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1. INTRODUCTION

Let Z ⊆ R
N be a bounded domain with a C2-boundary ∂Z. In this paper,

we study the existence of nontrivial solutions for the following semilinear elliptic

Neumann problem with a nonsmooth potential (hemivariational inequality):

(1.1)

{
−4x(z) − a(z)x(z) ∈ ∂j(z, x(z)) a.e. on Z,
∂x
∂n

= 0 on ∂Z.

}

Here a ∈ L
N

2 (Z) (N ≥ 3) and j(z, x) is jointly measurable and locally Lipschitz

and in general nonsmooth in x ∈ R. By ∂j(z, x) we denote the generalized subdif-

ferential of x → j(z, x) (see Section 2). We do not assume that a(·) is positive and

so the linear part of the problem (1.1) is indefinite. Rabinowitz [11] examined prob-

lem (1.1) with a(·) positive, Dirichlet boundary conditions and a continuous right

hand side nonlinearity (hence the potential function is C1). He also had a parameter

λ ∈ R (i.e. λa(z)x(z)) and proved existence of nontrivial solutions for every value of

the parameter, using the Ambrosetti-Rabinowitz condition on the nonlinearity, which

implies that the potential exhibits a strictly superquadratic growth in x ∈ R. The

result of Rabinowitz was extended to unbounded domains with indefinite linear part

by Li-Chen [9], to problems with indefinite nonlinearity by Badiale-Nabana [2] and

to problems with nonsmooth potential (hemivariational inequalities) by Barletta-

Marano [3]. Hemivariational inequalities seem to be a suitable model for various

problems in mechanics and engineering (see Naniewicz-Panagiotopoulos [10]).
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2. MATHEMATICAL BACKGROUND

Let X be a Banach space, X∗ its topological dual and by 〈·, ·〉 we denote the

duality brackets for the pair (X,X∗). Given a locally Lipschitz function ϕ : X → R,

the generalized directional derivative of ϕ at x ∈ X in the direction h ∈ X, is defined

by

ϕ0(x; h) = lim sup
x′ → x

λ ↓ 0

ϕ(x′ + λh) − ϕ(x′)

λ
.

It is easy to see that ϕ0(x, ·) is sublinear, continuous. So by the Hahn-Banach

theorem it is the support function of a nonempty, w∗-compact and convex set ∂ϕ(x) ⊆
X∗, defined by

∂ϕ(x) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ ϕ0(x; h) for all h ∈ X}.

The multifunction x → ∂ϕ(x) is the generalized subdifferential of ϕ and x ∈ X

is a critical point of ϕ, if 0 ∈ ∂ϕ(x). Note that if ϕ is continuous, convex, then it is

locally Lipschitz and the generalized subdifferential coincides with the subdifferential

in the sense of convex analysis. Also, if ϕ ∈ C1(X), then it is locally Lipschitz and

∂ϕ(x) = {ϕ′(x)}. For details we refer to Clarke [6] and Gasinski-Papageorgiou [7].

Consider the following linear eigenvalue problem:

(2.1)

{
−4x(z) − α(z)x(z) = λx(z) a.e. on Z,
∂x
∂n

= 0 on ∂Z.

}

By virtue of Corollary 7.D, p.78 of Showalter [12], we know that problem (2.1)

has a sequence of eigenvalues {λn}n≥1 (counting multiplicities), such that −∞ < λ1 <

λ2 ≤ · · · ≤ λn → ∞ as n→ ∞ and a corresponding sequence of eigenfunctions which

form an orthonormal basis of L2(Z) and an orthogonal basis of L2(Z). Using these

eigenvalues, we consider the following orthogonal direct sum decomposition of H 1(Z),

H1(Z) = H− ⊕H0 ⊕H+, where

H− = span{x ∈ H1(Z) : −4x− ax = λx, λ < 0}, H0 = Ker(−4− aI)

and H+ = span{x ∈ H1(Z) : −4x− ax = λx, λ > 0}

We know that both H− and H0 are finite dimensional subspaces of H1(Z). In

what follows by λk < 0 we denote the largest negative eigenvalue and by λm > 0 the

smallest positive eigenvalue.

