0≤t≤T is

an d-dimensional measurable stochastic process on PIF such that that E|YT | <∞ and

(5.1) Ys ∈ E[Yt +

∫ t

s

F (τ, xτ , zτ )dτ |Fs]

a.s for 0 ≤ s ≤ t ≤ T . Then Y possesses an IF-cádlág version, denoted again by

Y . Moreover Y is an IF-semimartingale and has the semimartingale decomposition

Yt = Y0 + Mt + At for 0 ≤ t ≤ T , where Y0 = E[YT +
∫ T

0
fxz

τ dτ |F0], Mt = E[YT +∫ T

0
fxz

τ dτ |Ft] − E[YT +
∫ T

0
fxz

τ dτ |F0] and At = −
∫ t

0
fxz

τ dτ for 0 ≤ t ≤ T with fxz ∈

SIF(co F )(x, z) such that Yt = E[YT +
∫ T

t
fxz

τ dτ |Ft] a.s. for 0 ≤ t ≤ T .

Proof. By virtue of Theorem 4.1 there is f xz ∈ SIF(co F )(x, z) such that Yt = E[YT +∫ T

t
fxz

τ dτ |Ft] a.s. for 0 ≤ t ≤ T . Hence, similarly as in [1] the result follows.

Corollary 5.2. Let F : [0, T ]× IRd × IRm → Cl(IRm) and H : [0, T ]× IRm → Cl(IRm)

be measurable and uniformly integrable bounded and let µ be a probability measure

on D(IRm). If (PIF, x, z) satisfies conditions (i) and (ii) of the definition of a weak

solution to BSDI(F,H, µ) then (PIF, x, z) is a weak solution to BSDI(F,H, µ) if and

only if there are fxz ∈ SIF(co F )(x, z) and ξz ∈ SIF(H)(z) such that xt = x0 +Mt +At

where x0 = E[ξz +
∫ T

0
fxz

τ dτ |F0], Mt = E[ξz +
∫ T

0
fxz

τ dτ |Ft] − E[ξz +
∫ T

0
fxz

τ dτ |F0]

and At = −
∫ t

0
fxz

τ dτ for 0 ≤ t ≤ T .

Similarly as in [8] we can prove the following existence theorem.
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Theorem 5.3. Let PIF and z ∈ ID(IF, IRm) be given and let F : [0, T ]× IRd × IRm →

Cl(IRm) and H : [0, T ]×IRm → Cl(IRm) be measurable and uniformly square integrable

bounded. Assume there is an k ∈ L2([0, T ], IR+) such that

E[

∫ T

t

h(F (τ, x1
τ , zτ ), F (τ, x2

τ , zτ ))dτ |F
z
t ] ≤ E[

∫ T

t

k(τ)|x1
τ − x2

τ |dτ |F
z
t ]

a.s. for 0 ≤ t ≤ T and x1, x2 ∈ ID(IF, IRd). Then BSDI(F,H, z) possesses a strong

solution.

Proof. Let ξz ∈ SIF(H)(z) and let (x0
t )0≤t≤T be an d-dimensional IFz-adapted process

on PIF such that x0
T =

∫ T

0
ξz
t dt a.s. Similarly as in the proof of ([8], Th. 6) we define

a sequence (xn)∞n=1 ∈ S2(IFz, IRd) such that

(5.2)





xn
s ∈ E

[
xn

t +
∫ t

s
F (τ, xn−1

τ , zτ )dτ |F
z
s

]

xT =
∫ T

0
ξz
t dt

a.s. for 0 ≤ t ≤ T and

sup
t≤u≤T

|xn+1 − xn
u| ≤ sup

t≤u≤T
E[

∫ T

u

k(τ) sup
τ≤s≤T

|xn
s − xn−1

s |dτ |F z
u] ≤

sup
t≤u≤T

E[

∫ T

t

k(τ) sup
τ≤s≤T

|xn
s − xn−1

s |dτ |F z
u]

a.s. for 0 ≤ t ≤ T and n = 1, 2, . . . . By Doob’s inequality it follows

E[ sup
t≤u≤T

|xn+1 − xn
u|

2] ≤ 4E

(∫ T

t

k(τ) sup
τ≤s≤T

|xn
s − xn−1

s |dτ

)2

for 0 ≤ t ≤ T and n = 1, 2, . . . . Hence it follows

E sup
t≤u≤T

|xn+1 − xn
u|

2 ≤
(4ET )nILn−1

n!

