
Dynamic Systems and Applications 17 (2008) 383-406

MODELING OF VISCOELASTIC SHEAR:
A NONLINEAR STICK-SLIP FORMULATION

H. T. BANKS, NEGASH G. MEDHIN, AND GABRIELLA A. PINTER

Center for Research in Scientific Computation, North Carolina State University,

Raleigh, NC 27695-8205

Department of Mathematical Sciences, University of Wisconsin, Milwaukee,

Milwaukee, WI 53201-0413

ABSTRACT. We present a class of nonlinear dynamic viscoelastic models for materials subjected

to shear stress. The model equations are based on a continuum variation of a reptation model in

which chemically cross-linked (CC) systems of molecules act as constraint boxes per unit volume for

physically constrained (PC) systems of molecules. Results from validating the model with dynamic

shear experiments are given and a stability analysis for the corresponding linearized systems is

discussed.

1. INTRODUCTION

In this paper we derive for the first time a continuum model combined with

molecular based internal dynamics for shear deformations in viscoelastic materials.

The resulting partial differential equation model is coupled to ordinary differential

equations for internal strains via a nonlinear stick-slip molecular theory. An initial

step toward validating the models with carefully designed experiments is discussed.

Various molecular and phenomenological models have been proposed to model

rubber deformations. One early and influential paper on viscoelasticity is that of

Pipkin and Rogers [20]. Their approach (like many subsequent contributions to the

literature) is phenomenological, and is based on incorporating the strain/stress his-

tory in the relaxation model in a mathematically sound way leading to an appropriate

relaxation kernel. The construction incorporates step strain data obtained from ex-

periments. The approach presented in this paper is a combination of micro and

macro-scale considerations. The relationship between the constrained (PC) and con-

straining (CC) molecules embodies an attempt to construct relaxation kernels in a

direct way. The relaxation kernel incorporates the strain/stress and strain rate his-

tory and the stress/strain relationship is a nonlinear integral expression as is the case

in [20].
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A more scientifically satisfactory model can be obtained by combining molecular

and continuum mechanics approaches that are less phenomenological in nature. The

fundamental ideas originate in the presentations of Doi and Edwards [12] and Johnson

and Stacer [17] as extended in [5, 6]. To make the presentation in this paper self

contained we first briefly summarize some of the background material presented in

[4, 5, 6].

A dynamic model for rubber viscoelasticity has been proposed in [17] based on

a continuum simulation of the reptation model considered in [12]. In step-strain

relaxations of polymers with constraint (stick-slip) theory, PC-molecules deform with

CC-molecules, contract and creep to return to a lower energy, higher entropy state.

As a result, the total energy density at a constant strain dissipates in time and

viscoelastic behavior results.

Such a linear continuum model of rubber viscoelasticity is developed in [17] by

considering the CC-linked molecules as providing cells or boxes with entrapped molec-

ular segments and placing a unit cell or box at each point of the rubber continuum.

This approach was extended to nonlinear models for rubber undergoing tensile de-

formations in [5, 6]. Here we consider the case where the CC-box experiences a

shear stress as a result of which the PC-molecules undergo a parallel deformation. In

our formulation the PC-molecules act as internal variables in the relaxation of the

CC-box.

2. CONTINUUM MODEL OF JOHNSON AND STACER

When the Johnson–Stacer [17] CC-system experiences shear deformations, the

PC-system undergoes deformation along with it. The relaxation of the PC-system

is determined by the history of the CC-system along with thermodynamic consider-

ations. On the other hand the PC-system deformation acts as an internal variable

affecting the relaxation of the CC-system. The tendency for the PC-molecule to return

to a lower energy and higher entropy configuration forms the basis of the viscoelastic

model in the deformation process. A PC-molecule entrapped in a CC-molecular box

undergoes a deformation in the direction of the shear when the CC-box experiences

shear. After the initial induced stress, the PC-molecule relaxes even if the CC-box re-

mains deformed. Let the CC-constraint tube have length L(t) and the representative

entrapped PC-molecule have length `(t). The model in [17] assumes that the length

of the CC-tube is approximated as a step function of time and `(0) = L(0). Suppose

instantaneous step-strain deformation of the CC-system results in the PC-molecule

having length `∗. A model of the PC-molecule returning to its original contour length

is given by

`(t) = `(0) + [`∗ − `(0)] e−t/τ
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If the initial stretch for the CC-box is ∆L0, relating the stretches in the form ∆`0
∆L0

= `0
L0

leads to the relation

∆`0 =

(

`0

L0

)

∆L0.

Then in the time interval t0 < t < t1 we have

`(t) = `0 +
`0

L0

∆L0e
−(t−t0)/τ ,

where τ is the relaxation time for the slip motion of the PC-molecule.

Setting t = t1, we have

`(t1) = `0 +
`0

L0
∆L0e

−(t1−t0)/τ ,

L1 = L0 + ∆L0.

Next we suppose that the CC-box is subjected to an instantaneous shear step

deformation ∆L1 at t = t1. For t in the time interval (t1, t2) we have

`(t) = `0 + [(`1 + ∆`1) − `0] e
−(t−t1)/τ

= `0 +
`0

L0
∆L0e

−(t−t0)/τ +
`1

L1
∆L1e

−(t−t1)/τ .

