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ABSTRACT. In this paper we establish nonoccurrence of gap for two large classes of infinite-

dimensional linear control systems in a Hilbert space with nonconvex integrands. These classes

are identified with the corresponding complete metric spaces of integrands which satisfy a growth

condition common in the literature. For most elements of the first space of integrands (in the sense

of Baire category) we establish the existence of a minimizing sequence of trajectory-control pairs

with bounded controls. We also establish that for most elements of the second space (in the sense

of Baire category) the infimum on the full admissible class of trajectory-control pairs is equal to the

infimum on a subclass of trajectory-control pairs whose controls are bounded by a certain constant.
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1. INTRODUCTION

In this paper we consider two large classes of optimal linear control systems

in infinite-dimensional Hilbert spaces with nonconvex integrands. These classes are

identified with the corresponding complete metric spaces of integrands which satisfy

a growth condition common in the literature. For most elements of the first space of

integrands (in the sense of Baire category) we establish the existence of a minimizing

sequence of trajectory-control pairs with bounded controls. We also establish that

for most elements of the second space (in the sense of Baire category) the infimum

on the full admissible class of trajectory-control pairs is equal to the infimum on a

subclass of trajectory-control pairs whose controls are bounded by a certain constant.

The results of the paper show that for these classes of integrands the Lavrentiev

phenomenon does not occur for most elements.

The Lavrentiev phenomenon in the calculus of variations was discovered in 1926

by M. Lavrentiev in [11]. There it was shown that it is possible for the variational

integral of a two-point Lagrange problem, which is sequentially weakly lower semi-

continuous on the admissible class of absolutely continuous functions, to possess an

infimum on the dense subclass of C1 admissible functions that is strictly greater than

Received December 7, 2007 1056-2176 $15.00 c©Dynamic Publishers, Inc.



408 A. J. ZASLAVSKI

its minimum value on the admissible class. Since this seminal work the Lavrentiev

phenomenon is of great interest. See, for instance, [1, 2, 4, 5, 7-10, 12-14, 16-19, 21,

22] and the references mentioned there. Mania [13] simplified the original example

of Lavrentiev. Ball and Mizel [4, 5] demonstrated that the Lavrentiev phenomenon

can occur with fully regular integrands. Sarychev [16] constructed a broad class of

integrands that exhibit the Lavrentiev phenomenon. Nonoccurrence of the Lavrentiev

phenomenon in the calculus of variations was studied in [1, 2, 8-10, 12, 17, 18, 19, 22].

Clarke and Vinter [8] showed that the Lavrentiev phenomenon cannot occur when a

variational integrand f(t, x, u) is independent of t. Sychev and Mizel [18] considered

a class of integrands f(t, x, u) which are convex with respect to the last variable. For

this class of integrands they established that the Lavrentiev phenomenon does not

occur. Sarychev and Torres [17] studied a class of optimal control problems with

control-affine dynamics and with continuously differentiable integrands f(t, x, u). For

this class of problems they established Lipschitzian regularity of minimizers which

implies nonoccurrence of the Lavrentiev phenomenon. Ferriero [10] showed that the

Lavrentiev phenomenon cannot occur for a class of higher-order variational prob-

lems with integrands which are convex with respect to the last variable. In [22] we

studied nonoccurrence of the Lavrentiev phenomenon for a large class of nonconvex

optimal control problems with integrands which belong to a complete metric space of

functions. We established that for most problems (integrands) in the sense of Baire

category the Lavrentiev phenomenon does not occur [22]. It should be mentioned that

in [22] we consider optimal control problems with the unconstrained state variable x

which belongs to a Banach space E, with the constrained control variable u which

belongs to a Banach space F and with the right-hand side of differential equations

determined by a continuous mapping G : [T1, T2] × E × F → E which satisfies Lips-

chitzian conditions with respect to x and with respect to u. In this paper we extend

the main results of [22] to infinite-dimensional constrained optimal linear control sys-

tems with nonconvex nonautonomous integrands. More precisely, here we consider

optimal control problems with the constrained state variable x which belongs to a

Hilbert space X, with the constrained control variable u which belongs to a normed

space Y and with the differential equation x′ = Ax+Bu, where A is a given possible

unbounded closed and densely defined operator in X which is a generator of a strongly

continuous semigroup {S(t) : t ∈ [0,∞)} on X and B : Y → X is a bounded linear

operator.

In the sequel we say that a property of elements of a complete metric space Z is

generic (typical) in Z if the set of all elements of Z which possess this property contains

an everywhere dense Gδ subset of Z. In this case we also say that the property holds

for a generic (typical) element of Z or that a generic (typical) element of Z possesses

the property [3, 15, 20]. Our results show that the Lavrentiev phenomenon does
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not occur for a generic element of large classes of constrained optimal linear control

systems.

Assume that (Z, || · ||) is a Banach space. Let −∞ < τ1 < τ2 < ∞. Denote by

W 1,1(τ1, τ2;Z) the set of all functions x : [τ1, τ2] → Z for which there exists a Bochner

integrable function u : [τ1, τ2] → Z such that

x(t) = x(τ1) +

∫ t

τ1

u(s)ds, t ∈ (τ1, τ2]

(see, e.g., [6]). It is known that if x ∈ W 1,1(τ1, τ2;Z), then this equation defines a

unique Bochner integrable function u which is called the derivative of x and is denoted

by x′.

We denote by mes(Ω) the Lebesgue measure of a Lebesgue measurable set Ω ⊂ R1

and denote by int(E) the interior of a set E ⊂ Z in the norm topology.

For each x ∈ Z and each r > 0 set

BZ(x, r) = {y ∈ Z : ||y − x|| ≤ r} and BZ(r) = BZ(0, r).

Let a, b ∈ R1 satisfy a < b, X be a Hilbert space equipped with a scalar (inner)

product < x, y >, x, y ∈ X and with the norm induced by the scalar (inner) product

and let (Y, || · ||) be a norm space.

Let A be a given possible unbounded closed and densely defined operator in X

which is a generator of a strongly continuous semigroup {S(t) : t ∈ [0,∞)} on X

and let B : Y → X be a bounded linear operator.

In the sequel we assume that H is a convex subset of X with the nonempty

interior int(H) and that for each t ∈ [a, b] a set U(t) is a nonempty convex subset of

Y .

We consider the following optimal linear control problem

(P )

∫ b

a

f(t, x(t), u(t))dt→ min,

x′(t) = Ax(t) +Bu(t), t ∈ [a, b] almost everywhere (a.e.),

x(0) = z0 and x(t) ∈ H, t ∈ [a, b],

u(t) ∈ U(t), t ∈ [a, b] almost everywhere,

where z0 ∈ X, x ∈ W 1,1(a, b;X), u : [a, b] → Y is a Bochner integrable function and

an integrand f : [a, b] ×X × Y → R1 satisfies the conditions stated below. Here x(·)

is the mild solution of the equation

x′(t) = Ax(t) +Bu(t), t ∈ [a, b] almost everywhere.

Namely

(1.1) x(t) = S(t)z0 +

∫ t

a

S(t− s)Bu(s)ds for all t ∈ [a, b].
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A function x ∈ W 1,1(a, b;X) is called a trajectory if there exists a Bochner

integrable function u : [a, b] → Y (referred to as a control) such that the pair (x, u)

satisfies (1.1) with z0 = x(a) and

(1.2) x(t) ∈ H for all t ∈ [a, b] and u(t) ∈ U(t), t ∈ [a, b] (a.e.).

For each z ∈ H denote by A(z) the set of all trajectory-control pairs (x, u)

satisfying x(a) = z and denote by AL(z) the set of all trajectory-control pairs (x, u) ∈

A(z) for which there is Mu > 0 such that

||u(t)|| ≤Mu for almost every t ∈ [a, b].

Let φ : [0,∞) → [0,∞) be an increasing function such that

(1.3) lim
t→∞

φ(t)t−1 = ∞.

In [21] we studied the problem (P) with H = X and U(t) = Y , t ∈ [a, b] for two

classes of integrands. The first class of integrands considered in [21] contains the set

of all functions f : [a, b] ×X × Y → R1 which satisfy the following assumptions.

(A1) f is measurable with respect to the σ-algebra generated by products of

Lebesgue measurable subsets of [a, b] and Borel subsets of X × Y .

(A2) f(t, x, u) ≥ φ(||u||) for all (t, x, u) ∈ [a, b] ×X × Y .

(A3) The set {f(t, 0, 0) : t ∈ [a, b]} is bounded from above.

(A4) For each M, ε > 0 there exists δ > 0 such that for every t ∈ [a, b]

|f(t, x1, u1) − f(t, x2, u2)| ≤ ε

for each x1, x2 ∈ BX(M) and each u1, u2 ∈ BY (M) satisfying ||x1−x2||, ||u1−u2|| ≤ δ.

(A5) For each M, ε > 0 there exist Γ, δ > 0 such that for every t ∈ [a, b]

|f(t, x1, u) − f(t, x2, u)| ≤ εmax{|f(t, x1, u)|, |f(t, x2, u)|}

for each u ∈ Y satisfying ||u|| ≥ Γ and each x1, x2 ∈ BX(M) satisfying ||x1−x2|| ≤ δ.