(∫ T

t

k2(τ)dτ

)n

for n = 1, 2, . . . , where IL = 4T
∫ T

0
m2(t)dt with m ∈ L2([0, T ], IR+) such that

max (h(F (t, x, z), {0}), h(H(t, z), {0})) ≤ m(t) for (x, z) ∈ IRd+m and a.e. t ∈ [0, T ].

Then E sup0≤t≤T |xk
t −x

n
t |

2 → 0 as k, n→ ∞. Therefore there is a process (xt)0≤t≤T ∈

S2(IFz, IRd) such that E sup0≤t≤T |xn
t − xt|

2 → 0 as n→ ∞. Similarly as in the proof

of ([8], Th. 6) we obtain

(5.3)





xs ∈ E
[
xt +

∫ t

s
F (τ, xτ , zτ )dτ |F

z
s

]

xT ∈
∫ T

0
H(t, zt)dt

a.s. for 0 ≤ t ≤ T .

Immediately from ([1], Th. 4.1) and the Caratheodory selection theorem (see [12],

Th. 2) the following existence theorem follows.
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Theorem 5.4. Let F : [0, T ]× IRd × IRm → Cl(IRm) and H : [0, T ]× IRm → Cl(IRm)

be measurable and uniformly integrable bounded such that F (t, ·, ·) and H(t, ·) are

l.s.c. for a.e. fixed t ∈ [0, T ]. Then for every probability measure µ on D(IRm) there

is a weak solution to BSDI(F,H, µ).

Proof. By virtue of ([12], Th. 10) there are Carathéodory selectors f and h of co F and

co H, respectively. Let g : [0, T ] ×D(IRd) ×D(IRm) → IRd and l : D(IRm) → IRd be

defined by g(t, x, z) = f(t, xt, zt) and l(z) =
∫ T

0
h(t, zt)dt for a.e. t ∈ [0, T ], x ∈ D(IRd)

and z ∈ D(IRm), respectively. It is easy to see that g and l satisfy the assumptions of

([1], Th. 4.1). Therefore for every probability measure µ on D(IRm) there is a weak

solution (Ω,F , IFxz, Q, x, z) to the BSDE(l , g, µ). It is easy to verify that

(5.4)





xs ∈ EQ

[
xt +

∫ t

s
F (τ, xτ , zτ )dτ |F

xz
s

]

xT ∈
∫ T

0
H(t, zt)dt

Q-a.s. for 0 ≤ t ≤ T .

In a similar way we also obtain.

Theorem 5.5. Let F : [0, T ]× IRd × IRm → Cl(IRm) and H : [0, T ]× IRm → Cl(IRm)

be measurable and uniformly integrable and let µ be a probability measure on D(IRm).

If F and H are A-l.s.c. then BSDI(F,H, µ) possesses a weak solution.

Proof. Let S(F ) and S(H) be set-valued mappings defined by S(F )(x, z) = {g ∈

L([0, T ], IRd) : g(t) ∈ F (t, x, z); a.e. 0 ≤ t ≤ T} and S(H)(z) = {h ∈ L([0, T ], IRd) :

h(t) ∈ H(t, z); a.e. 0 ≤ t ≤ T} for fixed x ∈ IRd and z ∈ IRm, respectively. It

can be proved (see [6], Th. III. 2.1 and Lemma III.2.9) that S(F ) and S(H) have

closed bounded and decomposable values at L([0, T ], IRd) and are l.s.c. as mappings

from IRd× IRm and IRm, respectively to a complete metric space Cl(L([0, T ], IRd)), d).

Therefore, by Bressan-Colombo-Fryszkowski continuous selection theorem (see [2],

Th. 42) there are A-continuous functions f : IRd×IRm → L([0, T ], IRd) and h : IRm →

L([0, T ], IRd) such that f(x, z)(t) ∈ F (t, x, z) and h(z)(t) ∈ H(t, z) for a.e. t ∈ [0, T ],

x ∈ IRd and z ∈ IRm, respectively. Let g(t, x, z) = f(xt, zt)(t) and l(z) =
∫ T

0
h(zt)(t)dt

for a.e. t ∈ [0, T ], x ∈ D(IRd) and z ∈ D(IRm), respectively. Let us observe that

for every measurable functions ϕ : [0, T ] → IRd and ψ : [0, T ] → IRm a function

[0, T ] 3 t → f(ϕ(t), ψ(t))(t) ∈ IRd is measurable. For fixed u ∈ D(IRr), δ > 0 and

k ≥ 1 we define

ϕk
δ(t, u) =

1

δ

∫ T∧(t+δ)

t

πr
s(u)

(
(k + 1 − |πr

s(u)|)
+ ∧ 1

)
ds

for t ∈ [0, T ]. It is clear that a function ϕk
δ (·, u) is measurable. Furhermore a map-

ping D(IRr) 3 u → ϕk
δ(t, u) ∈ IRr is continuous in the Meyer-Zheng topology and

hence D(IRr)-measurable. This yields that the coordinete mapping πr
t , as a poinwise
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limit of ϕk
δ (t, ·) by k → ∞ and δ → 0, is D(IRr)-nmeasurable for all t ∈ [0, T ].