The hypotheses on the nonsmooth potential j(z, x) are the following:

H(j): j : Z × R → R is a function such that

(i): for all x ∈ R, z → j(z, x) is measurable;

(ii): for almost all z ∈ Z, x→ j(z, x) is locally Lipschitz;
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(iii): for almost all z ∈ Z, all x ∈ R and all u ∈ ∂j(z, x), we have

|u| ≤ a(z) + c|x|r−1 with a ∈ L∞(Z)+, c > 0, 1 ≤ r < 2∗ =
N

N − 2
;

(iv): there exist a measurable set C ⊆ Z with |C|N > 0 (| · |N being the

Lebesgue measure on R
N) and h0 ∈ L1(Z) such that

j(z, x) → +∞ for a.a. z ∈ C as |x| → ∞
and h0(z) ≤ j(z, x) for a.a. z ∈ Z and all x ∈ R;

(v): there exists β ∈ L∞(Z)+ such that β(z) ≤ λm a.e. on Z with strict

inequality on a set of positive measure and for almost all z ∈ Z, all x, y ∈ R

and all u1 ∈ ∂j(z, x), u2 ∈ ∂j(z, y), we have

(u1 − u2)(x− y) ≤ β(z)|x− y|2;

(vi): there exist δ > 0 and γ ∈ L∞(Z) with γ(z) ≤ 0 a.e. on Z and the

inequality is strict on a set of positive measure, such that

λk

2
x2 ≤ j(z, x) ≤ γ(z)

2
x2 for a.a. z ∈ Z and all |x| ≤ δ.

Remark 2.1. Hypothesis H(j)(vi) implies that j(z, 0) = 0 for a.a. z ∈ Z. Also hy-

pothesis H(j)(v) implies that x → j(z, x) is subquadratic at infinity, while hypothesis

H(j)(iv) makes the Euler functional of the problem indefinite and so the PS-condition

can not be verified. This creates serious difficulties in the implementation of mini-

max techniques and in order to overcome them, we develop a nonsmooth variant of

the so-called reduction technique, originally due to Amann [1], Castro-Lazer [4] and

Thews [14].

The following two potential functions satisfy hypotheses H(j) (for simplicity we

drop the z-dependence)

j1(x) =
c0

2
min{x2, |x|} − c1

x2

1 + x2

with 0 <
c0

2
< c1 < min{c0 − λk

2
,
16(λm − c0)

3(6 +
√

3)
}

and j2(x) =
c3

2
x2 − c4 ln(x2 + 1) with c3 < 2c4.

The Euler functional for problem (1.1), is the function ϕ : H1(Z) → R defined

by

ϕ(x) =
1

2
‖Dx‖2

2 −
1

2

∫

Z

ax2dz −
∫

Z

j(z, x(z))dz for all x ∈ H1(Z).

We know that ϕ is Lipschitz continuous on bounded sets, hence locally Lipschitz.
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3. AUXILIARY RESULTS

In what follows Y = H− ⊕ H0 (hence dimY < ∞) and if x ∈ H1(Z), then

x = x+ x0 + x̂, x ∈ H−, x0 ∈ H0, x̂ ∈ H+.

Lemma 3.1.

• (a) If β ∈ L∞(Z)+, β(z) ≤ λm a.e. on Z with strict inequality on a set of

positive measure, then there exists ξ > 0 such that

ψ1(x̂) = ‖Dx̂‖2
2 −

∫

Z

ax̂2dz −
∫

Z

βx̂2dz ≥ ξ‖x̂‖2 for all x̂ ∈ H+.

• (b) If γ ∈ L∞(Z), γ(z) ≤ 0 a.e. on Z with strict inequality on a set of positive

measure, then there exists ξ̂ > 0 such that

ψ2(v) = ‖Dv‖2
2 −

∫

Z

av2dz −
∫

Z

γv2dz ≥ ξ̂‖v‖2 for all v ∈ H0 ⊕H+.

Proof. From the variational characterization of λm > 0, we have ψ1 ≥ 0. Suppose

that the Lemma is not true. Since ψ1 is 2-homogeneous, we can find {x̂}n≥1 ⊆ H+

with ‖x̂n‖ = 1 such that ψ1(x̂n) ↓ 0. We may assume that

x̂n
w→ x̂ in H1(Z), x̂n

w→ x̂ in L2∗(Z) and x̂n(z) → x̂(z) a.e. on Z.