Similarly, after another instantaneous shear step deformation ∆L2 at t = t2, for

t2 < t < t3 we have

`(t) = `0 +
`0

L0
∆L0e

−(t−t0)/τ +
`1

L1
∆L1e

−(t−t1)/τ

+
`2

L2

∆L2e
−(t−t2)/τ .

Following [17] and taking the limit, as ∆ti → 0, of a succession of such step strains,

we are led to the formula

(2.1) `(t) = `0 +

∫ t

0

`(s)

L(s)

dL(s)

ds
e−(t−s)/τds

for the length of the PC-molecule.

We make the following observation for the linear theory that will be subsequently

modified for a nonlinear theory. If ∆`i and ∆Li represent instantaneous step-stretches

at t = ti, we have assumed the fundamental relationship

(2.2)
∆`i
∆Li

=
`i

Li

,

where `i = `(ti), Li = L(ti).
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3. SHEAR DEFORMATION IN THE CC-BOX AND DEFORMATION

OF THE PC-MOLECULE

A deformation that is close to the axial extension and to which we can readily

apply the continuum ideas of Johnson and Stacer is generalized simple shear as de-

picted in Figure 1. We suppose that the unit CC-box undergoes a deformation of the

type x → x+ u(y), y → y, z → z.

u(y)
y

x

Figure 1. Simple shear.

The configuration gradient [2, 3] for this deformation is given by

A =







1 u′(y) 0

0 1 0

0 0 1







The configuration gradient A can be written in a unique way as a product of a stretch

tensor E and rotation R as

A = ER,

where E2 = A∗A. The eigenvalues ξ1, ξ2, ξ3 of A∗A are given by

ξ1 = 1 +
1

2
[u′(y)]

2
+ u′(y)

√

1 +
1

4
[u′(y)]2

= 1 + u′(y) +
1

2
[u′(y)]

2
+

1

8
[u′(y)]

3
− . . .(3.1)

ξ2 = 1 +
1

2
[u′(y)]

2
− u′(y)

√

1 +
1

4
[u′(y)]2

= 1 − u′(y) +
1

2
[u′(y)]

2
−

1

8
[u′(y)]

3
+ . . .

ξ3 = 1.
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We note that ξ1ξ2 = 1 and thus also ξ1ξ2ξ3 = 1. For small deformations we set

λ1c =
√

ξ1 = 1 +
1

2
u′(y) +

1

4
[u′(y)]

2
+

1

16
[u′(y)]

3
∓ . . .

λ2c =
√

ξ2 = 1 −
1

2
u′(y) +

1

4
[u′(y)]

2
−

1

16
[u′(y)]

3
+ . . .(3.2)

λ3c = 1.

The quantities λ1c, λ2c, λ3c are the principal stretches for the CC-shear deformations.

Although the CC-box experiences shear deformation, the entrapped PC-molecules

experience deformations that can be simple shear, simple elongation, or a combina-

tion thereof, depending on the orientation of the PC molecule in the entanglement

with the CC-box. In any case, we assume that the PC deformation δup is in the same

direction as the CC-box shear, and thus the principal stretches for the PC-molecules

may be assumed to obey the (incompressibility) relationships

(3.3) λ2p = λ3p =
1

√

λ1p

.

To develop relationships between the principal stretches λic and λip we use (2.1) and

(2.2). The equation (2.1) suggests that we write

(3.4) λ1p = 1 +

∫ t

0

λ1p(s)

λ1c(s)

dλ1c(s)

ds
e−(t−s)/τds.

The equation (2.2) further suggests that we assume the relationship

(3.5)
∂λip

∂λjc
=
λip

λjc
δij,

where δij is the Kronecker delta.

In (3.2) we assume that u also depends on time. Thus,

λ1c = 1 +
1

2
∂yu(t, y) +

1

4
[∂yu(t, y)]

2 +
1

16
[∂yu(t, y)]

3 ∓ . . .

λ2c = 1 −
1

2
∂yu(t, y) +

1

4
[∂yu(t, y)]

2 −
1

16
[∂yu(t, y)]

3 ± . . .(3.6)

λ3c = 1.

Using (3.6), we obtain from (3.4) the equation

λ1p = 1 +

∫ t

0

λ1p(s)

(

1 −
1

2
∂yu(s, y) +

3

8
[∂yu(s, y)]

3 + . . .

)

·

(

1

2
∂s∂yu(s, y) +

1

2
∂yu(s, y)∂s∂yu(s, y) + . . .

)

· e−(t−s)/τds.(3.7)

From (3.7) we find

(3.8) λ1p ≈ 1 +

∫ t

0

λ1p(s)

(

1 −
1

2
∂yu(s, y)

)

·
1

2

∂2

∂s∂y
u(s, y)e−(t−s)/τds.