Finally, from the definition of D(IRr), it follows that also πr
T = limδ→0 π

r
T−δ is

D(IRr)-measurable. In a similar way we can verify that for every fixed t ∈ [0, T ]

a coordinate mapping πr
t is DT

t -measurable. Hence it follows that a mapping g

defined above is such that g(·, x, z) is measurable and g(t, x, ·) is DT
t -measurable

for fixed (x, z) ∈ D(IRd) × D(IRm) and (t, z) ∈ [0, T ] × D(IRm), respectively, be-

cause g(t, x, z) = f(t, xt, zt) = f(t, πd
t (x), π

m
t (z)). Finally, it can be verified that a

function D(IRd) × D(IRm) 3 (x, z) → g(·, x, z) ∈ L([0, T ], IRd) is A-continuous on

(D(IRd) ×D(IRm), r), where r((x, z), (u, v)) = max(ρ(x, u), ρ(z, v)) for (x, z), (u, v) ∈

(D(IRd) × D(IRm), r). Indeed, let (xn, zn)∞n=1 be a sequence of D(IRd) × D(IRm), r)

converging in the r-metric topology to (x, z) ∈ D(IRd)×D(IRm). Taking an arbitrary

subsequence (xnk , znk)∞n=1 of (xn, zn)∞n=1 we can select its subsequence, denoting again

by (xnk , znk)∞n=1, such that xnk

t → xt and znk

t → zt for a.e. t ∈ [0, T ] as k → ∞. By the

A-continuity of f hence it follows
∫ T

0
|f(xnk

t , znk

t )(t) − f(xt, zt)(t)|dt → 0 as k → ∞.

Therefore
∫ T

0
|f(xn

t , z
n
t )(t) − f(xt, zt)(t)|dt→ 0 as n → ∞. Quite similar we can ver-

ify that a function D(IRm) 3 z → l(z) =
∫ T

0
h(zt)(t)dt ∈ IRd is D(IRm)-measurable.

Now, immediately from ([1], Th. 4.1) it follows that BSDE(l , g, µ) possesses at least

one weak solution (PIF, x, z). By the properties of mappings g and l it follows that

(PIF, x, z) is a weak solution to BSDI(F,H, µ).

6. WEAK COMPACTNESS OF WEAK SOLUTIONS SET TO (F,H,µ)

We shall show that if F and H satisfies the assumptions of Theorem 5.4 and are

A-continuous with the respect to their last arguments then for every weakly compact

set Λ of probability measures on D(IRm) the set X (F,H,Λ) of all weak solutions

to BSDI(F,H, µ) with µ ∈ Λ is weakly compact with respect to the Meyer-Zheng

topology. We begin with the following result.

Theorem 6.1. Let F : [0, T ] × IRd × IRm → IRd and H : [0, T ] × IRm → IRd be

measurable, uniformly integrable bounded and A-continuous with respect to their last

two or last variables, respectively. For every nonempty weakly closed set Λ of prob-

ability measures on D(IRm) the set X (F,H,Λ) is nonempty and weakly closed in the

Meyer-Zheng topology.

Proof. By virtue of Theorem 5.5 we have X (F,H,Λ) 6= ∅. Let (Pn
IFn , Xn, Y n)∞n=1

be a sequence of X (F,H,Λ) weakly converging in the Meyer-Zheng topology, where

Pn
IFn = (Ωn,Fn, P n, IFn) with IFn = (Fn

t )0≤t≤T . Then there is a probability mea-

sure Q on (D(IRd) × D(IRm),D(IRd+m)) such that a sequence (Qn)∞n=1 of the

distributions of (Xn, Y n) with respect to P n converges weakly to Q in the Meyer-

Zheng topology. For every n = 1, 2, . . . we have: P n(Y n)−1 = µn, σ(p,Xn
s ) ≤

σ(p, En[Xn
t +

∫ t

0
F (τ,Xn

τ , Y
n
τ )dτ |Fn

s ]) and σ(p,Xn
s ) ≤ σ(p,

∫ T

0
H(τ, Y n

τ )dτ) P n-a.s.
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for every 0 ≤ s ≤ t ≤ T and p ∈ IRd. Similarly as above, let πx and πy

denote the projections on , D(IRd+m) defined by πx(x, y) = x and πy(x, y) = y for

(x, y) ∈ D(IRd+m). Similarly, by πx
t and πy

t we denote the coordinate mappings

defined by πx
t (x, y) = xt and πy

t (x, y) = yt for (x, y) ∈ D(IRd+m) and t ∈ [0, T ].