In [21] we showed that if an integrand f belongs to this class of functions, z0 ∈ X,

H = X and U(t) = Y for all t ∈ [a, b], then for the problem (P) there exist a

minimizing sequence of trajectory-control pairs {(xi, ui)}
∞

i=1 and a sequence of positive

numbers {Mi}
∞

i=1 such that for each integer i ≥ 1

||ui(t)|| ≤Mi, t ∈ [a, b] (a.e.)

The second class of integrands studied in [21] contains all integrands f : [a, b] ×

X × Y → [0,∞) which satisfy the following assumptions.

(B1) f is measurable with respect to the σ-algebra generated by products of

Lebesgue measurable subsets of [a, b] and Borel subsets of X × Y .

(B2) f(t, x, u) ≥ φ(||u||) for all (t, x, u) ∈ [a, b] ×X × Y .
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(B3) The set {f(t, 0, 0) : t ∈ [a, b]} is bounded from above.

(B4) For each M > 0 there exists L > 0 such that for each t ∈ [a, b], each

x1, x2 ∈ BX(M) and each u1, u2 ∈ BY (M) the following inequality holds:

|f(t, x1, u1) − f(t, x2, u2)| ≤ L(||x1 − x2|| + ||u1 − u2||).

(B5) For each M > 0 there exist δ, L > 0 and an integrable scalar function

ψM(t) ≥ 0, t ∈ [a, b] such that for each t ∈ [a, b], each u ∈ Y and each x1, x2 ∈

BX(M) satisfying ||x1 − x2|| ≤ δ the inequality |f(t, x1, u) − f(t, x2, u)| ≤ ||x1 −

x2||L(f(t, x1, u) + ψM (t)) holds.

In [21] we showed that if an integrand f belongs to this class of functions, z0 ∈ X,

H = X and U(t) = Y , t ∈ [a, b], then for the optimal linear control problem (P) there

exist a minimizing sequence of trajectory-control pairs {(xi, ui)}
∞

i=1 and a positive

number M such that for each integer i ≥ 1

||ui(t)|| ≤M, t ∈ [a, b] (a,e.).

One of our goals in this paper is to extend the results of [21] obtained for unconstrained

optimal linear control problems (with H = X and U(t) = Y , t ∈ [a, b]) to the class

of constrained linear control problems (P).

Our second goal is to answer the question if the extensions of the results of [21]

hold for constrained linear control problems (P) with many integrands. In order to

meet this goal we introduce the following spaces of integrands.

Denote by MA the set of all functions f : [a, b] × X × Y → R1 which satisfy

assumptions (A1)-(A4). We equip the set MA with the uniformity determined by

the base

EAs(N, ε) = {(f, g) ∈ MA ×MA :

|g(t, x, u)− f(t, x, u)| ≤ ε for all (t, x, u) ∈ [a, b] × BX(N) ×BY (N)}

∩{(f, g) ∈ MA ×MA : |(f − g)(t, x1, u1) − (f − g)(t, x2, u2)|

≤ ε(||x1 − x2|| + ||u1 − u2||)

(1.4) for each t ∈ [a, b], each x1, x2 ∈ BX(N) and each u1, u2 ∈ BY (N)},

where N, ε > 0. Clearly, the space MA with this uniformity is metrizable and com-

plete. We equip the space MA with the topology induced by this uniformity. This

topology will be called the strong topology of MA.

We also equip the space MA with the uniformity determined by the following

base:

EAw(N, ε) = {(f, g) ∈ MA ×MA : |g(t, x, u) − f(t, x, u)| ≤ ε

(1.5) for all (t, x, u) ∈ [a, b] ×BX(N) × BY (N)},
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where N, ε > 0. Clearly, the space MA with this uniformity is metrizable and com-

plete. We equip the space MA with the topology induced by this uniformity. This

topology will be called the weak topology of MA. Denote by LA the set of all functions

f ∈ MA which satisfy (A5). Clearly, for each f ∈ MA and each trajectory-control

pair (x, u) the function f(t, x(t), u(t)), t ∈ [a, b] is Lebesgue measurable.

Now we define the second space of integrands. Denote by MB the set of all

functions f : [a, b] × X × Y → R1 which satisfy assumptions (B1)-(B4). Clearly,

MB ⊂ MA.

We equip the set MB with the uniformity determined by the base

EB(N, ε) = {(f, g) ∈ MB ×MB : |g(t, x, u) − f(t, x, u)| ≤ ε

for all (t, x, u) ∈ [a, b] × BX(N) × BY (N)}

∩{(f, g) ∈ MB ×MB : |(f − g)(t, x1, u1) − (f − g)(t, x2, u2)|

≤ ε(||x1 − x2|| + ||u1 − u2||)

(1.6) for each t ∈ [a, b], each x1, x2 ∈ BX(N) and each u1, u2 ∈ BY (N)},

where N, ε > 0. Clearly, the space MB with this uniformity is metrizable and com-

plete. We equip the space MB with the topology induced by this uniformity. Denote

by LB the set of all functions f ∈ MB which satisfy (B5).

Note that assumptions (A1)-(A4) and (B1)-(B4) are not very restrictive. They

are common in the literature and the spaces MA and MB contain many integrands.

Therefore it is natural to ask a question if the Lavrentiev phenomenon does not occur

for many integrands in these spaces. This goal is achieved by Theorems 1.1, 1.3, 1.4

and 1.5.

For each f ∈ MA and each trajectory-control pair (x, u) set

If(x, u) =

∫ b

a

f(t, x(t), u(t))dt.

For each f ∈ MA and each z ∈ H we study a problem

If (x, u) → min, (x, u) ∈ A(z)

and put

(1.7) U f (z) = inf{If(x, u) : (x, u) ∈ A(z)}.

In this paper we assume that there exists a strongly measurable function ξ∗ :

[a, b] → Y such that

(1.8) ξ∗(t) ∈ U(t), t ∈ [a, b] (a.e.) and sup{||ξ∗(t)|| : t ∈ [a, b]} <∞.
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Denote by MAc the set of all continuous functions f ∈ MA and by MBc the set

of all continuous functions f ∈ MB. Set

LBc = LB ∩MBc, LAc = LA ∩MAc.

Clearly, MAc is closed subset of MA with the weak topology and MBc is a closed

subset of MB. We consider the topological subspace MBc ⊂ MB with the relative

topology and the topological subspace MAc ⊂ MA with the relative weak and strong

topologies.

For each ρ > 0 put

(1.9) Hρ = {x ∈ H : BX(x, ρ) ⊂ H}.

Let ρ,M be positive numbers. Denote by H̃ρ,M the set of all z ∈ H for which there

exists a trajectory-control pair (x, u) such that

(1.10) x(a) = z, x(t) ∈ Hρ for all t ∈ [a, b],

||u(t)|| ≤M, t ∈ [a, b] (a.e.).

It is not difficult to see that if f ∈ MA, ρ,M > 0 and z ∈ H̃ρ,M , then Uf (z) <∞.

The next theorem establishes that if an integrand f belongs to LB, then the

Lavrentiev phenomenon does not occur for any integrand which is contained in a

certain neighborhood of f in MB. It should be mentioned that this neighborhood is

not necessarily small.

Theorem 1.1. Let f ∈ LB and let ρ,M, q be positive numbers. Then there exists

K > 0 such that for each g ∈ MB satisfying (f, g) ∈ EB(K, q) each z ∈ H̃ρ,M∩BX(M)

and each (x, u) ∈ A(z) the following assertion holds:

If mes({t ∈ [a, b] : ||u(t)|| ≥ K}) > 0, then there exists (y, v) ∈ A(z) such that

Ig(y, v) < Ig(x, u) and ||v(t)|| ≤ K for almost every t ∈ [a, b].

Theorem 1.1 will be proved in Section 3. In Section 5 we will prove the following

useful result.

Lemma 1.2. The set LB (LBc respectively) is an everywhere dense subset of MB

(MBc respectively) and the set LA (LAc respectively) is an everywhere dense subset

of MA (MAc respectively) with the strong topology.

The next two theorems which will be proved in Section 6 show nonoccurrence of

the Lavrentiev phenomenon for most elements of MB.

Theorem 1.3. Let ρ,M, q be positive numbers and let M be ether MB or MBc.

Then there exists an open everywhere dense subset F ⊂ M such that for each f ∈ F

the following assertion holds:
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There is a number K > 0 such that for each g ∈ M satisfying (f, g) ∈ EB(K, q),

each z ∈ H̃ρ,M ∩ BX(M) and each (x, u) ∈ A(z) satisfying mes({t ∈ [a, b] : ||u(t)|| ≥

K}) > 0 there is (y, v) ∈ A(z) such that Ig(y, v) < Ig(x, u) and ||v(t)|| ≤ K for

almost every t ∈ [a, b].