388 H. T. BANKS, N. G. MEDHIN, AND G. A. PINTER

Setting λ1p ≈ 1 + δup where δup = δup(t, y), we see from (3.8) that

δup(t, y) ≈
1

2
∂yu(t, y)−

1

2τ

∫ t

0

∂yu(s, y)e
−(t−s)/τds

+

∫ t

0

[

δup −
1

2
∂yu

]

1

2
∂s∂yu(s, y)e

−(t−s)/τds−
1

2
∂yu(0, y)e

−t/τ .(3.9)

Next, let (assume that ∂yu(0, y) = 0)

w = δup −
1

2
∂yu(t, y).

Then from (3.9)

∂tw +

(

1

τ
−

1

2

∂2u

∂t∂y

)

w = −
1

2τ
∂yu(t, y).

Thus

δup(t, y) ≈
1

2
∂yu(t, y) −

1

2τ

∫ t

0

e−(t−s)/τ∂yu(s, y)ds

−
1

τ

∫ t

0

e−(t−s)/τ

[

1

2
(∂yu(t, y) − ∂yu(s, y)) +

1

4
(∂yu(t, y)− ∂yu(s, y))

2

]

·

1

2
∂yu(s, y)ds.

From this last equation we are persuaded to make the approximation

(3.10) δup(t, y) =
1

2
∂yu(t, y)−

1

2τ

∫ t

0

e−(t−s)/τ∂yu(s, y)ds.

4. THE DYNAMICS EQUATION

We proceed to write the dynamic equation for a particular rubber material consid-

ered in [17]. For this particular material the energy density proposed in [17] consists

of two parts, Wcc and Wpc, where Wcc is the contribution to the energy density of a

unit CC-box from the cross-linked molecules constituting the box. A contribution to

the energy density function from entrapped PC-molecules is denoted Wpc. The Wcc

and Wpc proposed in [17] are given by

Wcc = 105
(

λ2
1c + λ2

2c + λ2
3c − 3

)

+

103
(

λ2
1cλ

2
2c + λ2

1cλ
2
3c + λ2

2cλ
2
3c − 3

)

Wpc = 169
(

λ2
1p + λ2

2p + λ2
3p − 3

)

+ 0.0138
(

λ2
1p + λ2

2p + λ2
3p − 3

)2
+

7.89
(

λ2
1pλ

2
2p + λ2

1pλ
2
3p + λ2

2pλ
2
3p − 3

)3
,

where the specific numbers in these expressions are derived from validation with

experimental data of Young and Danik (see [16]). Using the fact λ2
1c = ξ1 and λ2

2c = ξ2

and (3.1), we find

Wcc = 208u2
y + au3

y + · · · .



MODELING OF VISCOELASTIC SHEAR 389

Thus

∂Wcc

∂uy

= 416uy + a2u
2
y + a3u

3
y + · · · ≡ ĝe(uy) ≈ 416uy.(4.1)

Next using (3.3) we have

Wpc = 169

(

λ2
1p +

2

λ1p

− 3

)

+ 0.0138

(

λ2
1p +

2

λ1p

− 3

)2

+ 7.89

(

2λ1p +
1

λ2
1p

− 3

)3

,

∂Wpc

∂λ1p
= 169

(

2λ1p −
2

λ2
1p

)

+ 0.0276

(

λ2
1p +

2

λ1p
− 3

)(

2λ1p −
2

λ2
1p

)

+ 23.67

(

2λ1p +
1

λ2
1p

− 3

)2 (

2 −
2

λ3
1p

)

.

Recalling λ1p ≈ 1 + δup we have

∂Wpc

∂λ1p
≈ 1014δup.

Using (3.5) we have

∂Wpc

∂λ1c
=

∂Wpc

∂λ1p

∂λ1p

∂λ1c
=
∂Wpc

∂λ1p

λ1p

λ1c

λ1p

λ1c

≈
1 + δup

λ1c

≈ 1 + δup −
1

2
∂yu−

1

2
δup∂yu+

1

4
(∂yu)

2 + . . .

∂Wpc

∂uy
=

∂Wpc

∂λ1c

∂λ1c

∂uy
≈ 1014δup

(

1 + δup −
1

2
∂yu−

1

2
δup∂yu+

1

4
(∂yu)

2 + . . .

)

1

2

= 512δup

(

1 + δup −
1

2
uy −

1

2
δup∂yu+

1

4
(∂yu)

2 + . . .

)

≈ 512δup.

Thus to first order we have

(4.2)
∂Wpc

∂uy
≈ 512δup.

Now we consider the shear vibration of a rubber sample with a square cross sectional

area Ac and density ρ. From (4.2) and (3.10)

(4.3)
∂Wpc

∂uy
≈ 256∂yu(t, y) −

256

τ

∫ t

0

e−(t−s)/τ∂yu(s, y)ds.

The shear dynamics of the rubber sample are given by

ρAc∂
2
t u− ∂y

(

∂Wcc

∂uy

+
∂Wpc

∂uy

)

= F,
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where F is the external load. Using (4.3) and only first order terms, we have our

desired linear equation

ρAc∂
2
t u− 672Ac∂

2
yu(t, y) +

256Ac

τ

∫ t

0

e−(t−s)/τ∂2
yu(s, y)ds = F.(4.4)

5. A NONLINEAR REPTATION MODEL

In the previous section the deformations of the PC-molecules and the CC-molecules

were assumed to be related according to the formula

∆`

∆L
=

`

L

leading to the relationship
∂λjp

∂λic
=
λjp

λic
δij

between the stretches.