Note that
∫

Z
(x̂2

n)
N

N−2dz =
∫

Z
|x̂n|2∗dz ≤M1 < +∞ for all n ≥ 1. So we infer that

x̂2
n

w→ x̂2 in L
N

N−2 (Z), hence

∫

Z

ax̂2
ndz →

∫

Z

ax̂2dz (since 2
N

+ N−2
N

= 1).

Moreover, we have

‖Dx̂‖2
2 ≤ lim inf

n→∞
‖Dx̂n‖2

2 and

∫

Z

βx̂2
ndz →

∫

Z

βx̂2dz.

So in the limit as n→ ∞, we obtain

ψ1(x̂) = ‖Dx̂‖2
2 −

∫

Z

ax̂2dz −
∫

Z

βx̂2dz ≤ 0, x̂ ∈ H+,(3.1)

⇒ ‖Dx̂‖2
2 −

∫

Z

ax̂2dz ≤ λm‖x̂‖2
2.

Since x̂ ∈ H+, from the variational characterization of λm > 0, we have

‖Dx̂‖2
2 −

∫

Z

ax̂2dz = λm‖x̂‖2
2 and x̂ ∈ E(λm) = the eigenspace for λm > 0.

Note that if x̂ = 0, then x̂n → 0 in H1(Z), a contradiction to the fact that

‖x̂n‖ = 1 for all n ≥ 1. So from the unique continuation property, it follows that

x̂(z) 6= 0 a.e. on Z. Hence (3.1) implies

‖Dx̂‖2
2 −

∫

Z

ax̂2dz < λm‖x̂‖2
2,

a contradiction to the variational characterization of λm > 0.
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(b) The proof is similar, using the orthogonality of the component spaces and

since ‖Dx0‖2
2 =

∫
Z
a(x0)2dz for all x0 ∈ H0.

Proposition 3.2. If hypotheses H(j) hold, then there exists a continuous map η :

Y → H+ such that for every y ∈ Y

min[ϕ(y + x̂) : x̂ ∈ H+] = ϕ(y + η(y))

and η(y) ∈ H+ is the unique solution of the operator inclusion

0 ∈ pH∗

+
∂ϕ(y + x̂)

with y ∈ Y fixed and pH∗

+
the orthogonal projection of H1(Z)∗ onto H∗

+ = (Y ∗)⊥.

Proof. We fix y ∈ Y and consider the function ϕy : H1(Z) → R defined by ϕy(w) =

ϕ(y + w) for all w ∈ H1(Z). Evidently ϕy(·) is locally Lipschitz and for every

w, h ∈ H1(Z), we have

ϕ0
y(w; h) = lim sup

w′ → w

λ ↓ 0

ϕ(y + w′ + λh) − ϕ(y + w′)

λ
= ϕ0(y + w; h),

⇒ ∂ϕy(w) = ∂ϕ(y + w) for all w ∈ H1(Z).(3.2)

Let i : H+ → H1(Z) be the inclusion map and let ϕ̂y : H+ → R be defined

by ϕ̂y = ϕy ◦ i. From the nonsmooth chain rule (see Clarke [], pp.45-46) and since

i∗ = pH∗

+
, we have

(3.3) ∂ϕ̂y(x̂) ⊆ pH∗

+
∂ϕy(i(x)) = pH∗

+
∂ϕ(y + x∗) for allx̂ ∈ H+ (see (3.2)).

Let 〈·, ·〉 be the duality brackets for the pair (H1(Z), H1(Z)∗) and let A ∈
L(H1(Z), H1(Z)∗) be defined by 〈A(x), y〉 =

∫
Z
(Dx,Dy)RNdz for all x, y ∈ H1(Z).

Clearly A is monotone, coercive and for all x∗ ∈ ∂ϕ(x), we have

(3.4)

x∗ = A(x) − ax− u, with u ∈ Lr′(Z) (
1

r
+

1

r′
= 1), u(z) ∈ ∂j(z, x(z)) a.e. on Z

(since Clarke [6], p. 83). Let 〈·, ·〉H+
denote the duality brackets for the pair (H+, H

∗
+).