Finally, by IFxy we denote the smallest filtration satisfying the usual conditions such

that (πx
t , π

y
t )0≤t≤T is IFxy - adapted. In what follows, we shall denote processes

(πx
t )0≤t≤T and (πy

t )0≤t≤T by X = (Xt)0≤t≤T and Y = (Yt)0≤t≤T , respectively. We

shall show that (PIFxy , X, Y ) is a solution to BSDI(F,H, µ), where µ ∈ Λ is such

that µn → µ weakly as n → ∞ and PIFxy = (Ω,F , Q, IFxy) with Ω = D(IRd+m)

and F = DQ(IRd+m), where DQ(IRd+m) denotes the completion of D(IRd+m) with

respect to Q. Let Φ : D(IRd+m) → IR be bounded and continuous with respect to

the Meyer-Zheng topology. For every t ∈ [0, T ] we put ϕ(t, x, y) = Φ(xt, yt) for

(x, y) ∈ D(IRd+m), where xt(s) = xs1[0,t](s) and yt(s) = ys1[0,t](s) for s ∈ [0, t].

It is clear that for every t ∈ [0, T ], ϕ(t, ·, ·) is bounded and continuous in the

Meyer-Zheng topology on D(IRd+m). Furthermore, ϕ(t, ·, ·) is Fxy
t -measurable.

Therefore

(6.1) EQnσ(p, ϕ(s,X, Y )Xs) ≤ EQnσ(p, EQn[ϕ(s,X, Y )(Xt+
∫ t

s

F (τ,Xτ , Yτ)dτ)|F
xy
s ]) = EQnσ

(
p, ϕ(s,X, Y )(Xt +

∫ t

s

F (τ,Xτ , Yτ)dτ)

)

and

(6.2) EQnσ(p, ϕ(s,X, Y )XT ) ≤ EQnσ

(
p, ϕ(s,X, Y )

∫ T

0

H(τ, Yτ)dτ

)

for n = 1, 2, . . . and 0 ≤ s ≤ t ≤ T. Similarly as in the proof of ( [1], Th. 4.1) we

can define Xk
t = Xt ((k + 1 − |Xt|)

+) for k ≥ 0 and verify that for every ε > 0

there is a k(ε) such that

(i) sup0≤t≤T EQn|Xk
t −Xt| ≤ ε for n ≥ 1 and k ≥ k(ε)

(ii) sup0≤t≤T EQ|X
k
t −Xt| ≤ ε for k ≥ k(ε).

Furthermore for given ε > 0 and k > 0 there is a δ(ε, k) > 0 (depending on t)

such that

(iii) EQ

∣∣∣ 1
δ

∫ t+δ

t
Xk

τ dτ −Xk
t

∣∣∣ ≤ ε for δ ≤ δ(ε, k)

(iv) sup0≤t≤T

∣∣∣EQn

[
1
δ

∫ t+δ

t
Xk

τ dτ −Xk
t

]∣∣∣ ≤ ε for δ ≤ ε/
∫ T

0
m(t)dt,

where m ∈ L([0, T ], IR+) is such that max {h(F (t, x, y), {0}), h(H(t, y), {0})} ≤

m(t) for (x, y) ∈ IRd × IRm and a.e. t ∈ [0, T ]. For every p ∈ IRd and fixed

0 ≤ s ≤ t ≤ T one has

EQσ (p, ϕ(s,X, Y )Xs) − EQσ

(
p, ϕ(s,X, Y )(Xt +

∫ t

s

F (τ,Xτ , Yτ)dτ)

)
=

EQ

[
σ (p, ϕ(s,X, Y )Xs) − σ

(
p, ϕ(s,X, Y )Xk

s

)]
+
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EQ

[
σ

(
p, ϕ(s,X, Y )Xk

s

)
− σ

(
p, ϕ(s,X, Y )

1

δ

∫ s+δ

s

Xk
s

)]
+

EQ

[
σ

(
p, ϕ(s,X, Y )

1

δ

∫ s+δ

s

Xk
s

)]
− EQn

[
σ

(
p, ϕ(s,X, Y )