The above relationship has the merit that it would make it feasible for the PC-

molecule to remain within the constraining tube during relaxation. However, a more

realistic and general relationship is of the form

(5.1)
∆`

∆L
= f(t,

`

L
), or

∂λjp

∂λic
= f(t,

λjp

λic
)δij,

where f is a material dependent nonlinearity. With this more general relationship

between the deformations, the relaxation process after an instantaneous step-strain

in the time interval 0 = t0 < t < t1 is given by

`(t) = `0 + f(t0,
`0

L0
)∆L0e

(t−t0)
τ .

In the time interval (tm−1, tm), m ≥ 1 the relaxation process has the form

`(t) = `0 +
m−1
∑

i=0

f(ti,
`i

Li
)∆Lie

−(t−ti)

τ .

In the limit, as ∆t = ti − ti−1 tends to zero, we have

`(t) =

∫ t

0

f(s,
`(s)

L(s)
)
dL(s)

ds
e−

(t−s)
τ ds.

In differential form we have

(5.2)
d`

dt
= f(t,

`(t)

L(t)
)
dL

dt
−

1

τ
(`(t) − `0).

We can write (5.2) in terms of the stretches of the PC-molecules λip, i = 1, 2, 3 and

those of the CC-molecules λic, i = 1, 2, 3. When writing (5.2) in terms of the stretches,

we take `0 = 1. In particular, setting ε1 = δup = λ1p − 1, we have from (5.2) the

equation

(5.3) ε̇1 +
1

τ
ε1 = λ̇1cf(t,

1 + ε1

λ1c

).
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In the problem at hand λ2
1cλ

2
2c = 1, and from (3.2),

1

λ1c
= λ2c = 1 −

1

2
u′(y) +

1

4
u′(y)2 −

1

16
u′(y)3 ± · · ·

= 1 − ε+ ε2 −
1

2
ε3 ± · · · ,

where we set ε = 1
2
u′(y). Next we write (5.3) as

ε̇1 +
1

τ
ε1 = ε̇(1 + 2ε+

3

2
ε2 + · · · )

·f(t, 1 + ε1 − ε− ε1ε+ ε2 + ε1ε
2 −

1

2
ε3 ± · · · ).

In the case f is independent of t, which we assume henceforth, we expand f about

the point 1 and obtain

ε̇1 +
1

τ
ε1 = ε̇(1 + 2ε+

3

2
ε2 + · · · )

·

{

f(1) + ḟ(1)(ε1 − ε− ε1ε+ ε2 + ε1ε
2 −

1

2
ε3 + − · · · ) + · · ·

}

.

(5.4)

In Section 3, f(t,
λ1p

λ1c
) =

λ1p

λ1c
. In this case (5.4) becomes

ε̇1 +
1

τ
ε1 = ε̇(1 + 2ε+

3

2
ε2 + · · · )

·

{

1 + ε1 − ε− ε1ε+ ε2 + ε1ε
2 −

1

2
ε3 ± · · ·+ · · ·

}

.

(5.5)

We note that a special case of this latter equation is

ε̇1 +
1

τ
ε1 = ε̇(1 + 2ε+

3

2
ε2)

=
d

dt
(ε+ ε2 +

1

2
ε3),

which is itself a special case of the general model

ε̇1 +
1

τ
ε1 =

d

dt
(b1ε+ b2ε

2 + b3ε
3).(5.6)

These, of course, are both special cases of the general model

ε̇1 +
1

τ
ε1 = gv(ε, ε̇).(5.7)

Neglecting all higher order terms in (5.5), we find

(5.8) ε̇1 +
1

τ
ε1 = ε̇,

which is (3.10) of Section 4.
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The dynamics of the rubber (see Section 4) are given by

(5.9) ρAc∂
2
t u−

∂

∂y
(
∂Wcc

∂uy
+
∂Wpc

∂uy
) = F.

Now

∂Wpc

∂uy

=
∂Wpc

∂λ1c

∂λ1c

∂uy

=
∂Wpc

∂λ1p

∂λ1p

∂λ1c

∂λ1c

∂uy

≈
∂Wpc

∂λ1p
f(
λ1p

λ1c
)
1

2

= 512ε1f(1 + ε1 − ε− ε1ε+ ε2 + ε1ε
2 −

1

2
ε3 ± · · · ).

From (5.9) we have now

(5.10) ρAc∂
2
t u− ∂y{ge(ε) + 512ε1f(1 + ε1 − ε− ε1ε+ ε2 + ε1ε

2 −
1

2
ε3 ± · · · )} = F,

where ge(ε) = 832ε + a2ε
2 + · · · . This is a general nonlinear model based on the

nonlinear constitutive relationship involving f of (5.1) and that of (4.1). In Section

3 we had the simpler proportional assumption f(
λ1p

λ1c
) =

λ1p

λ1c
as well as ge(ε) ≈ 832ε.