Then for any x̂1, x̂2 ∈ H+ and any x∗1 ∈ ∂ϕ̂y(x̂1), x
∗
2 ∈ ∂ϕ̂y(x̂2), using (3.4), hypothesis

H(j)(v) and Lemma 3.1(a), we have

〈x∗1 − x∗2, x̂1 − x̂2〉H+
≥ ‖D(x̂1 − x̂2)‖2

2 −
∫

Z

a(x̂1 − x̂2)
2dz

−
∫

Z

β(x̂1 − x̂2)
2dz ≥ c5‖x̂1 − x̂2‖2, c5 > 0,

⇒ x̂→ ϕ̂y(x̂) −
c5

2
‖x̂‖2, is convex on H+.(3.5)
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In addition, if x∗ ∈ ∂ϕy(x̂) and y∗ ∈ ∂ϕy(0), we have

〈x∗, x̂〉H+
= 〈x∗ − y∗, x̂〉H+

+ 〈y∗, x̂〉H+
≥ c5‖x̂‖2 − c6‖x̂‖, c6 > 0,

⇒ x̂→ ∂ϕy(x̂) is coercive on H+.

Also because of (3.5), ∂ϕ(·) is maximal monotone on H+. A maximal monotone,

coercive map is surjective (see Gasinski-Papageorgiou [7], p.320). Thus we can find

x̂0 ∈ H+ such that 0 ∈ ∂ϕ̂y(x̂0) and so x̂0 is a minimizer of ϕ̂y (since ϕ̂y is convex)

and in fact a unique minimizer, due to the strong convexity of ϕ̂y(·) (see (3.5)). So we

can define the map η : Y → H+ which to a given y ∈ Y assigns the unique solution

x̂0 = x̂0(y) ∈ H+ of the problem min[ϕ(y + x̂) : x̂ ∈ H+]. Using (3.3) we have

0 ∈ ∂ϕ̂y(x̂0) ⊆ pH∗

+
∂ϕ(y + η(y))

and ϕ(y + η(y)) = min[ϕ(y + x̂) : x̂ ∈ H+].

We need to show that η is continuous. To this end, suppose yn → y in Y . First

we show that {η(yn)}n≥1 ⊆ H+ is bounded. For some M2 > 0 and all n ≥ 1, we have

1

2
‖D(yn + η(yn))‖2

2 −
1

2

∫

Z

a(yn + η(yn))2dz −
∫

Z

j(z, yn + η(yn))dz

= ϕ(yn + η(yn)) ≤ ϕ(yn) ≤ M2.(3.6)

From Rademacher’s theorem, we know that for a.a. z ∈ Z and a.a. τ ∈ R,
d
dτ
j(z, τ) exists and belongs in ∂j(z, τ). So using the nonsmooth chain rule and

hypotheses H(j)(v) and (iii), we have

j(z, (yn + η(yn))(z)) = j(z, yn(z)) +

∫ 1

0

d

dτ
j(z, (yn + τη(yn))(z))dz

≤ j(z, yn(z)) +
β(z)

2
η(yn)(z)

2 + c7|η(yn)(z)|(3.7)

for a.a. z ∈ Z, with c7 > 0.

Using (3.7) in (3.6) and exploiting the orthogonality of the component spaces,

we obtain

M2 ≥
1

2
‖Dη(yn)‖2

2 −
1

2

∫

Z

aη(yn)
2dz − 1

2

∫

Z

βη(yn)
2dz

− c7

∫

Z

|η(yn)|dz − c8, c8 > 0,

≥ ξ

2
‖η(yn)‖2 − c9‖η(yn)‖ − c8, c9 > 0 (see Lemma 3.1(a)),

⇒ {η(yn)}n≥1 ⊆ H+ is bounded.

Therefore we may assume that η(yn)
w→ w in H1(Z). Because of the weak lower

semicontinuity of ϕ, we have

(3.8) ϕ(y + w) ≤ lim inf
n→∞

ϕ(yn + η(yn)).