Theorem 1.4. Let M be either MB or MBc . Then there exists a set F ⊂ M which

is a countable intersection of open everywhere dense subsets of M such that for each

f ∈ F and each triplet of positive numbers M, q, ρ the following assertion holds:

There is a number K > 0 such that for each g ∈ M satisfying (f, g) ∈ EB(K, q),

each z ∈ H̃ρ,M ∩ BX(M) and each (x, u) ∈ A(z) satisfying mes({t ∈ [a, b] : ||u(t)|| ≥

K}) > 0 there is (y, v) ∈ A(z) such that Ig(y, v) < Ig(x, u) and ||v(t)|| ≤ K for

almost every t ∈ [a, b].

The next theorem which will be also proved in Section 6 shows nonoccurrence of

the Lavrentiev phenomenon for most elements of MA.

Theorem 1.5. Let M be either MA or MAc. Then there exists a set F ⊂ M which is

a countable intersection of open (in the weak topology) everywhere dense (in the strong

topology) subsets of M such that for each f ∈ F and each z ∈ ∪{H̃ρ,M : ρ,M > 0},

inf{If(x, u) : (x, u) ∈ A(z)} = inf{If(x, u) : (x, u) ∈ AL(z)}.

2. AUXILIARY RESULTS

Put

(2.1) D0 = sup{||S(t)|| : t ∈ [a, b]}.

It is well-known that D0 is a finite number.

Lemma 2.1. Let f ∈ MA and let M, ρ, q be positive numbers. Then there exists

M1 > 0 such that for each g ∈ MA satisfying

(2.2) (f, g) ∈ EAw(M(D0 + 1)(1 + (b− a)||B||), q)

and each z ∈ H̃ρ,M ∩BX(M) the inequality U g(z) ≤M1 holds.

Proof. Set

M1 = (b− a)[q + sup{f(s, y, v) :

(s, y, v) ∈ [a, b] ×BX(D0M(1 + (b− a)||B||)) ×BY (M)}].

Let

(2.3) z ∈ H̃ρ,M ∩ BX(M)
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and g ∈ MA satisfy (2.2). By (2.3) and the definition of H̃ρ,M (see (1.9) and (1.10))

there exists a trajectory-control pair (x, u) such that

(2.4) x(a) = z, x(t) ∈ Hρ, t ∈ [a, b] and ||u(t)|| ≤M, t ∈ [a, b] (a.e.).

Since (x, u) is a trajectory-control pair it follows from (1.1), (2.1) and (2.3) that for

all τ ∈ [a, b]

(2.5) ||x(τ)|| = ||S(τ)z +

∫ τ

a

S(τ − t)Bu(t)dt|| ≤ D0M + (b− a)D0||B||M.

In view of (2.2), (2.4), (2.5) and the choice of M1 for t ∈ [a, b] a.e. we have

g(t, x(t), u(t)) ≤ f(t, x(t), u(t)) + q ≤

≤ sup{f(s, y, v) : (s, y, v) ∈ [a, b] × BX(D0M(1 + (b− a)||B||)) × BY (M)} + q

and

Ug(z) ≤ Ig(x, u) ≤ (b− a)[q + sup{f(s, y, v) :

(s, y, v) ∈ [a, b] × BX(D0M(1 + (b− a)||B||)) × BY (M)}] = M1.

Lemma 2.1 is proved.

Lemma 2.2. Let f ∈ MA and let M, ρ, q be positive numbers. Then there exists

M0 > 0 such that for each g ∈ MA satisfying (2.2), each

(2.6) z ∈ H̃ρ,M ∩ BX(M)

and each (x, u) ∈ A(z) satisfying Ig(x, u) ≤ U g(z) + 1, the inequality ||x(t)|| ≤ M0

holds for all t ∈ [a, b].

Proof. Let M1 > 0 be as guaranteed by Lemma 2.1. In view of (1.3) there is c0 ≥ 1

such that

(2.7) φ(t) ≥ t for all t ≥ c0.

Set

(2.8) M0 = M +MD0 +D0||B||c0(b− a) +D0||B||(M1 + 1).

Assume that z ∈ X satisfies (2.6), g ∈ MA satisfies (2.2) and (x, u) ∈ A(z) satisfies

(2.9) Ig(x, u) ≤ U g(z) + 1.

By (2.6), (2.2), the choice of M1 and Lemma 2.1, U g(z) ≤ M1. Together with (2.9)

this inequality implies that

(2.10) Ig(x, u) ≤M1 + 1.

Let τ ∈ (a, b] and set

(2.11) E1 = {t ∈ [a, τ ] : ||u(t)|| ≥ c0}, E2 = [a, τ ] \ E1.
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It follows from (1.1), (2.1), (2.11), (2.6) and (2.7) that

||x(τ)|| = ||S(τ)z +

∫ τ

a

S(τ − s)Bu(s)ds|| ≤ ||z||D0 +D0||B||

∫ τ

a

||u(s)||ds

≤ ||z||D0 +D0||B||(

∫
E1

||u(s)||ds+

∫
E2

||u(s)||ds)

≤MD0 +D0||B||c0(b− a) +D0||B||

∫
E1

||u(s)||ds

≤MD0 +D0||B||c0(b− a) +D0||B||

∫
E1

φ(||u(s)||)ds.

Combined with (A2), (2.10) and (2.8) this inequality implies that

||x(τ)|| ≤ MD0 +D0||B||c0(b− a) +D0||B||

∫ b

a

φ(||u(s)||)ds

≤MD0 +D0||B|||c0(b− a) +D0||B||Ig(x, u)

≤ MD0 +D0||B||c0(b− a) +D0||B||(M1 + 1) ≤M0.

Lemma 2.2 is proved.

The following result is proved analogously to Lemma 2.2 of [21].

Lemma 2.3. Let f ∈ LA and let ε,M > 0. Then there exist Γ, δ > 0 such that

|f(t, x1, u) − f(t, x2, u)| ≤ εmin{f(t, x1, u), f(t, x2, u)}

for each t ∈ [a, b], each u ∈ Y satisfying ||u|| ≥ Γ and each x1, x2 ∈ BX(M) satisfying

||x1 − x2|| ≤ δ.

3. PROOF OF THEOREM 1.1

In this section we establish the following result which easily implies Theorem 1.1.

Theorem 3.1. Let f ∈ LB and let ρ,M, q be positive numbers. Then there exist

K,∆1 > 0 such that for each g ∈ MB satisfying (f, g) ∈ EB(K, q), each z ∈ H̃ρ,M ∩

BX(M) and each (x, u) ∈ A(z) satisfying Ig(x, u) ≤ U g(z)+1 the following assertion

holds:

If the set E := {t ∈ [a, b] : ||u(t)|| ≥ K} has a positive Lebesgue measure, then

there exists (y, v) ∈ A(z) such that ||v(t)|| ≤ K for almost every t ∈ [a, b] and the

following inequalities hold:

Ig(y, v) < Ig(x, u) −M

∫
E

||u(t)||dt,

||x(t) − y(t)|| ≤ ∆1

∫
E

||u(t)||dt for all t ∈ [a, b],

||u(t) − v(t)|| ≤ ∆1

∫
E

||u(t)||dt, t ∈ [a, b] \ E (a.e.)
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Proof. Recall that ξ∗ : [a, b] → Y is a strongly measurable function which satisfies

(1.8). In view of (1.8) there is a number N0 > 0 such that

(3.1) ||ξ∗(t)|| ≤ N0 for all t ∈ [a, b].

By Lemma 2.1 there exists M1 > 0 such that

(3.2) U g(z) ≤M1

for each z ∈ H̃ρ,M ∩BX(M) and each g ∈ MB satisfying

(3.3) (f, g) ∈ EB(M(D0 + 1)(1 + (b− a)||B||), q).

By Lemma 2.2 there exists M0 > 0 such that for each g ∈ MB satisfying (3.3),

each z ∈ H̃ρ,M ∩ BX(M) and each (x, u) ∈ A(z) satisfying Ig(x, u) ≤ U g(z) + 1 the

following inequality holds:

(3.4) ||x(t)|| ≤M0 for all t ∈ [a, b].

We may assume without loss of generality that

(3.5) M0 > (M + 1)(N0 + 1)(D0 + 1)(1 + (b− a)||B||).

By (B5) there are δ0 ∈ (0, 1), L0 > 0 and an integrable scalar function ψ0(t) ≥ 0,

t ∈ [a, b] such that for each t ∈ [a, b], each u ∈ Y and each x1, x2 ∈ X satisfying

||x1||, ||x2|| ≤M0 + 4, ||x1 − x2|| ≤ δ0

the following inequality holds:

(3.6) |f(t, x1, u) − f(t, x2, u)| ≤ ||x1 − x2||L0(f(t, x1, u) + ψ0(t)).

Set

(3.7) ∆0 = sup{f(t, x, u) : t ∈ [a, b], x ∈ BX(M0 + 1), y ∈ BY (M0 + 1)}.