In that case (5.10) becomes

(5.11) ρAc∂
2
t u− ∂y(832ε+ 512ε1(1 + ε1 − ε− ε1ε+ ε2 + ε1ε

2 −
1

2
ε3 + − · · · )) = F.

If we retain only first order terms in ε, ε1 in (5.11) we obtain the equation

ρAc∂
2
t u− ∂y(832ε+ 512ε1) = F.

Thus, a linearization of (5.11) and (5.5) gives

ρAc∂
2
t u− ∂y(832ε+ 512ε1) = F

ε̇1 +
1

τ
ε1 = ε̇,

which, recalling (3.10) and ε = 1
2
uy, we see is the same as (4.4) of Section 4.

6. THE NONLINEAR MODEL AND SIMPLE SHEAR

EXPERIMENTS

Model development and identification processes (inverse problems with experi-

mental data) for nonlinearities and parameters were carried out for filled elastomers

undergoing simple shear deformation. A series of dynamic experiments were designed

and carried out, each involving one or more “double sandwich” fixtures with layers of

filled rubber at the interfaces as depicted in Figure 2. (These were part of a project

at the Thomas Lord Research Center of the Lord Corporation in which proprietary

dynamic experiments on filled rubber undergoing tensile and shear deformations were

designed and carried out-see [3, 5, 6].) The side bars were fixed, while the middle bar
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Load Cell

Figure 2. Schematic of the double lap simple shear experimental device.

was either perturbed by an impulsive hammer hit or provided with an initial strain

and then released. In all experiments, both accelerometer and load cell data were

collected for the motion of the middle bar. The samples consisted of A225 highly

filled rubber with dimensions 0.1 × 0.1 × 0.8 in. with two such layers in each of the

double lap devices as seen in Figure 2.

For simple shear, the model developed and used is based on (5.10) with Kelvin-

Voigt damping added as given by

ρAcutt − CDutyy −
∂

∂y
Acσ = 0, 0 < y < `,(6.1)

{Mutt(t, `) + CDuty(t, `) + Acσ(t, `)} = F (t) +Mg,(6.2)

u(t, 0) = 0,(6.3)

u(0, y) = u0 ut(0, y) = 0.(6.4)

Here ρ is the mass density, Ac is the square contact area of the sample, CD is

a damping coefficient, M is the mass of a tip body possibly attached to the middle

bar (M = 0 if the tip mass is not included in the experimental set-up), F (t) is an

applied (at y = `) external force when present, and σ is the elastic and viscoelastic

shear stress given in general form by

σ(ε, ε1) = ge(ε) + ε1(6.5)

ε̇1 +
1

τ
ε1 = gv(ε, ε̇),(6.6)

as developed in the previous sections of this paper.

For each experimental data set, a least-squares minimization problem was carried

out to identify the unknown parameters q in the nonlinearities ge and gv using the ac-

celerometer data {ai} (the load cell data was not used in the optimization procedure)
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with the corresponding model solutions utt(ti, `; q) in

(6.7) J(q) =
1

2

n
∑

i=1

|ai − utt(ti, `; q)|
2.

The resulting optimized model was then used to generate load cell values which were

then compared to the corresponding experimental load cell data.

Initial experiments involved one double-lap device with an attached tip mass (to

produce deformations in shear sufficient for observation) which was excited with a

hammer hit on the middle bar. The experiment was performed with highly filled

rubber samples with different amounts of attached extra mass. In general, we found

that the data collected with no extra mass on the sample could be approximated

well with the above type models even when the viscoelastic response function gv is

assumed to be linear. This is not surprising, since the maximum strain levels in

these type of experiments were below 10%. However, when extra mass was involved

to achieve larger deformations and strain levels (this required huge masses!), the

experiment did not provide suitable data, since additional “tilting” modes became

excited and these could not be accounted for by the above one-dimensional model.

We subsequently redesigned the experimental device to consist of a hub with four

identical arms, each containing a double lap device as pictured in Figure 2. The arms

could be latched down so as to produce initial strains of up to 100%. Upon quick

release, this device produced very clean free–release data for the samples undergoing

simple shear with no additional deformations; these proved adequate for our model

estimation and validation. Thus, the experiments consisted of latching down the four

arms of the fixture at some prescribed initial strain (50%, 70% and 100% strain) and

then suddenly releasing the latch. We began with approximately 50% initial shear

strain and repeated each release experiment three times. We again collected both

accelerometer and load cell data. The sequence of experiments was repeated with

about 70% and 100% initial shear strains, respectively.

For our model fitting we used a number of different constitutive relationships

between the stress and the strain, including linear and nonlinear functions for both

ge and gv. The identification problem was first performed for the data obtained for

100% initial strain. We quickly found that a linear viscoelastic response function gv

was no longer adequate to describe the data in this higher strain regime. Thus, we

were led to models of the form

σ = g̃e(
∂u

∂y
) + CD

∂2u

∂t∂y
+ ε1, ε̇1 +

1

τ
ε1 = g̃v(

∂u

∂y
,
∂2u

∂t∂y
),

where g̃e and g̃v are cubic polynomials and g̃v may or may not depend on dε
dt

= 1
2

∂2u
∂t∂y

,

(i.e., g̃vi = g̃vd if the nonlinearities are the same in both increasing and decreasing
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deformation). The notion that one might need g̃v
′s of the form

g̃v(uy, u̇y) =

{

g̃vi(uy) if u̇y ≥ 0, (uy increasing)

g̃vd(uy) if u̇y < 0, (uy decreasing),
(6.8)

was motivated by earlier results [5, 7, 8] with similar materials undergoing tensile

deformations where such models were necessary because stress-strain curves clearly

indicated that the nonlinearities are distinctly different for contraction versus elon-

gation.