1

δ

∫ s+δ

s

Xk
s

)]
+

EQn

[
σ

(
p, ϕ(s,X, Y )

1

δ

∫ s+δ

s

Xk
s

)
− σ

(
p, ϕ(s,X, Y )Xk

s

)]
+

EQn

[
σ

(
p, ϕ(s,X, Y )Xk

s

)
− σ (p, ϕ(s,X, Y )Xs)

]
+

EQn [σ (p, ϕ(s,X, Y )Xs)] − EQn

[
σ (p, ϕ(s,X, Y ))

(
Xt +

∫ t

s

F (τ,Xτ , Yτ)dτ)

)]
+

EQn

[
σ (p, ϕ(s,X, Y ))

(
Xt +

∫ t

s

F (τ,Xτ , Yτ)dτ)

)]
−

EQn

[
σ (p, ϕ(s,X, Y ))

(
Xk

t +

∫ t

s

F (τ,Xτ , Yτ )dτ)

)]
+

EQn

[
σ (p, ϕ(s,X, Y ))

(
Xk

t +

∫ t

s

F (τ,Xτ , Yτ )dτ)

)]
−

EQn

[
σ (p, ϕ(s,X, Y ))

(
1

δ

∫ s+δ

s

Xk
τ dτ +

∫ t

s

F (τ,Xτ , Yτ)dτ)

)]
+

EQn

[
σ (p, ϕ(s,X, Y ))

(
1

δ

∫ s+δ

s

Xk
τ dτ +

∫ t

s

F (τ,Xτ , Yτ)dτ)

)]
−

EQ

[
σ (p, ϕ(s,X, Y ))

(
1

δ

∫ s+δ

s

Xk
τ dτ +

∫ t

s

F (τ,Xτ , Yτ)dτ)

)]
+

EQ

[
σ (p, ϕ(s,X, Y ))

(
1

δ

∫ s+δ

s

Xk
τ dτ +

∫ t

s

F (τ,Xτ , Yτ)dτ)

)]
−

EQ

[
σ (p, ϕ(s,X, Y ))

(
Xk

t +

∫ t

s

F (τ,Xτ , Yτ)dτ)

)]
+

EQ

[
σ (p, ϕ(s,X, Y ))

(
Xk

t +

∫ t

s

F (τ,Xτ , Yτ )dτ)

)]
−

EQ

[
σ (p, ϕ(s,X, Y ))

(
Xt +

∫ t

s

F (τ,Xτ , Yτ)dτ)

)]
.

Hence it follows

EQσ (p, ϕ(s,X, Y )Xs) ≤ EQσ

(
p, ϕ(s,X, Y )(Xt +

∫ t

s

F (τ,Xτ , Yτ)dτ)

)

for every p ∈ IRd 0 ≤ s ≤ t ≤ T . Therefore, for every fixed 0 ≤ s ≤ t ≤ T one has

EQϕ(s,X, Y )Xs ∈ EQϕ(s,X, Y )(Xt +

∫ t

s

F (τ,Xτ , Yτ )dτ)

Let f st be for every fixed 0 ≤ s ≤ t ≤ T an dt × Q-measurable and IFxy-adapted

selector of a set-valued mapping G defined by G(τ, ω) = F (τ,Xτ(ω), Yτ(ω)) for

(τ, ω) ∈ [s, t] × Ω such that

EQϕ(s,X, Y )Xs = EQϕ(s,X, Y )

(
Xt +

∫ t

s

f st
τ dτ

)
.
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By the monotone class theorem this equality can be extended to

EQϕ(s,X, Y )Xs = EQϕ(s,X, Y )

(
Xt +

∫ t

s

f st
τ dτ

)

for every bounded and measurable functions Φ : D(IRd+m) → IR, where again as

above we put ϕ(s,X, Y ) = Φ(Xs, Y s) with Xs and Y s defined such as above.

But ϕ(s,X, Y ) runs over all bounded and Fxy
s− = σ({Xu, Yu : u < s})-measurable

functions. Therefore, similarly as in ([1], Th4.1), we can conclude that

EQ

[
Xs −Xt −

∫ t

s

f st
τ dτ |F

xy
s−

]
= 0

Q-a.s. for every fixed 0 ≤ s ≤ t ≤ T or equivalently,

EQ

[
Xs −Xt −

∫ t

s

f st
τ dτ |F

xy
u

]
= 0

Q-a.s. for every 0 ≤ u < s ≤ t ≤ T. Hence, similarly as in ([1], Th. 4.1) it follows

that

xs = EQ

[
Xt +

∫ t

s

f st
τ dτ |F

xy
s

]