Clearly, ∆0 <∞. Choose a positive number γ0 < 1 and a number K0 > 1 such that

(3.8) (D0 + 1)(||B|| + 1)(M + 1)(M1 + 1)γ0 < ρ/4,

(3.9) K0 > M + 1 +M0 + ρ,

(3.10) φ(t)/t ≥ γ−1
0 for all t ≥ K0.

By (B4) there exists L1 > 1 such that for each t ∈ [a, b], each x1, x2 ∈ BX(2K0) and

each u1, u2 ∈ BY (2K0),

(3.11) |f(t, x1, u1) − f(t, x2, u2)| ≤ L1(||x1 − x2|| + ||u1 − u2||).

Set

(3.12) ∆1 = max{D0||B||(3 + 8M0ρ
−1), 8D0||B||ρ−1K0}.
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Choose a number γ1 ∈ (0, 1) such that

(3.13) (M0 + 1)8(D0 + 1)(||B||+ 1)(min{1, ρ})−1γ1(M1 + 2) < δ0,

γ−1
1 > 4[24D0||B||L1ρ

−1K0(1 + q)(b− a)

(3.14) +8D0||B||(1+M0ρ
−1)(L0(M1 +1)+ q(L0 +1)(b−a)+L0

∫ b

a

ψ0(t)dt)+2M ].

Choose a number K > 0 such that

(3.15) K > 4+(M+1)(D0+1)(1+(b−a)||B||)+2M0+2(M+N0)+2K0+8(q+∆0),

(3.16) φ(t)/t ≥ γ−1
1 for a ll t ≥ K.

Assume that

(3.17) g ∈ MB, (f, g) ∈ EB(K, q), z ∈ H̃ρ,M ∩ BX(M), (x, u) ∈ A(z),

(3.18) mes({t ∈ [a, b] : ||u(t)|| ≥ K}) > 0,

(3.19) Ig(x, u) ≤ U g(z) + 1.

In view of (3.17), (3.15) and the choice of M1, the inequality (3.2) is true. Together

with (3.19) the inequality (3.2) implies that

(3.20) Ig(x, u) ≤M1 + 1.

By (3.17), (3.15), (3.19) and the choice of M0 the inequality (3.4) holds. Set

E1 = {t ∈ [a, b] : ||u(t)|| ≥ K}, E2 = {t ∈ [a, b] : ||u(t)|| ≤ K0},

(3.21) E3 = [a, b] \ (E1 ∪ E2),

(3.22) d =

∫
E1

||u(t)||dt.

Relations (3.21), (3.22) and (3.18) imply that

(3.23) d > 0.

It follows from (3.17) and the definition of H̃ρ,M (see (1.10)) that there exists a

trajectory-control pair (x̃, ũ) ∈ A(z) such that

(3.24) x̃(a) = z, x̃(t) ∈ Hρ for all t ∈ [a, b],

(3.25) ||ũ(t)|| ≤M, t ∈ [a, b] a.e..

Since (x̃, ũ) ∈ A(z) it follows from (1.1), (2.1), (3.17) and (3.25) that for each τ ∈ [a, b]

(3.26) ||x̃(τ)|| = ||S(τ)z +

∫ τ

a

S(τ − t)Bũ(t)dt|| ≤ D0M + (b− a)D0||B||M.
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Combined with (3.5) this relation implies that

(3.27) ||x̃(t)|| ≤M0 for all t ∈ [a, b].

We estimate the number d. By (3.22), (3.21), (3.15), (B2) and (3.20),

d =

∫
E1

||u(t)||dt ≤

∫
E1

γ1φ(||u(t)||)dt

(3.28) ≤ γ1

∫ b

a

φ(||u(t)||)dt ≤ γ1

∫ b

a

g(t, x(t), u(t))dt ≤ γ1(M1 + 1).

In view of (3.21), (3.22) and (3.28)

(3.29) mes(E1) ≤ K−1

∫
E1

||u(t)||dt ≤ K−1d ≤ K−1γ1(M1 + 1).

Put

(3.30) α = 4D0||B||dρ−1.

By (3.30), (3.28) and (3.13)

(3.31) α < 4D0||B||ρ−1γ1(M1 + 1) < 1.

It follows from (3.21), (3.15), (3.10), (B2) and (3.20) that∫
E1∪E3

||u(t)||dt ≤

∫
E1∪E3

γ0φ(||u(t)||)dt ≤ γ0

∫ b

a

φ(||u(t)||)dt

(3.32) ≤ γ0I
g(x, u) ≤ γ0(M1 + 1).

By (3.21), (3.15) and (3.32)

(3.33) mes(E1 ∪ E3) ≤ K−1
0

∫
E1∪E3

||u(t)||dt ≤ K−1
0 γ0(M1 + 1).

Since the sets U(t), t ∈ [a, b] and H are convex it follows from (1.1) that

(αx̃ + (1 − α)x, αũ+ (1 − α)u)

is a trajectory-control pair. The inclusions (x̃, ũ), (x, u) ∈ A(z) imply that

(3.34) (αx̃ + (1 − α)x, αũ+ (1 − α)u) ∈ A(z).

Let t ∈ [a, b]. Relation (3.24) and the inclusion x(t) ∈ H imply that

(3.35) αx̃(t) + (1 − α)x(t) ∈ Hαρ.

Thus (3.35) is true for all t ∈ [a, b]. Define

(3.36) v(t) = ξ∗(t), t ∈ E1, v(t) = αũ(t) + (1 − α)u(t), t ∈ E2,

v(t) = u(t), t ∈ E3,

(3.37) y(t) = S(t)z +

∫ t

a

S(t− s)Bv(s)ds, t ∈ [a, b].
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Since ξ∗ : [a, b] → Y is a strongly measurable function it follows from (3.34) and

(3.36) that v : [a, b] → Y is also a strongly measurable function. Relations (1.8),

(3.34) and (3.36) imply that

(3.38) v(t) ∈ U(t), t ∈ [a, b] (a.e.).

Let t ∈ [a, b]. By (3.37), (3.34), (1.1) and (3.36)

||y(t) − (αx̃(t) + (1 − α)x(t))||

= ||S(t)z +

∫ t

a

S(t− s)Bv(s)ds− S(t)z −

∫ t

a

S(t− s)B(αũ(s) + (1 − α)u(s))ds||

= ||

3∑
i=1

∫
[a,t]∩Ei

S(t− s)Bv(s)ds−

3∑
i=1

∫
[a,t]∩Ei

S(t− s)B(αũ(s) + (1 − α)u(s))ds||

≤ ||

∫
[a,t]∩E1

S(t− s)Bv(s)ds−

∫
[a,t]∩E1

S(t− s)B(αũ(s) + (1 − α)u(s))ds||

+||

∫
[a,t]∩E3

S(t− s)Bv(s)ds−

∫
[a,t]∩E3

S(t− s)B(αũ(s) + (1 − α)u(s))ds||

≤ ||

∫
[a,t]∩E1

S(t− s)Bv(s)ds|| + ||

∫
[a,t]∩E1

S(t− s)B(αũ(s) + (1 − α)u(s))ds||

+||

∫
[a,t]∩E3

S(t− s)B(α(u(s) − ũ(s))ds||

≤ D0||B||

∫
E1

||ξ∗(s)||ds+D0||B||

∫
E1

||αũ(s) + (1 − α)u(s)||ds

+D0||B||α

∫
E3

||u(s) − ũ(s)||ds.

It follows from this relation, (3.1), (3.25), (3.29), (3.22), (3.33), (3.32), (3.15), (3.8)

and (3.30) that

||y(t) − (αx̃(t) + (1 − α)x(t))|| ≤ D0||B||N0mes(E1) +D0||B||α

∫
E1

||ũ(s)||ds

+D0||B||

∫
E1

||u(s)||ds+D0||B||α(mes(E3)M +

∫
E3

||u(s)||ds)

≤ D0||B|||N0K
−1d+D0||B||αMK−1d+D0||B||d

+D0||B||α(Mγ0(M1 + 1) + γ0(M1 + 1))

= dD0||B||[N0K
−1 + αMK−1 + 1] +D0||B||α(M + 1)(M1 + 1)γ0

≤ 2dD0||B|| + αρ/4 = 3D0||B||d.

Thus

(3.39) ||y(t) − (αx̃(t) + (1 − α)x(t))|| ≤ 3D0||B||d for all t ∈ [a, b].

In view of (3.39) and (3.30),

||y(t) − (αx̃(t) + (1 − α)x(t))|| ≤ (3/4)αρ for all t ∈ [a, b].
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Together with (3.35) this inequality implies that

(3.40) y(t) ∈ H for all t ∈ [a, b].

Relations (3.40), (3.38) and (3.37) imply that

(3.41) (y, v) ∈ A(z).

Now we estimate Ig(y, v) − Ig(x, u). By (3.4), (3.27) and (3.30) for each t ∈ [a, b]

||x(t) − (αx̃(t) + (1 − α)x(t))|| = α||x(t) − x̃(t)|| ≤ 2αM0 = 8M0D0||B||dρ−1.

Combined with (3.39) this implies that

(3.42) ||y(t)− x(t)|| ≤ dD0||B||(3 + 8M0ρ
−1) for all t ∈ [a, b].