The parameters in a linear g̃vi = g̃vd that provided the best fit for the 100%

initial strain data (see Figure 3) did not produce a model that described well the 70%

and 50% initial strain experiments. Thus we next used the full nonlinear hysteretic

model (i.e., g̃vi 6= g̃vd in (6.8) taken as cubic nonlinearities) to approximate the 100%

initial strain data and found several different sets of cubic nonlinearities that gave a

very good approximation. Again, earlier efforts with these materials suggested that

cubic (as opposed to higher order) nonlinearities might be sufficient to capture the

dynamics. To find a set that also provides a good fit for the 70% initial data we

optimized on both data sets simultaneously (i.e., we used both data sets in the cost

criterion (6.7)). The best fit in this case is depicted in Figures 4 and 5. We found that

the set of parameters identified in this case described both data sets with very good

accuracy (Figures 4,5). Finally, we found that the 50% initial strain data sets were

the most difficult to use with the models (see Figure 6). Our investigations suggest

that in this data, the deformations are likely too small to obtain reliable fits due to

unfavorable signal to noise ratios.
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Figure 3. Hysteretic model with g̃vi = g̃vd linear for 100% initial shear strain.
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Figure 4. Model with g̃vi 6= g̃vd cubic best fit compared with 100%

initial shear strain data response.
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Figure 5. Model with the same (as in Figure 4) g̃vi 6= g̃vd cubic best

fit compared with 70% initial shear strain data response.
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Figure 6. Best model with g̃vi 6= g̃vd cubic compared with 50% initial

shear strain data response.
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7. ANALYSIS OF THE LINEAR MODEL EQUATION

In this section we analyze the linear model equation (4.4) and make some con-

clusion about the model. Dividing by ρAc in (4.4) we obtain the equation

∂2
t u−

672

ρ
∂2

yu+
256

ρτ

∫ t

0

e−(t−s)/τ∂2
yu(s, y)ds =

1

ρAc

F.(7.1)

We will later on solve (7.1) with boundary and initial conditions given by

(7.2) u(t, 0) = 0,
∂u

∂y
(t, b) = G(t), u(0, y) = ∂tu(0, y) = 0.

To facilitate our analysis, we set

(7.3) v =
672

ρ
u−

256

ρτ

∫ t

0

e−(t−s)/τu(s, y)ds.

Then from (7.1) we obtain

vtt +
256

672τ
vt −

416

672τ 2
v −

672

ρ
vyy +

(

416

672τ

)2 ∫ t

0

e−
416
672τ

(t−s)

(

vs +
1

τ
v

)

ds

=
672

ρ2Ac
F −

672

ρ

(

416

672τ

)2

e−
416
672τ

tu(0, y).(7.4)

We rewrite the initial and boundary conditions in (7.2), using (7.3), as follows:

v(t, 0) = 0

ρ
464

∫ t

0
e−

416
672τ

(t−s)
[

vsy(s, b) + 1
τ
vy(s, b)

]

ds+ ∂yu(0, b)e
−

416
672τ

t = G(t)

v(0, y) = 0(7.5)

vt(0, y) + 1
τ
v(0, y) = 0.

The second equation in (7.5) can be written as

ρ

672

[

vy(t, b) − e−
416
672τ

tvy(0, b)
]

+
256ρ

(672)2τ

∫ t

0

e−
416
672τ

(t−s)vy(s, b)ds+G(0+)e−
416
672τ

t

= G(t).(7.6)

We next consider the Sturm-Liouville problem

−Z ′′ − λZ = 0

Z(a) − h0Z
′(a) = 0, h0 ≥ 0

Z(b) − h1Z
′(b) = 0, h1 ≥ 0.

We recall that there is a corresponding sequence of eigenvalues 0 < λ1 < λ2 < . . . <

λn < . . .↗ ∞ and corresponding orthonormal eigenfunctions ϕ1, ϕ2, . . . , ϕn, . . ..

Consider a solution of (7.4)-(7.6) in the form

v(t, y) =
∞

∑

n=1

vn(t)ϕn(y).
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Writing

f(t, y) =
∞

∑

n=1

fn(t)ϕn(y),

where

f(t, y) =
672

ρ2Ac

F −
672

ρ

(

416

672τ

)2

e−
416
672τ

tu(0, y),

we have from (7.4) the equation

v
′′

n(t) +
256

672τ
v

′

n +

(

672

ρ
λn −

416

672τ 2

)

vn

+

(

416

672τ

)2 ∫ t

0

e−
416
672τ

(t−s)

(

v
′

n(s) +
1

τ
vn(s)

)

ds = fn(t).(7.7)

Set

wn(t) =

(

416

672τ

)2 ∫ t

0

e−
416
672τ

(t−s)

(

v
′

n(s) +
1

τ
vn(s)

)

ds.