Q-a.s. for every 0 ≤ s ≤ t ≤ T, which implies that

xs ∈ EQ

[
Xt +

∫ t

s

F (τ,Xτ , Yτ)dτ |F
xy
s

]

Q-a.s. for every 0 ≤ s ≤ t ≤ T. Quite similar, by the inequality (5.2) it follows that

XT ∈
∫ T

0
H(t, Yt)dt, Q-a.s. Similarly as in the proof of ([1], Th. 4.1) we can verify

that every IFY -martingale is also IFxy-martingale on (Ω,F , Q). Finally, let us observe

that for every A ∈ D(IRm) one has µn(A) = P n
Y n(A) = Qn(D(IRd)×A) for n ≥ 1.

Therefore, µ(A) = Q(D(IRd)×A) for every A ∈ D(IRm). Then (Ω,F , Q, IFxy, X, Y )

is a weak solution to BSDI(F,H, µ).

Now we can prove the main result dealing with weak compactness of the set

X (F,H,Λ) of all weak solutions to BSDI(F,H, µ) with µ ∈ Λ.

Theorem 6.2. Let F, H and Λ satisfy the assumptions of Theorem 6.1. If Λ

is weakly compact then the set X (F,H,Λ) is nonempty and weakly compact with

respect to the Meyer-Zheng topology.

Proof. Let (Pn
IFn , Xn, Y n) be an arbitrarily taken sequence of X (F,H,Λ) with

Pn
IFn = (Ωn,Fn, IFn, P n), where IFn = (Fn

t )0≤t≤T for n = 1, 2, . . . . There is

a sequence (µn)∞n=1 of Λ such that (Pn
IFn , Xn, Y n) is a weak solution to

BSDI(F,H, µn) for n = 1, 2, . . . . By the compactness of Λ there is a subse-

quence (µnk
)∞k=1 of (µn)

∞
n=1 and µ ∈ Λ such that (µnk

)∞k=1 converges weakly to

µ as k → ∞. Consider now a subsequence (Pnk

IFnk , X
nk , Y nk) of (Pn

IFn , Xn, Y n)

and let Qnk = P k
(Xnk ,Y nk ) be the distribution of (Xnk , Y nk) on D(IRd+m) defined
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with respect to the probability maesure P nk for k = 1, 2, . . . . Similarly as in the

proof of ([1], Lemma 4.3) we can verify that there exist a subsequence, denoting still

by (Qnk)∞k=1, of (Qnk)∞k=1 and a probability measure Q on D(IRd+m) such

that (Qnk)∞k=1, converges weakly in the Meyer-Zheng topology to Q as k → ∞.

Moreover Q(D(IRd) × A) = µ(A) for A ∈ D(IRm). Hence, similarly as in the

proof of Theorem 6.1, it follows the existence of a weak solution (PIF, X, Y ) to

BSDI(F,H, µ) such that PY −1 = µ which proves that X (F,H,Λ) is weakly com-

pact with respect to the weak convergence of the distributions in the Meyer-Zheng

topology.

In a similar way we can get the following general theorem.

Theorem 6.3. Let F : [0, T ] × D(IRd) × D(IRm) → Cl(IRd) and H : [0, T ] ×

D(IRm) → Cl(IRd) be measurable, uniformly integrably bounded, A-continuous with

respect to their last two and last variables, respectively and such that F (t, ·, ·) and

H(t, ·) are Dt(IR
d+m)-measurable for every fixed t ∈ [0, T ] and F (t, ·, y) is

DT
t (IRd)-measurable for every fixed (t, y) ∈ [0, T ]×D(IRm). Then for every nonempty

weakly compact set Λ of probability measures on D(IRm) the set X (F,H,Λ) is

nonempty and weakly compact with respect to the Meyer-Zheng topology.

Proof. It is enough only to verify that X (F,H,Λ) 6= ∅. The weak compactness of

X (F,H,Λ) can be verified similarly as in the proof of Theorem 6.2. Let µ ∈ Λ and

(Ω̃, F̃ , P̃ ) = (Dm,Dµ(IRm), µ), where Dµ(IRm) denotes the completion of D(IRm)

with respect to µ. Denote by IF
eY the smallest of all filtrations IF

eY = (F
eY
t )0≤t≤T

such that the process Ỹ is IF
eY -adapted and IF

eY satisfies the usual conditions.