Relations (3.42), (3.28) and (3.13) imply that for all t ∈ [a, b]

(3.43) ||y(t) − x(t)|| ≤ 8D0||B||(1 +M0ρ
−1)γ1(M1 + 1) < δ0 < 1.

It follows from (3.36), (3.25), (3.21), (3.8) and (3.30) that for all t ∈ E2,

||v(t) − u(t)|| = ||αũ(t) + (1 − α)u(t) − u(t)|| = α||ũ(t) − u(t)||

(3.44) ≤ α(K0 +M) ≤ 2αK0 = 8dD0||B||ρ−1K0.

In view of (3.43) and (3.4)

(3.45) ||y(t)|| ≤ ||x(t)|| + 1 ≤M0 + 1, t ∈ [a, b].

By (3.44), (3.21), (3.28) and (3.13) for all t ∈ E2

(3.46) ||v(t)|| ≤ ||u(t)|| + 8dD0||B||ρ−1K0 ≤ K0(1 + 8dD0||B||ρ−1)

≤ K0(1 + 8γ1(M1 + 1)D0||B||ρ−1) ≤ 2K0.

Together with (3.21), (3.36), (3.1) and (3.15) this implies that

(3.37) ||v(t)|| ≤ K for all t ∈ [a, b].

Clearly,

Ig(x, u) − Ig(y, v) =

3∑
i=1

[

∫
Ei

g(t, x(t), u(t))dt−

∫
Ei

g(t, y(t), v(t))dt].

It follows from (B2), (3.21) and (3.16) that

(3.48)

∫
E1

g(t, x(t), u(t))dt ≥

∫
E1

φ(||u(t)||)dt ≥ γ−1
1

∫
E1

||u(t)||dt,

(3.49)

∫
E1

g(t, x(t), u(t))dt ≥ γ−1
1 Kmes(E1).

In view of (3.45), (3.36), (3.7), (3.1) and (3.5),

(3.50) f(t, y(t), v(t)) ≤ ∆0, t ∈ E1.
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By (3.45), (3.36), (3.1), (3.5), (3.9), (3.30) and (3.50) for t ∈ E1,

(3.51) g(t, y(t), v(t)) ≤ q + f(t, y(t), v(t)) ≤ q + ∆0.

It follows from (3.51), (3.15) and (3.49) that∫
E1

g(t, y(t), v(t))dt ≤ (q + ∆0)mes(E1)

(3.52) ≤ 8−1Kmes(E1) ≤ 8−1

∫
E1

g(t, x(t), u(t))dt.

The inequality (3.52) implies that

(3.53)

∫
E1

g(t, x(t), u(t))dt−

∫
E1

g(t, y(t), v(t))dt ≥ (7/8)

∫
E1

g(t, x(t), u(t))dt.

Let t ∈ E2. It follows from (3.45), (3.4), (3.46), (3.35), (3.15), (3.17) and (1.6) that

|g(t, x(t), u(t)) − g(t, y(t), v(t))| ≤

(3.54) |f(t, x(t), u(t))− f(t, y(t), v(t))|+ |(g− f)(t, x(t), u(t))− (g− f)(t, y(t), v(t))|

≤ |f(t, x(t), u(t)) − f(t, y(t), v(t))| + q||x(t) − y(t)|| + q||u(t) − v(t)||.

By the choice of L1 (see (3.11)), (3.45), (3.4), (3.22), (3.46), (3.9), (3.42) and (3.44),

|f(t, y(t), v(t))− f(t, x(t), u(t))| ≤ L1(||y(t)− x(t)|| + ||v(t) − u(t)||)

(3.55) ≤ L1(αD0||B||8(1 +M0ρ
−1) + 8dD0||B||ρ−1K0) ≤ 8dD0||B||L1(3ρ

−1K0).

Combined with the inequality L1 > 1, (3.54), (3.42), (3.44) and (3.9) the inequality

(3.55) implies that

|g(t, x(t), u(t)) − g(t, y(t), v(t))|

≤ 8dD0||B||L13ρ
−1K0 + q||x(t) − y(t)|| + q||u(t) − v(t)||

≤ 8dD0||B||L13ρ
−1K0 + qdD0||B||8(1 +M0ρ

−1) + 8qdD0||B||ρ−1K0

(3.56) ≤ 24dD0||B||L1ρ
−1K0(1 + q).

This inequality implies that

|

∫
E2

g(t, x(t), u(t))dt−

∫
E2

g(t, y(t), v(t))dt|

(3.57) ≤ 24dD0||B||L1ρ
−1K0(1 + q)(b− a).

Let t ∈ E3. It follows from (3.36), the choice of L0 (see (3.6)), (3.45), (3.4) and (3.43)

that

|f(t, x(t), u(t)) − f(t, y(t), v(t))| = |f(t, x(t), u(t)) − f(t, y(t), u(t))|

(3.58) ≤ ||x(t) − y(t)||L0(f(t, x(t), u(t)) + ψ0(t)).
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By (3.21), (3.4), (3.45), (3.15), (3.36), (3.17) and (1.6)

|g(t, x(t), u(t)) − g(t, y(t), v(t))|

≤ |f(t, x(t), u(t)) − f(t, y(t), v(t))|+ |(g − f)(t, x(t), u(t)) − (g − f)(t, y(t), v(t))|

(3.59) ≤ |f(t, x(t), u(t)) − f(t, y(t), v(t))|+ q||x(t) − y(t)||.

Combined with (3.58) and (3.42) this inequality implies that

|g(t, x(t), u(t)) − g(t, y(t), v(t))| ≤ ||x(t) − y(t)||[L0(f(t, x(t), u(t)) + ψ0(t)) + q]

(3.60) ≤ 8dD0||B||(1 +M0ρ
−1)[L0(f(t, x(t), u(t)) + ψ0(t)) + q].

Together with (3.4), (3.21), (3.15), (3.17) and (1.6) this inequality implies that

|g(t, x(t), u(t)) − g(t, y(t), v(t))|

(3.61) ≤ 8dD0||B||(1 +M0ρ
−1)[L0(g(t, x(t), u(t)) + q + ψ0(t)) + q]

for all t ∈ E3. It follows from (3.61) that

|

∫
E3

g(t, x(t), u(t))dt−

∫
E3

g(t, y(t), v(t))dt|

(3.62)

≤ 8dD0||B||(1 +M0ρ
−1)[L0

∫ b

a

g(t, x(t), u(t))dt+ q(L0 + 1)(b− a) + L0

∫ b

a

ψ0(t)dt].

By (3.21), (3.53), (3.57), (3.62) and (3.20),

Ig(x, u) − Ig(y, v) ≥ (7/8)

∫
E1

g(t, x(t), u(t))dt− 24dD0||B||L1ρ
−1K0(1 + q)(b− a)

(3.63) −8dD0||B||(1 +M0ρ
−1)[L0(M1 + 1) + q(L0 + 1)(b− a) + L0

∫ b

a

ψ0(t)dt].

In view of (B2), (3.21), (3.16) and (3.22)

(3.64)

∫
E1

g(t, x(t), u(t))dt ≥

∫
E1

φ(||u(t)||)dt ≥ γ−1
1

∫
E1

||u(t)||t = γ−1
1 d.

Relations (3.63), (3.64), (3.14) and (3.22) imply that

Ig(x, u) − Ig(y, v) ≥ (2γ1)
−1d− d[24D0||B||L1ρ

−1K0(1 + q)(b− a)

+8D0||B||(1 +M0ρ
−1)(L0(M1 + 1) + q(L0 + 1)(b− a) + L0

∫ b

a

ψ0(t)dt)]

(3.65) ≥ (4γ1)
−1d > Md = M

∫
E1

||u(t)||dt.

By (3.42), (3.12) and (3.22)

||x(t) − y(t)|| ≤ ∆1d = ∆1

∫
E1

||u(t)||dt for all t ∈ [a, b].
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By (3.36), (3.21), (3.44) and (3.12)

||u(t) − v(t)|| ≤ ∆1d = ∆1

∫
E1

||u(t)||dt for all t ∈ [a, b] \ E1.

Theorem 3.1 is proved.

4. AN AUXILIARY RESULT FOR THEOREM 1.5

Lemma 4.1. Let f ∈ LA and let M, ρ, ε be positive numbers. Then there exists a

neighborhood U of f in MA with the weak topology and K > 0 such that for each

g ∈ U and each z ∈ H̃ρ,M ∩ BX(M) there is (x, u) ∈ A(z) such that ||u(t)|| ≤ K for

almost every t ∈ [a, b] and Ig(x, u) ≤ U g(z) + ε.

Proof. We may assume without loss of generality that

(4.1) ε, ρ < 1 < M.

Recall that ξ∗ : [a, b] → Y is a strongly measurable function which satisfies (1.8). In

view of (1.8) there is a number N0 > 0 such that

(4.2) ||ξ∗(t)|| ≤ N0 for all t ∈ [a, b].