Then

w
′

n(t) =

(

416

672τ

)2 (

v
′

n(t) +
1

τ
vn(t)

)

−
416

672τ
wn(t).

Let

un
1 (t) = vn(t)

un
2 (t) = v

′

n(t)

un
3 (t) = wn(t)(7.8)

d =
416

672τ

∆n =
672

ρ
λn −

416

672τ 2
.

From (7.7) we have

(7.9)
d

dt







un
1

un
2

un
3






=







0 1 0

−∆n
−256
672τ

−1
d2

τ
d2 −d













un
1

un
2

un
3






+







0

fn

0







Next define

An =







0 1 0

−∆n
−256
672τ

−1
d2

τ
d2 −d






.

Then

|ξI − An| = ξ3 +

(

256

672τ
+ d

)

ξ2 +

(

d2 +
256

672τ
d+ ∆n

)

ξ + d∆n +
d2

τ
.

The Routh-Hurwitz Theorem guarantees that the roots of the polynomial equation

z3 + a1z
2 + a2z + a3 = 0

have negative real parts if the following conditions are met:
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(i): a1 > 0

(ii):

∣

∣

∣

∣

∣

a1 a3

1 a2

∣

∣

∣

∣

∣

> 0

(iii): a3 > 0.

Thus the roots of |ξI − An| = 0 have negative real parts if
∣

∣

∣

∣

∣

256
672τ

+ d ∆nd+ d2

τ

1 256
672τ

d+ d2 + ∆n

∣

∣

∣

∣

∣

> 0.

Thus, the eigenvalues of An have negative real parts if

(7.10) d

(

256

672τ
+ d

)2

+

(

256

672τ
+ d

)

∆n − ∆nd−
d2

τ
> 0.

Now recalling that

d =
416

672τ

∆n =
672

ρ
λn −

416

672τ 2
,

a simple calculation reveals that the inequality in (7.10) is true if λn > 0. Thus the

eigenvalues of An have negative real parts.

From (7.8), (7.9) we have






vn(t)

v
′

n(t)

wn(t)






= etAn







vn(0)

v
′

n(0)

0






+

∫ t

0

e(t−s)An







0

fn(s)

0






ds.

Remark 7.1: Since the eigenvalues of An have real parts negative we have

etAn







vn(0)

v
′

n(0)

0






−→







0

0

0






, as t→ ∞.

8. SOLUTION OF THE LINEARIZED MODEL EQUATION

In this section we proceed to solve (7.4), (7.5). For convenience we rewrite (7.4)

and (7.5) as follows:

vtt +
256

672τ
vt −

416

672τ 2
v −

672

ρ
vyy +

(

416

672τ

)2 ∫ t

0

e−
416
672τ

(t−s)

(

vs +
1

τ
v

)

ds

=
672

ρ2Ac
F −

672

ρ

(

416

672τ

)2

e−
416
672τ

tu(0, y).(8.1)

The initial and boundary conditions are

v(0, y) = 0,

vt(0, y) = 0,(8.2)

v(t, 0) = 0,
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and

ρ

672

[

vy(t, b) − e−
416
672τ

tvy(0, b)
]

+
256ρ

(672)2τ

∫ t

0

e−
416
672τ

(t−s)vy(s, b)ds

+G(0+)e−
416
672τ

t = G(t).(8.3)

Set

(8.4) w̃ = −
ρ

672
e−

416
672τ

tvy(0, b) +
256ρ

(672)2τ

∫ t

0

e−
416
672τ

(t−s)vy(s, b)ds.

Then equation (8.3) becomes

(8.5)
ρ

672
vy(t, b) + w̃ +G(0+)e−

416
672τ

t = G(t).

Differentiating (8.3) we have

ρ

672

d

dt
vy(t, b) −

416

672τ
w̃ +

256ρ

(672)2τ
vy(t, b) −

416

672τ
G(0+)e−

416
672τ

t = G′(t),(8.6)

where we have assumed that G is sufficiently regular, e.g., G ∈ C1. From (8.5) and

(8.6) we have

ρ

672

d

dt
vy(t, b) +

ρ

672τ
vy(t, b) = G′(t) +

416

672τ
G(t),(8.7)

and from (8.2) we see that

(8.8) vy(0, b) = 0.

From (8.7), and (8.8) we thus see that we can give vy(t, b) explicitly in terms of

the function G. Thus we write

vy(t, b) = η(t)

where η can be explicitly determined in terms of the function G. Thus, we replace

(8.2) and (8.3) by

v(0, y) = vt(0, y) = 0

v(t, 0) = 0(8.9)

vy(t, b) = η(t).

We now proceed to solve (8.1) with initial and boundary conditions given by

(8.9). Toward this goal let

Q(t, y) = v(t, y) − yη(t).