Let

(6.3) Fn(x, y) =





F (t+ 1

n
, x, y) for t ∈ [0, T − 1

n
)

{0} for t ∈ [T − 1
n
, T ]

for n ≥ 1 and (x, y) ∈ D(IRd) × D(IRm) and let us consider BSDI(Fn, H, µ) on

(Ω̃, F̃ , P̃ ) with a driving process Ỹ . We define for every n ≥ 1 a strong solution

Xn to BSDI(Fn, H, µ) with a driving process Ỹ . We construct such solution

begining with the interval [T − 1/n, T ]. Let Φ be an IF
eY -martingale on (Ω̃, F̃ , P̃ )

such that ΦT ∈
∫ T

0
H(t, Ỹt)dt , P̃ -a.s. To define such Φ it is enough to select

an F̃
eY
T -measurable random variable ξ ∈

∫ T

0
H(t, Ỹt)dt and take Φt = Ẽ[ξ|F̃

eY
t ]

for t ∈ [0, T ]. Let Xn =
�

[T−1/n,T ]Φ. For every T − 1/n ≤ s ≤ t ≤ T one has

Xn
s = Φs = Ẽ[φt|F̃s] = Ẽ[Xn

t |F
eY
s ], P̃ -a.s. Then Xn

s = Ẽ[Xn
t +

∫ t

s
0dτ |F

eY
s ] ∈

Ẽ[Xn
t +

∫ t

s
Fn(τ,Xn, Ỹ )dτ |F

eY
s ], P̃ -a.s for T − 1/n ≤ s ≤ t ≤ T. For every

T − 2/n ≤ s ≤ t ≤ T − 1/n we have
∫ t

s
Fn(τ,Xn, Ỹ )dτ =

∫ t

s
F (τ + 1

n
, Xn, Ỹ )dτ =∫ t+1/n

s+1/n
F (τ,Φ, Ỹ )dτ =

∫ t

s
Fn(τ,Φ, Ỹ )dτ beacause F (t, ·, Ỹ ) is DT

t (IRd)-measurable.

Let (gn
t )T−2/n≤t≤T−1/n be an IF

eY -adapted and integrable process on (Ω̃, F̃ , P̃ )
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such that
∫ t

s
gn

τ dτ ∈
∫ t

s
Fn(τ,Φ, Ỹ )dτ, P̃ -a.s. and put fn =

�
[T−2/n,T−1/n]g

n.

We can redefine process Xn by taking Xn
t = Ẽ[ΦT +

∫ T

t
fn

τ dτ |F
eY
t ], P̃ -a.s. for

t ∈ [T − 2/n, T ] and Xn
t = 0, P̃ -a.s. for t ∈ [0, T − 2/n). We obtain Xn

s = Ẽ[ΦT +∫ T

s
|F

eY
s ] = Ẽ[ΦT +

∫ T

t
fn

τ dτ |F
eY
s ] + Ẽ[

∫ t

s
fn

τ dτ |F
eY
s ] = Ẽ[Ẽ[ΦT +

∫ T

t
fn

τ dτ |F
eY
t ]|F

eY
s ]] +

Ẽ[
∫ t

s
fn

τ dτ |F
eY
s ]] = Ẽ[Xn

t +
∫ t

s
fn

τ dτ |F
eY
s ] ∈ Ẽ[Xn

t +
∫ t

s
F n(τ,Xn, Ỹ )dτ |F

eY
s ], P̃ -a.s. for

[T − 2/n ≤ s ≤ t ≤ T − 1/n]. For s ∈ [T − 2/n, T − 1/n] and t ∈ [T − 1/n, T ] we

have Xn
s = Ẽ[ΦT +

∫ T

s
fn

τ |F
eY
s ], and Xn

t = Ẽ[ΦT |F
eY
t ] because

∫ T

t
fn

τ dτ = 0, P̃ -a.s.

Therefore, Xn
s = Ẽ[Ẽ[ΦT |F

eY
t ]|F

eY
s ]+Ẽ[

∫ t

s
fn

τ dτ |F
eY
s ] = Ẽ[Xn

t +
∫ t

s
fn

τ dτ |F
eY
s ] ∈ Ẽ[Xn

t +∫ t

s
F n(τ,Xn, Ỹ )dτ |F

eY
s ], P̃ -a.s. In a similar way we can redifine the process Xn on

the whole interval [0, T ] in such a way that Xn
s ∈ Ẽ[Xn

t +
∫ t

s
F n(τ,Xn, Ỹ )dτ |F

eY
s ],

P̃ -a.s. for 0 ≤ s ≤ t ≤ T. It is clear that Fn is measurable, uniformly integrable

bounded, A-continuous with respect to its last variables and such that F (t, ·, ·) is

Dt(IR
d+m)-measurable for fixed t ∈ [0, T ].