By Lemma 2.1 there is M1 > 0 such that

(4.3) U g(z) ≤M1

for each g ∈ MA satisfying

(4.4) (g, f) ∈ EAw(M(D0 + 1)(1 + (b− a)||B||), 4)

and each z ∈ H̃ρ,M ∩ BX(M). By Lemma 2.2 there is M0 > 0 such that for each

g ∈ MA satisfying (4.4), each z ∈ H̃ρ,M ∩ BX(M) and each (x, u) ∈ A(z) satisfying

Ig(x, u) ≤ U g(z) + 1 the following inequality holds:

(4.5) ||x(t)|| ≤M0 for all t ∈ [a, b].

We may assume that

(4.6) M0 > (M + 1)(N0 + 1)(D0 + 1)(1 + (b− a)||B||).

Choose positive numbers ε0, γ0 and a number N1 > 1 such that

(4.7) 8ε0(M1 + 4) < ε,

(4.8) γ0 < 1, 32γ0(M1 + 2) < b− a,

γ0(M + 1)(M1 + 1)(D0 + 1)(||B||+ 1) < ρ/4,

(4.9) φ(t)/t ≥ γ−1
0 for all t ≥ N1.
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In view of Lemma 2.3 there are

(4.10) δ0 ∈ (0, 1), N2 > N1 +N0 +M

such that for each t ∈ [a, b], each u ∈ Y satisfying ||u|| ≥ N2 and each x1, x2 ∈ X

satisfying

(4.11) ||x1||, ||x2|| ≤M0 + 4, ||x1 − x2|| ≤ δ0

the following inequality holds:

(4.12) |f(t, x1, u) − f(t, x2, u)| ≤ ε0 min{f(t, x1, u), f(t, x2, u)}.

Set

(4.13) ∆1 = sup{f(t, z, u) : t ∈ [a, b], z ∈ BX(M0 + 1), u ∈ BY (M0 + 1)} + 1.

Clearly, ∆1 is finite. By (A4) there exists

(4.14) δ1 ∈ (0, δ0)

such that for each t ∈ [a, b], each x1, x2 ∈ BX(M0+4+2N2), y1, y2 ∈ BY (M0+4+2N2)

satisfying

(4.15) ||x1 − x2||, ||y1 − y2|| ≤ δ1

the following inequality holds:

(4.16) |f(t, x1, y1) − f(t, x2, y2)| ≤ (32(b− a+ 1))−1ε.

Choose a positive number γ1 such that

(4.17) γ1 < 1 and (M0 + 1)32γ1(M1 + 1)(D0 + 1)(N2 + 1)(||B|| + 1)ρ−1 < δ1.

By (1.3) there is a number K such that

(4.18) K > (M0 + 1)(M + 1)(D0 + 1)(1 + b− a)(||B|| + 1)(N2 + 1)2 + 32∆1,

(4.19) φ(t)/t ≥ γ−1
1 for all t ≥ K.

Choose a positive number ∆ such that

(4.20) ∆ < (32(b− a+ 1))−1 min{1, ε}

and set

(4.21) U = {g ∈ MA : (f, g) ∈ EAw(K + 1,∆)}.

Assume that

(4.22) g ∈ U , z ∈ H̃ρ,M ∩BX(M).

In order to prove the proposition it is sufficient to show that there is (x, u) ∈ A(z)

such that ||u(t)|| ≤ K for almost every t ∈ [a, b] and Ig(x, u) ≤ U g(z) + ε. There is

(4.23) (x, u) ∈ A(z)
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such that

(4.24) Ig(x, u) ≤ U g(z) + ε/4.

We may assume without loss of generality that

(4.25) mes({t ∈ [a, b] : ||u(t)|| ≥ K}) > 0.

In view of (4.22), (4.21), (4.20), (4.18) and the choice of M1, (4.3) is true. Combined

with (4.24) and (4.1) the relation (4.3) implies that

(4.26) Ig(x, u) ≤M1 + 1.

By (4.22), (4.21), (4.18), (4.20), (4.24) and the choice of M0, the inequality (4.5)

holds. Set

E1 = {t ∈ [a, b] : ||u(t)|| ≥ K}, E2 = {t ∈ [a, b] : ||u(t)|| ≤ N2},

(4.27) E3 = [a, b] \ (E1 ∪ E2),

(4.28) d =

∫
E1

||u(t)||dt.

By (4.25), (4.28) and (4.27)

(4.29) d > 0.

It follows from (4.22) and the definition of H̃ρ,M (see (1.10)) that there exists a

trajectory-control pair (x̃, ũ) ∈ A(z) such that

(4.30) x̃(a) = z, x̃(t) ∈ Hρ for all t ∈ [a, b],

(4.31) ||ũ(t)|| ≤M, t ∈ [a, b] (a.e.).

Arguing as in the proof of Theorem 1.1 we can show that it follows from (1.1), (2.1),

(4.22), (4.6) and (4.31) that

(4.32) ||x̃(t)|| ≤M0 for all t ∈ [a, b].

Arguing as in the proof of Theorem 1.1 (see (3.28)) we can show that (4.28), (4.27),

(4.19), (4.26) and (A2) imply that

(4.33) d ≤ γ1(M1 + 1).

In view of (4.27), (4.28) and (4.33)

(4.34) mes(E1) ≤ K−1

∫
E1

||u(t)||dt ≤ K−1d ≤ K−1γ1(M1 + 1).

Set

(4.35) α = 4D0||B||dρ−1.
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By (4.33), (4.17), (4.10), (4.14) and (4.1)

(4.36) α < 1.

It follows from (4.27), (4.18), (4.10), (4.9), (4.26) and (A2) that∫
E1∪E3

||u(t)||dt ≤

∫
E1∪E3

γ0φ(||u(t)||)dt ≤ γ0

∫ b

a

φ(||u(t)||)dt

(4.37) ≤ γ0I
g(x, u) ≤ γ0(M1 + 1).

By (4.27) and (4.37)

(4.38) mes(E1 ∪ E3) ≤ N−1
2

∫
E1∪E3

||u(t)||dt ≤ N−1
2 γ0(M1 + 1).

Since the sets U(t), t ∈ [a, b] and H are convex it follows from (1.1) that (αx̃ + (1 −

α)x, αũ+ (1 − α)u) is a trajectory-control pair. The inclusions (x̃, ũ), (x, u) ∈ A(z)

imply that

(4.39) (αx̃ + (1 − α)x, αũ+ (1 − α)u) ∈ A(z).

(4.30) and (4.23) imply that

(4.40) αx̃(t) + (1 − α)x(t) ∈ Hαρ for all t ∈ [a, b].

Define

(4.41) v(t) = ξ∗(t), t ∈ E1, v(t) = αũ(t) + (1 − α)u(t), t ∈ E2,

v(t) = u(t), t ∈ E3,

(4.42) y(t) = S(t)z +

∫ t

a

S(t− s)Bv(s)ds, t ∈ [a, b].

Since ξ∗ : [a, b] → Y is a strongly measurable function it follows from (4.41) and

(4.39) that v : [a, b] → Y is a strongly measurable function. Relations (4.41), (4.39)

and (4.23) imply that

(4.43) v(t) ∈ U(t), t ∈ [a, b] (a.e.).

Arguing as in the proof of Theorem 1.1 ( see (3.39)) we can show that

(4.44) ||y(t) − (αx̃(t) + (1 − α)x(t))|| ≤ 3D0||B||d for all t ∈ [a, b].

In view of (4.44) and (4.35)

(4.45) ||y(t) − (αx̃(t) + (1 − α)x(t))|| ≤ (3/4)αρ for all t ∈ [a, b].

Together with (4.40) this inequality implies that

(4.46) y(t) ∈ H for all t ∈ [a, b].

By (4.46), (4.41), (4.42) and (4.43)

(4.47) (y, v) ∈ A(z).
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Now we estimate Ig(y, v) − Ig(x, u). By (4.32), (4.5) and (4.35) for each t ∈ [a, b]

(4.48) ||x(t)− (αx̃(t) + (1− α)x(t))|| = α||x(t)− x̃(t)|| ≤ 2αM0 = 8D0||B||dρ−1M0.

Combined with (4.44) this implies that

(4.49) ||y(t)− x(t)|| ≤ dD0||B||(3 + 8M0ρ
−1) for all t ∈ [a, b].

Relations (4.49), (4.33), (4.17), (4.14) and (4.10) imply that for all t ∈ [a, b]

(4.50) ||y(t) − x(t)|| ≤ 8D0||B||(1 +M0ρ
−1)γ1(M1 + 1) < δ1 < 1.

It follows from (4.41), (4.31), (4.27), (4.10), (4.35), (4.33) and (4.17) that for all

t ∈ E2

||v(t) − u(t)|| = ||αũ(t) + (1 − α)u(t) − u(t)|| = α||ũ(t) − u(t)||

(4.51) ≤ α(M +N2) ≤ 2αN2 = 8D0||B||dρ−1N2 < 8D0||B||ρ−1N2γ1(M1 + 1) < δ1.