In terms of Q the equation (8.1) becomes

Qtt +
256

672τ
Qt −

416

672τ 2
Q−

672

ρ
Qyy

+

(

416

672τ

)2 ∫ t

0

e−
416
672τ

(t−s)

(

Qs +
1

τ
Q

)

ds = f̃ ,(8.10)
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where

f̃ = f − yη
′′

(t) −
256

672τ
yη

′

(t) +
416

672τ 2
yη(t)

−

(

416

672τ

)2 ∫ t

0

e−
416
672τ

(t−s)

{

yη
′

(s) +
1

τ
yη(s)

}

ds.

For initial and boundary conditions we have

Q(0, y) = −yη(0)

Qt(0, y) = −yη
′

(0)(8.11)

Q(t, 0) = Qy(t, b) = 0.

Let us now consider the Sturm-Liouville problem

−Z
′′

− λZ = 0

Z(0) = 0(8.12)

Z
′

(b) = 0.

The eigenvalue problem (8.12) has a system of eigenvalues µ1 < µ2 < . . .↗ ∞ and a

corresponding orthonormal system of eigenfunctions ψ1, ψ2, . . . , ψn, . . .. Let

R(t, y) =

(

416

672τ

)2 ∫ t

0

e−
416
672τ

(t−s)

{

Qs +
1

τ
Q

}

ds.

We now write

R(t, y) =
∞

∑

n=1

rn(t)ψn(y),

f̃(t, y) =
∞

∑

n=1

f̃n(t)ψn(y),

Q(t, y) =

∞
∑

n=1

qn(t)ψn(y),

and seek a solution for (8.10) and (8.11). Let

Ãn =







0 1 0

−∆̃n
−256
672τ

−1
d2

τ2 d2 −d






,

where

∆̃n =
672

ρ
µn −

416

672τ 2
.

Then






qn(t)

q′n(t)

rn(t)






= etÃn







qn(0)

q
′

n(0)

0






+

∫ t

0

e(t−s)Ãn







0

f̃n(s)

0






ds,



MODELING OF VISCOELASTIC SHEAR 403

where

qn(0) = −η(0)

∫ b

0

yψn(y)dy

q
′

n(0) = −η
′

(0)

∫ b

0

yψn(y)dy.

Once Q is determined the solution v for (7.4) and (7.5) is given by

v(t, y) = Q(t, y) + yη(t).

Remark 8.1 The eigenvalues of Ãn have negative real parts if µn > 0. This is estab-

lished using the Routh-Hurwitz theorem as was done earlier.

Remark 8.2 It can be shown that the eigenvalues of Ãn are such that their real parts

are less than a fixed negative real number for all n.

Remark 8.3 Because all the eigenvalues of Ãn have real parts negative, we have

etÃn







qn(0)

q
′

n(0)

0






→







0

0

0






, as t→ ∞.

9. CONCLUDING REMARKS

The stress strain models of (6.5)–(6.6) given by

σ(ε, ε1) = ge(ε) + ε1

ε̇1 +
1

τ
ε1 = gv(ε, ε̇),

discussed in Section 6 are special cases of more general models in which one admits

heterogeneity in the PC-molecules. Specifically, one might have a distribution of

different classes of PC-molecules, each characterized by different internal strains εin

depending on physical properties such as length, relaxation time, etc. For example,

the PC-molecules might have differing relaxation times τ so that εin = εin(t, y; τ). For

a continuum one would then have a probability distribution P (τ) on τ ∈ T , where

T is the set of possible relaxation times. The corresponding stress strain models are

then given by

σ(t, y;P ) = ge(ε(t, y), ε̇(t, y)) + γ

∫

T

εin(t, y; τ)dP (τ),(9.1)

where εin(t, y; τ) satisfies, for each τ ∈ T ,

(9.2) ˙εin(t, y; τ) +
1

τ
εin(t, y; τ) = gv(ε(t, y), ε̇(t, y)).

Multiple relaxation times also play an important role in molecular based (tube

reptation) nonlinear constitutive models for the flow of polyethylene melts ([9, 10, 11,

15, 18]). Such formulations are analogous to proposed forms of the “elastic” moduli
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based on experimental observations in the works of Ferry, Andrews, Ter Haar and

others [1, 14, 21, 23, 26].

The models we used with shear data in Section 6 required only a simple Dirac

delta measure dP (τ) = δτ1(τ)dτ with εin = ε1 then satisfying

ε̇1 +
1

τ1
ε1 = gv(ε, ε̇)

in order to obtain reasonable fits to the experimental data. We compare this with the

situation for tensile deformations reported in [5, 6] where the data required multiple

relaxation times in the model so that the measure P had atoms at τ1 and τ2, (i.e.,

the measure is composed of Dirac measures concentrated at τ1 and τ2), and the

constitutive law led to the model

σ(t, y;P ) = ge(ε(t, y), ε̇(t, y)) + γ1ε1(t, y; τ1) + γ2ε2(t, y; τ2)

ε̇1 +
1

τ1
ε1 =

d

dt
gv(ε, ε̇)

ε̇2 +
1

τ2
ε2 =

d

dt
gv(ε, ε̇).

In the shear studies, we found that the nonlinear models (specifically, gv) were es-

sential in describing our data, but a simple uniform relaxation time was adequate for

the PC-molecules.
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