MULTIPLE SOLUTIONS 377

From the definition of η, we also have

(3.9) lim sup
n→∞

ϕ(yn + η(yn)) ≤ ϕ(y + x̂) for all x̂ ∈ H+.

Combining (3.8) (3.9), we see that w = η(y). So for the original sequence, we

have

(3.10) η(yn)
w→ η(y) in H1(Z) and η(yn) → η(y) in L2(Z).

Recall that 0 ∈ pH∗

+
∂ϕ(yn +η(yn)) and so pH∗

+
A(yn +η(yn))−pH∗

+
a(yn +η(yn)) =

pH∗

+
un with un ∈ Lr′(Z), un(z) ∈ ∂j(z, (yn + η(yn))(z)) a.e. on Z, n ≥ 1 (see (3.3)).

Hence

〈A(yn + η(yn)), η(yn) − η(y)〉

=

∫

Z

un(η(yn) − η(y))dz +

∫

Z

a(yn + η(yn))(η(yn) − η(y))dz → 0

and A(yn + η(yn))
w→ A(y + η(y)) in H1(Z)∗ (see (3.10)). Therefore

〈A(yn + η(yn)), η(yn)〉 → 〈A(y + η(y)), η(y)〉,
⇒ ‖D(yn + η(yn))‖2 → ‖D(y + η(y))‖2.

Since D(yn + η(yn))
w→ D(y+ η(y)) in L2(Z,RN), from the Kadec-Klee property,

we have

D(yn + η(yn)) → D(y + η(y)) in L2(Z,RN),

⇒ η(yn) → η(y) in H1(Z) (see (3.10)), i.e. η is continuous.

Let ϕ : Y → R be defined by ϕ(y) = ϕ(y + η(y)). It is easy to see that ϕ is

locally Lispchitz.

Proposition 3.3. If hypotheses H(j) hold, then ∂ϕ(y) ⊆ pY ∗∂ϕ(y + η(y)) for all

y ∈ Y , with pY ∗ the orthogonal projection of H1(Z)∗ onto Y ∗ = (H∗
+)⊥.

Proof. For all y, h ∈ Y , we have

ϕ0(y; h) = lim sup
y′ → y

λ ↓ 0

ϕ(y′ + λh + η(y′ + λh))) − ϕ(y′ + η(y′))

λ
.

≤ lim sup
y′ → y

λ ↓ 0

ϕ(y′ + λh+ η(y′))) − ϕ(y′ + η(y′))

λ
= ϕ0(y + η(y); h)(3.11)
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(since η is continuous by Proposition 3.2). Let i0 : Y → H1(Z) be the inclusion map

and let 〈·, ·〉Y denote the duality brackets for the pair (Y, Y ∗). We know i∗0 = pY ∗. So

if x∗0 ∈ ∂ϕ(y), using (3.11), we have

〈x∗0, h〉Y ≤ ϕ0(y; h) ≤ ϕ0(y + η(y); h)

= sup[〈pY ∗(x∗), h〉Y : x∗ ∈ ∂ϕ(y + η(y))] for all h ∈ Y,

⇒∂ϕ(y) ⊆ pY ∗∂(y + η(y)) for all y ∈ Y.

We set ψ = −ϕ : Y → R and show that ψ satisfies the local linking geometry

(see Gasinski-Papageorgiou [7], p. 661).

Proposition 3.4. If hypotheses H(j) hold, then we can find p > 0 such that
{
ψ(x0) ≤ 0 if x0 ∈ H0, ‖x0‖ ≤ p

ψ(x) ≥ 0 if x ∈ H−, ‖x‖ ≤ p
.

Proof. From hypotheses H(j)(iii) and (iv), we obtain

(3.12)

j(z, x) ≤ γ(z)

2
x2 + c10|x|θ for a.a. z ∈ Z, all x ∈ R and with c10 > 0, 2 < θ < 2∗.

Then using (3.12) and Lemma 3.1(b), for all x0 ∈ H0 we have

(3.13)

ψ(x0) = −ϕ(x0) = −ϕ(x0 + η(x0)) ≤ − ξ̂
2
‖x0 + η(x0)‖2 + c11‖x0 + η(x0)‖θ, c11 > 0.