In view of (4.50) and (4.5)

(4.52) ||y(t)|| ≤ ||x(t)|| + 1 ≤M0 + 1, t ∈ [a, b].

By (4.51), (4.27), (4.33) and (4.17) for all t ∈ E2

||v(t)|| ≤ ||u(t)|| + 8D0||B||dρ−1N2 ≤ N2(1 + 8D0||B|dρ−1)

(4.53) ≤ N2(1 + γ1(M1 + 1)8D0||B||ρ−1) ≤ 2N2.

In view of (4.53), (4.41), (4.27), (4.2), (4.18) and (4.10) for all t ∈ [a, b]

(4.54) ||v(t)|| ≤ K.

Clearly,

Ig(x, u) − Ig(y, v) =
3∑

i=1

[

∫
Ei

g(t, x(t), u(t))dt−

∫
Ei

g(t, y(t), v(t))dt].

It follows from (A2), (4.27) and (4.19) that

(4.55)

∫
E1

g(t, x(t), u(t))dt ≥

∫
E1

φ(||u(t)||)dt ≥ γ−1
1

∫
E1

||u(t)||dt.

Relations (4.55) and (4.27) imply that

(4.56)

∫
E1

g(t, x(t), u(t))dt ≥ γ−1
1 Kmes(E1).

In view of (4.52), (4.41), (4.2), (4.6) and (4.13),

(4.57) f(t, y(t), v(t)) ≤ ∆1 for all t ∈ E1.

By (4.52), (4.41), (4.2), (4.6), (4.18), (4.21), (4.22), (1.5) and (4.57) for all t ∈ E1

(4.58) g(t, y(t), v(t)) ≤ ∆ + f(t, y(t), v(t)) ≤ ∆ + ∆1.
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It follows from (4.58), (4.18), (4.20), (4.56) and (4.17) that∫
E1

g(t, y(t), v(t))dt ≤ (∆ + ∆1)mes(E1)

(4.59) ≤ 8−1Kmes(E1) ≤ 8−1

∫
E1

g(t, x(t), u(t))dt.

Let t ∈ E2. It follows from (4.52), (4.5), (4.54), (4.27), (4.18), (4.22) and (4.21)

that

|g(t, x(t), u(t)) − g(t, y(t), v(t))| ≤ |f(t, x(t), u(t)) − f(t, y(t), v(t))|

+|(g − f)(t, x(t), u(t))| + |(g − f)(t, y(t), v(t))|

(4.60) ≤ |f(t, x(t), u(t)) − f(t, y(t), v(t))|+ 2∆.

By (4.52), (4.5), (4.17), (4.51), (4.50) and the choice of δ1 (see (4.12)),

(4.61) |f(t, y(t), v(t)) − f(t, x(t), u(t))| ≤ (32(b− a+ 1))−1ε.

Relations (4.60) and (4.61) imply that

|g(t, x(t), u(t)) − g(t, y(t), v(t))| ≤ 2∆ + (32(b− a + 1))−1ε.

Combined with (4.20) this inequality implies that

(4.62)

|

∫
E2

g(t, x(t), u(t))dt−

∫
E2

g(t, y(t), v(t))dt| ≤ (b−a)[2∆+(32(b−a+1))−1ε] ≤ 8−1ε.

Let t ∈ E3. It follows from (4.41), (4.52), (4.5), (4.27), the choice of δ0, N2 (see (4.10),

(4.11)), (4.50) and (4.14) that

|f(t, x(t), u(t)) − f(t, y(t), v(t))| = |f(t, x(t), u(t)) − f(t, y(t), u(t))|

(4.63) ≤ ε0 min{f(t, x(t), u(t)), f(t, y(t), v(t))}.

By (4.52), (4.5), (4.18), (4.41), (4.27), (4.22) and (4.21)

|g(t, x(t), u(t)) − g(t, y(t), v(t))| ≤ |f(t, x(t), u(t)) − f(t, y(t), v(t))|

+|(g−f)(t, x(t), u(t))|+ |(g−f)(t, y(t), v(t))| ≤ |f(t, x(t), u(t))−f(t, y(t), v(t))|+2∆.

Together with (4.63), (4.20), (4.26), (4.27), (4.5), (4.18), (4.20)-(4.22) this inequality

implies that

|

∫
E3

g(t, x(t), u(t))dt−

∫
E3

g(t, y(t), v(t))dt| ≤ 2∆(b− a)

+ε0

∫
E3

f(t, x(t), u(t))dt

≤ ε/16 + ε0

∫
E3

g(t, x(t), u(t))dt+ ε0

∫
E3

|g(t, x(t), u(t))− f(t, x(t), u(t))|dt

(4.64) ≤ ε/16 + ε0(M1 + 1) + ε0∆(b− a) < ε/8.
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By (4.64), (4.59) and (4.62)

Ig(x, u) − Ig(y, v) ≥ −8−1ε− 8−1ε ≥ −ε/4.

Together with (4.24) this implies that Ig(y, v) ≤ U g(z)+ ε. Lemma 4.1 is proved.

5. PROOF OF LEMMA 1.2

In this section we prove the following result which implies Lemma 1.2.

Lemma 5.1. Let f ∈ MA (respectively, MAc) and let ε, N be positive numbers. Then

there is g ∈ LA (respectively, LAc) such that:

(f, g) ∈ EAs(N, ε);

if f ∈ MB (MBc, respectively), then g ∈ LB (LBc, respectively) and for each M > 0

there is L > 0 such that

|g(t, x1, u) − g(t, x2, u)| ≤ L||x1 − x2||

for each t ∈ [a, b], each u ∈ Y and each x1, x2 ∈ BX(M).

In the proof of Lemma 5.1 we use the following simple auxiliary result which is

proved in a straightforward manner.

Lemma 5.2. Let f1, f2 : [a, b]×X ×Y → [0,∞) be functions which satisfy (A1) and

(A3). Then the following assertions hold:

1. If (A4) holds with f = fi, i = 1, 2, then (A4) holds with f = f1 + f2 and with

f = f1f2.

2. If (B4) holds with f = fi, i = 1, 2, then (B4) holds with f = f1 + f2 and with

f = f1f2.

Proof of Lemma 5.1. Consider a function φ̃ : [0,∞) → [0,∞) such that for each

integer i ≥ 0

φ̃(i) = φ(i+ 1), φ̃(αi+ (1 − α)(i+ 1)) = αφ̃(i) + (1 − α)φ̃(i+ 1) for all α ∈ [0, 1].

Clearly, the function φ̃ : [0,∞) → [0,∞) is increasing and Lipschitzian on all bounded

subsets of [0,∞), φ̃(t) ≥ φ(t) for all t ≥ 0 and limt→∞ φ̃(t)/t = ∞.

Let f ∈ MA and let ε, N > 0. Set

ψ(t) = 1, t ∈ [0, N + 1], ψ(t) = 0, t ∈ [N + 2,∞),

ψ(t) = N + 2 − t, t ∈ (N + 1, N + 2),

g(t, x, u) = ψ(||x||)ψ(||u||)f(t, x, u) + (1 − ψ(||x||)ψ(||u||))[||x||+ ||u||+ φ̃(||u||) + 1],

(t, x, u) ∈ [a, b] ×X × Y.
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Clearly g satisfies (A1)-(A3). It is not difficult to see that (B4) holds for each of the

following functions

(t, x, u) → ψ(||x||), (t, x, u) → ψ(||u||), (t, x, u) → ||x||, (t, x, u) → ||u||,

(t, x, u) → φ̃(||u||), (t, x, u) ∈ [a, b] ×X × Y.

Together with Lemma 5.2 and the definition of g this implies that (A4) holds for g

and if f satisfies (B4), then (B4) holds for g. Clearly (A5) holds for g. Thus g ∈ LA.

Evidently (f, g) ∈ EAs(N, ε). Clearly, if f ∈ MAc, then g ∈ LAc.

Assume that f ∈ MB. We have already shown that g ∈ MB. Let M > 0. Since

(B4) holds for g there is L > 0 such that for each t ∈ [a, b], each x1, x2 ∈ BX(M+N+4)

and each y1, y2 ∈ BY (M +N + 4) the inequality

|g(t, x1, y1) − g(t, x2, y2)| ≤ L(||x1 − x2|| + ||y1 − y2||)

holds. Assume that

t ∈ [a, b], u ∈ Y, x1, x2 ∈ BX(M).

There are two cases: ||u|| ≥ N +4; ||u|| < N +4. Assume that ||u|| ≥ N +4. By this

inequality, the definition of g and the definition of ψ

|g(t, x1, u) − g(t, x2, u)| = |||x1|| − ||x2||| ≤ ||x1 − x2||.

Assume that ||u|| < N + 4. Then it follows from the choice of L that

|g(t, x1, u) − g(t, x2, u)| ≤ L||x1 − x2||.

Clearly, in both cases

|g(t, x1, u) − g(t, x2, u)| ≤ (L+ 1)||x1 − x2||.

This completes the proof of Lemma 5.1.