Denote by Qn the ditribution of of (Xn, Ỹ ) on D(IRd+m) with respect to P̃ .

Similarly as in the proof of ([1], Lemma 4.3 ) we can verify that there is a subsequence

(Qnk)∞k=1 of (Qn)∞n=1 and a probability measure Q on D(IRd+m) converging weakly

in the Meyer-Zheng topology to Q and such that Q(D(IRd)×A) = µ(A) for every

A ∈ D(IRm) as k → ∞. Let X, Y, (Ω,F , Q, IFxy) and ϕ be such as in the proof

of Theorem 6.1, where Q is a probability measure defined above. By the definition

of Qn we have

EQnσ (p, ϕ(s,X, Y )Xs) ≤

EQnσ

(
p, EQn

[
ϕ(s,X, Y )

(
Xt +

∫ t

s

Fn(τ,X, Y )dτ)|Fxy
s

]))
=

EQnσ

(
p, ϕ(s,X, Y )

(
Xt +

∫ t

s

Fn(τ,X, Y )dτ

))

and

EQnσ (p, ϕ(s,X, Y )XT ) ≤ EQnσ

(
p, ϕ(s,X, Y )

∫ T

0

H(τ, Y )dτ

)

for n = 1, 2 . . . and 0 ≤ s ≤ t ≤ T. Similarly as in the proof of Theorem 6.1 (see

also [1], Th. 4.1) hence it follows that (Ω,F , Q, IFxy, X, Y ) is a weak solution to

BSDI(F,H, µ).

7. EXISTENCE OF OPTIMAL WEAK SOLUTIONS

As a natural application of the main results of the paper we can consider the

existence of optimal weak solutions BSDIs with respect to a given utility functional.

To begin with suppose that the state of some parameters of a dynamical system at

the time t is described by a pair of cádlág prosesses (Xt, Zt) defined on a filtered
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probability space PIF = (Ω,F , IF, P ) with IF = (Ft)0≤t≤T , satisfying a system of

BSDEs

Xt = E[XT +

∫ T

t

f(s,Xs, Zs, us)ds|Ft]

depending on a control process u = (ut)0≤t≤T ∈ U and informations contained in Ft.

On the set X of all such pairs defined by the above BSDEs with u running over the

set U , we can define an utility functional T by setting

T (X,Z) = EX,Z

[∫ T

0

Ψ(Xt, Zt)dt

]
,

where EX,Z denotes the mean value operator with respect to the distribution mea-

sure QX,Z on D(IRd+m) of a pair processes (X,Z) and Ψ : D(IRd+m) → L([0, T ], IR)

is a given A-continuous mapping. Having given a set Λ of probability measures

on D(IRm) and a measurable and uniformly integrable bounded set-valued mapping

H : [0, T ] × IRm → Cl(IRd) such that H(t, ·) is continuous, we can consider a set

Xf(H,Λ) of all pairs (X,Z) ∈ X such that PZ−1 ∈ Λ and XT ∈
∫ T

0
H(t, Zt)dt. The

set Xf (H,Λ) is called an attainable set. It can be verified that Xf (H,Λ) = X (F,H,Λ),

where X (F,H,Λ) is the set of all weak solutions to BSDI(F, F, µ), with µ ∈ Λ and

F (t, x, y) = {f(t, x, y, u) : u ∈ U}. From the practical point of view it can be in-

terested to look for a pair (x̃, z̃) ∈ X (F,H,Λ) such that T (x̃, z̃) = inf{T (X,Z) :

(X,Z) ∈ X (F,H,Λ)}. We can also look for a pair (x̃, z̃) ∈ X (F,H,Λ) such that

T (x̃, z̃) = sup{T (X,Z) : (X,Z) ∈ X (F,H,Λ)}. By the weak compactness of the set

X (F,H,Λ) and weak continuity of a functional T with respect to the Meyer-Zheng

topology we can obtain the existence of the above mention pair (x̃, z̃) ∈ X (F,H,Λ).

To see that let us consider an arbitrary sequence {(Xk, Zk)}∞k=1 of X (F,H,Λ) weakly

converging with respect to the Meyer-Zheng topology to (X,Z) ∈ X (F,H,Λ). Simi-

larly as in the proofs of the above theorems we can get limk→∞ T (Xk, Zk) = T (X,Z).

Then the existence of an T -optimal weak solutions to BSDI(F,H,Λ) can be ob-

tained.
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[12] L. Rybiński, On Carathéodory type selections, Fund. Math., 125: 187–193, 1985.