Hypothesis H(j)(vi) implies that x = 0 is a local maximizer of j(z, ·) for a.a.

z ∈ Z, hence 0 ∈ ∂j(z, 0) a.e. on Z. So from hypothesis H(j)(v) we have ux ≤ β(z)x2

for a.a. z ∈ Z, all x ∈ R and all u ∈ ∂j(z, x). From this it follows that j(z, x) ≤ β(z)
2
x2

for a.a. z ∈ Z, all x ∈ R. Then because of Lemma 3.1(a), we have

ϕ(x̂) ≥ ξ

2
‖x̂‖2 for all x̂ ∈ H+, i.e. inf

H+

ϕ = 0 and so η(0) = 0.

Therefore from (3.13), the continuity of η and since θ > 2, we can find p1 > 0

small such that

ψ(x0) ≤ 0 for all x0 ∈ H0, ‖x0‖ ≤ p1.

Also, if dimH− 6= 0, then due to the finite dimensionality of H− ⊆ C(Z) all

norms are equivalent. Hence ‖x‖∞ ≤ c12‖x‖ for all x ∈ H−, c12 > 0. Therefore if

p2 = δ
c12

and ‖x‖ ≤ p2, x ∈ H−, then |x(z)| ≤ δ for all z ∈ Z and so using hypothesis

H(j)(vi) and the variational characterization of λk < 0, we have

ψ(x) ≥ 0 for all x ∈ H−, ‖x‖ ≤ p2.

Finally take p = min{p1, p2}.
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Lemma 3.5. Given ε > 0, we can find µε > 0 such that |{z ∈ Z : |x0(z)| ≤
µε‖x0‖}|N < ε for all x0 ∈ H0.

Proof. We may assume that dimH0 6= 0. Suppose the lemma is not true. Then we

can find ε > 0 and a sequence {x0
n}n≥1 ⊆ H0 such that |Dn|N = |{z ∈ Z : |x0

n(z)| <
1
n
‖x0

n‖}|N ≥ ε for all n ≥ 1. We set y0
n = x0

n

‖x0
n‖

∈ H0, n ≥ 1. Since dimH0 < +∞, we

may assume that y0
n → y0 in H1(Z), hence ‖y0‖ = 1. Let D̂0 = {z ∈ Z : y0(z) = 0}.

We have lim sup
n→∞

Dn ⊆ D̂0 and so 0 < ε ≤ lim sup
n→∞

|Dn|N ≤ | lim sup
n→∞

Dn|N ≤ |D̂0|N .

But since y0 ∈ H0, y0 6= 0, from the unique continuation property, we have y0(z) 6= 0

a.e. on Z and so |D̂0|N = 0, a contradiction.

Using this lemma, we can show the coercivity of ψ.

Proposition 3.6. If hypotheses H(j) hold, then ψ : Y → R is coercive

Proof. Since ψ ≥ −ϕ|Y , it suffices to show that −ϕ|Y is coercive. Suppose not.

We can find {yn}n≥1 ⊆ Y and M3 > 0 such that −M3 ≤ ϕ(yn) for all n ≥ 1 and

‖yn‖ → ∞. Because of hypothesis H(j)(iv) and Tang-Wu [13], given ε > 0, we can

find Dε ⊆ C measurable with |C\Dε|N < ε such that

j(z, x) → +∞ uniformly for all z ∈ Dε as |x| → ∞.

Hence from Tang-Wu [13], we have

(3.14) j(z, x) ≥ G(x) − h(z) for a.a. z ∈ Dε and all x ∈ R,

where G ∈ C(R), G ≥ 0, G is subadditive, coercive, G(x) ≤ 4 + |x| for all x ∈ R and

h ∈ L1(Z)+.

We write yn = y0
n + yn, y0

n ∈ H0, yn ∈ H−, n ≥ 1. Then using the orthogonality

of the component spaces, hypothesis H(j)(iv) and (3.14), we have

−M3 ≤ ϕ(yn) ≤ −c13‖yn‖2 −
∫

Dε

G(yn(z))dz + ‖h‖1 + ‖h0‖1

≤ −c13‖yn‖2 + c14, c13, c14 > 0(3.15)

⇒{yn}n≥1 ⊆ H− is bounded.