6. PROOFS OF THEOREMS 1.3-1.5

Proof of Theorem 1.5. By Lemma 1.2, LA is an everywhere dense subset of MA

with the strong topology and LAc is an everywhere dense subset of MAc with the

strong topology.

Let f ∈ LA and n be a natural number. By Lemma 4.1 there exist K(f, n) > 0

and an open neighborhood U(f, n) of f in MA with the weak topology such that the

following property holds:

(P1) If g ∈ U(f, n) and z ∈ H̃1/n,n ∩BX(n), then there is (x, u) ∈ A(z) such that

||u(t)|| ≤ K(f, n) for almost every t ∈ [a, b] and Ig(x, u) ≤ U g(z) + 1/n.

Define

FA = ∩∞

n=1 ∪ {U(f, n) : f ∈ LA}, FAc = ∩∞

n=1 ∪ {U(f, n) ∩MAc : f ∈ LAc}.
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Clearly FA is a countable intersection of open (in the weak topology) everywhere

dense (in the strong topology) subsets of MA and FAc is a countable intersection

of open (in the weak topology) everywhere dense (in the strong topology) subsets of

MAc. Let

(6.1) g ∈ FA, z ∈ ∪{H̃ρ,M : ρ,M > 0}, ε > 0.

Choose a natural number m such that

(6.2) z ∈ H̃1/m,m ∩ BX(M), ε > 1/m.

By (6.1) and the definition of FA there is fm ∈ LA such that g ∈ U(fm, m). It

follows from this inclusion, (P1) and (6.1) that there is (x, u) ∈ A(z) such that

||u(t)|| ≤ K(fm, m) for almost every t ∈ [a, b] and

Ig(x, u) ≤ U g(z) +m−1 < Ug(z) + ε.

Since ε is an arbitrary positive number we conclude that

inf{Ig(y, v) : (y, v) ∈ AL(z)} ≤ U g(z) = inf{Ig(y, v) : (y, v) ∈ A(z)}.

This completes the proof of Theorem 1.5.

Proof of Theorem 1.4. By Lemma 1.2, LB is an everywhere dense subset of MB

and LBc is an everywhere dense subset of MBc. Let f ∈ LB and n be a natural

number. By Theorem 1.1 there exists K(f, n) > 0 such that the following property

holds:

(P2) If g ∈ MB satisfies (f, g) ∈ EB(K(f, n), 8n), z ∈ H̃1/n,n ∩ BX(n) and if

(x, u) ∈ A(z) satisfies

mes({t ∈ [a, b] : ||u(t)|| ≥ K(f, n)}) > 0,

then there exists (y, v) ∈ A(z) such that Ig(y, v) < Ig(x, u),

||v(t)|| ≤ K(f, n) for almost every t ∈ [a, b].

Denote by U(f, n) an open neighborhood of f in MB such that

{g ∈ MB : (f, g) ∈ EB(K(f, n), n)} ⊂ U(f, n)

(6.3) ⊂ {g ∈ MB : (f, g) ∈ EB(K(f, n), 2n)}.

Define

FB = ∩∞

n=1 ∪ {U(f, n) : f ∈ LB}, FBc = ∩∞

n=1 ∪ {U(f, n) ∩MBc : f ∈ LBc}.

Clearly FB is a countable intersection of open everywhere dense subsets of MB and

FBc is a countable intersection of open everywhere dense subsets of MBc.

Let

(6.4) g ∈ FB and M, q, ρ > 0.
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Choose a natural number

m > max{M, 1/ρ, 4q}.

In view of (6.4) and the definition of FB there is fm ∈ LB such that

(6.5) g ∈ U(fm, m).

Assume that

(6.6) h ∈ MB, (g, h) ∈ EB(K(fm, m), q), z ∈ H̃ρ,M ∩BX(M),

(x, u) ∈ A(z), mes({t ∈ [a, b] : ||u(t)|| ≥ K(fm, m)}) > 0.

It follows from (6.6), (6.5) and (6.3) that

(h, fm) ∈ EB(K(fm, m), 3m).

Clearly, z ∈ H̃1/m,m ∩BX(m). Now by property (P2) there is (y, v) ∈ A(z) such that

Ig(y, v) < Ig(x, u),

||v(t)|| ≤ K(fm, m) for almost every t ∈ [a, b].

Theorem 1.4 is proved.

Proof of Theorem 1.3. By Lemma 1.2, LB is an everywhere dense subset of MB

and LBc is an everywhere dense subset of MBc. Let f ∈ MB. By Theorem 1.1 there

is K(f) > 0 such that the following property holds:

(P3) If g ∈ MB satisfies (f, g) ∈ EK(K(f), 8q), z ∈ H̃ρ,M ∩ BX(M) and if

(x, u) ∈ A(z) satisfies mes({t ∈ [a, b] : ||u(t)|| ≥ K(f)}) > 0, then there exists

(y, v) ∈ A(z) such that Ig(y, v) < Ig(x, u) and ||v(t)|| ≤ K(f) for almost every

t ∈ [a, b].

Denote by U(f) an open neighborhood of f in MB such that

{g ∈ MB : (f, g) ∈ EB(K(f), q)} ⊂ U(f)

(6.7) ⊂ {g ∈ MB : (f, g) ∈ EB(K(f), 2q)}.

Define

F = ∪{U(f) : f ∈ LB}, Fc = MBc ∩ [∪{U(f) : f ∈ LBc}].

Clearly, F is a n open everywhere dense subset of MB and Fc is an open everywhere

dense subset of MBc. Let g ∈ FB. By this inclusion and the definition of F there is

f ∈ LB such that

(6.8) g ∈ U(f).

Assume that

(6.9) h ∈ MB, (g, h) ∈ EB(K(f), q), z ∈ H̃ρ,M ∩ BX(M),

(x, u) ∈ A(z), mes ({t ∈ [a, b] : ||u(t)|| ≥ K(f)}) > 0.
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It follows from (6.7)-(6.9) that (h, f) ∈ EB(K(f), 3q). Now by property (P3) and

(6.9) there is (y, v) ∈ A(z) such that Ig(y, v) < Ig(x, u) and ||v(t)|| ≤ K(f) for

almost every t ∈ [a, b]. Theorem 1.4 is proved.
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[6] H. Brezis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces

de Hilbert, North Holland, Amsterdam, 1973.

[7] L. Cesari, Optimization-Theory and Applications, Springer-Verlag, Berlin, 1983.

[8] F.H. Clarke and R.B. Vinter, Regularity properties of solutions to the basic problem in the

calculus of variations, Transactions of the Amer. Math. Soc., 289: 73–98, 1985.

[9] F.H. Clarke and R.B. Vinter, Regularity of solutions to variational problems with polynomial

Lagrangians, Bulletin of the Polish Academy of Sciences, 34: 73–81, 1986.

[10] A. Ferriero, The approximation of higher-order integrals of the calculus of variations and the

Lavrentiev phenomenon, SIAM J. Control Optim., 44: 99–110, 2005.

[11] M. Lavrentiev, Sur quelques problemes du calcul des variations, Ann. Math. Pura Appl., 4:

107–124, 1926.

[12] P.D. Loewen, On the Lavrentiev phenomenon, Canad. Math. Bull., 30: 102–108, 1987.

[13] B. Mania, Sopra un esempio di Lavrentieff, Boll. Un. Mat. Ital., 13: 146–153, 1934.

[14] V.J. Mizel, New developments concerning the Lavrentiev phenomenon, Calculus of Variations

and Differential Equations. Chapman & Hall/CRC Research Notes in Mathematics Series, CRC

Press, Boca Raton, FL, 410: 185-191, 2000.

[15] Z. Nitecki, Differentiable Dynamics. An Introduction to the Orbit Structure of Diffeomorphisms,

The MIT Press, Cambridge, 1971.

[16] A.V. Sarychev, First-and second order integral functionals of the calculus of variations which

exhibit the Lavrentiev phenomenon, J. Dynam. Control Systems, 3: 565–588, 1997.

[17] A.V. Sarychev and D.F.M. Torres, Lipschitzian regularity of minimizers for optimal control

problems with control-affine dynamics, Appl. Math. Optim., 41: 237–254, 2000.

[18] M.A. Sychev and V.J. Mizel, A condition on the value function both necessary and sufficient

for full regularity of minimizers of one-dimensional variational problems, Transactions of the

Amer. Math. Soc., 350: 119–133, 1998.

[19] A.J. Zaslavski, Nonoccurrence of the Lavrentiev phenomenon for nonconvex variational prob-

lems, Ann. Inst. H. Poincare, Anal. non lineare, 22: 579–596, 2005.

[20] A.J. Zaslavski, Turnpike Properties in the Calculus of Variations and Optimal Control, Springer,

New York, 2006.

[21] A.J. Zaslavski, Nonoccurrence of gap for infinite dimensional control problems with nonconvex

integrands, Optimization, 55: 171–186, 2006.

[22] A.J. Zaslavski, Nonoccurrence of the Lavrentiev phenomenon for many optimal control prob-

lems, SIAM Journal on Control and Optimization, 45: 1116–1146, 2006.