Since ‖yn‖ ≤ ‖y0
n‖+‖yn‖ and ‖yn‖ → ∞, it follows that ‖y0

n‖ → ∞. Fix δ > 0.

From Lemma 3.5, we can find µδ0 > 0 such that |{z ∈ Z : |x0(z)| < µδ0‖x0‖}|N < δ0

for all x0 ∈ H0. For every n ≥ 1, we set Sn = {z ∈ Z : |y0
n(z)| ≥ µδ0‖y0

n‖}. We know

that |Z\Sn|N < δ0 for all n ≥ 1. Since dimH− < ∞ and {yn}n≥1 ⊆ H− ⊆ C(Z),

we can find c14 > 0 such that ‖yn‖∞ ≤ c14 for all n ≥ 1. Recall that G is coercive.

So given ω > 0, we can find M0 = M0(ω) > 0 such that G(x) ≥ ω for all |x| ≥ M0.

Let En = {z ∈ Z : |yn(z)| ≥ M0}, n ≥ 1. Note that |yn(z)| ≥ |y0
n(z)| − |yn(z)| ≥
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µδ0‖y0
n‖−c14 for all z ∈ Sn and all n ≥ 1. Since ‖y0

n‖ → ∞, it follows that |yn(z)| ≥M0

for all z ∈ Sn and all n ≥ n0, hence Sn ⊆ En for all n ≥ n0. Then
∫

Dε

G(yn(z))dz =

∫

Dε∩En

G(yn(z))dz +

∫

Dε\En

G(yn(z))dz

≥
∫

Dε∩En

G(yn(z))dz (since G ≥ 0)

≥ ω|Dε ∩ En|N ≥ ω|Dε ∩ Sn|N for all n ≥ n0.(3.16)

But |Dε ∩ Sn|N = |Dε|N − |Dε\Sn|N ≥ |C|N − ε − δ0 > 0 for ε, δ0 > 0 small. Hence

from (3.16) and since ω > 0 was arbitrary, we conclude that lim
x→∞

G(yn(z))dz = +∞.

Returning to (3.15) and passing to the limit as n→ ∞, we reach a contradiction.

4. MULTIPLICITY THEOREM

Using the auxiliary results of Section 3 we can state and prove the multiplicity

theorem.

Theorem 4.1. If hypotheses H(j) hold and dimH0 6= 0, then problem (1.1) has at

least two nontrivial solutions x1, x2 ∈ C1(Z).

Proof. We have ψ(0) = −ϕ(0) = −ϕ(0 + η(0)) = −ϕ(0) = 0 and so inf
Y
ψ ≤ 0.

If inf
Y
ψ = 0, then by virtue of Proposition 3.4, all x0 ∈ H0 with ‖x0‖ ≤ p are

minimizers of ψ and so ψ has a continuum of nontrivial critical points.

If inf
Y
ψ < 0, then because of Proposition 3.6 and since Y = H0 ⊕H− is finite di-

mensional, we infer that ψ is bounded below and satisfies the nonsmooth PS-condition

(see Chang [5]). So we can apply the nonsmooth local linking theorem of Kandilakis-

Kourogenis-Papageorgiou [8] and deduce that ψ has at least two nontrivial critical

points.

So we see that in any case, ψ has at least two nontrivial critical points. Let

y ∈ Y , y 6= 0, be a critical point of ψ. From Propositions 3.2 and 3.3 we have

0 ∈ ∂ϕ̂y(η(y)) ⊆ pH∗

+
∂ϕ(y + η(y))

and 0 ∈ ∂ψ(y) = −∂ϕ(y) ⊆ pY ∗∂ϕ(y + η(y)),

⇒0 ∈ ∂ϕ(y + η(y)) (since H1(Z)∗ = Y ∗ ⊕H∗
+),

i.e. y + η(y) is a nontrivial critical point of ϕ.

Therefore, if y1, y2 ∈ Y are the nontrivial critical points of ψ, then x1 = y1+η(y1),

x2 = y2 + η(y2) are two nontrivial critical points of ϕ, hence two nontrivial solutions

of (1.1). Standard regularity theory (see for example Gasinski-Papageorgiou [7]),

implies x1, x2 ∈ C1(Z).
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