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ABSTRACT. We prove an extension theorem for a small perturbation of the Ornstein-Uhlenbeck

operator (L, D(L)) in the space of all uniformly continuous and bounded functions f : H → R, where

H is a separable Hilbert space. We consider a perturbation of the form N0ϕ = Lϕ + 〈Dϕ, F 〉 where

F : H → H is bounded and Fréchet differentiable with uniformly continuous and bounded differen-

tial. Hence, we prove that N0 is essentially m-dissipative and its closure in Cb(H) coincides with

the infinitesimal generator of a diffusion semigroup associated to a stochastic differential equation

in H .
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1. INTRODUCTION AND SETTING OF THE PROBLEM

LetH be a separable Hilbert space endowed with scalar product 〈·, ·〉 and norm |·|.

We shall always identify H with its topological dual space H∗. L(H) is the Banach

space of all the linear and continuous maps in H, endowed with the usual norm

‖ · ‖L(H). With Cb(H) (resp. Cb(H;H)) we denote the Banach space of all uniformly

continuous and bounded functions f : H → R (resp. f : H → H), endowed with

the supremum norm ‖ · ‖ (resp. ‖ · ‖0). We also denote by C1
b (H) (resp. C1

b (H;H))

the space of all f ∈ Cb(H) (resp. Cb(H;H)) that are Fréchet differentiable with

differential in Cb(H;H) (resp. with uniformly continuous and bounded differential

Df : H → L(H)). We assume the following

Hypothesis 1.1. (i) A : D(A) ⊂ H → H is the infinitesimal generator of a strongly

continuous semigroup (etA)t≥0 of type G(1, ω), i.e. there exists ω ∈ R such that

(1.1) ‖etA‖L(H) ≤ eωt, t ≥ 0;

(ii) Q ∈ L(H) is self adjoint and positive;

(iii) For any t > 0 the linear operator Qt, defined as

(1.2) Qtx =

∫ t

0

esAQesA
∗

x ds, x ∈ H, t ≥ 0,
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is of trace class.

(iv) F ∈ C1
b (H;H), and K = sup

x∈H
‖DF (x)‖L(H).

It is well known (see, for instance, [4]) that thanks to conditions (i)–(iii) it is

possible to define the so called Ornstein-Uhlenbeck (OU) semigroup (Rt)t≥0 in Cb(H)

by the formula

(1.3) Rtϕ(x) =

∫

0

ϕ(etAx + y)NQt
(dy), x ∈ H,

where NQt
is the Gaussian measure on H of mean 0 and covariance operator Qt

(see [4]). It turns out that the OU semigroup in Cb(H) is not a strongly continuous

semigroup with respect to the supremum norm, but it is strongly continuous with

respect to weaker topologies (See [1], [5], [6], [9]). However, it is possible to define

its infinitesimal generator by its resolvent or, in a equivalent way, by means of the

approach of the π-semigroups introduced in [9]

(1.4)











































D(L) =

{

ϕ ∈ Cb(H) : ∃g ∈ Cb(H), lim
t→0+

Rtϕ(x) − ϕ(x)

t
= g(x),

x ∈ H, sup
t∈(0,1)

∥

∥

∥

∥

Rtϕ− ϕ

t

∥

∥

∥

∥

<∞

}

Lϕ(x) = lim
t→0+

Rtϕ(x) − ϕ(x)

t
, ϕ ∈ D(L), x ∈ H.

We are interested in the operator (N0, D(N0)) defined by

N0ϕ = Lϕ+ Fϕ, ϕ ∈ D(N0) = D(L) ∩ C1
b (H),

where

Fϕ(x) = 〈Dϕ(x), F (x)〉.

Now let us consider the stochastic differential equation in H

(1.5)







dX(t) =
(

AX(t) + F (X(t))
)

dt+Q1/2dW (t) t > 0,

X(0) = x x ∈ H,

where (W (t))t≥0 is a cylindrical Wiener process defined on a stochastic basis (Ω,G,

(Gt)t≥0,P). Since F ∈ C1
b (H;H), problem (1.5) has a unique mild solution

(

X(t, x)
)

t≥0,x∈H
(see [4]), that is for any x ∈ H the process {X(·, x), t ≥ 0} is adapted

to the filtration (Gt)t≥0 and it is continuous in mean square, i.e.

lim
t→s

E
[

|X(t, x) −X(s, x)|2
]

= 0, ∀s ≥ 0.

This allows us to define a transition semigroup (Pt)t≥0 in Cb(H), by setting

Ptϕ(x) = E
[

ϕ(X(t, x))
]

, t ≥ 0, ϕ ∈ Cb(H), x ∈ H.
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The semigroup (Pt)t≥0 is not strongly continuous in Cb(H). However, it is a π-

semigroup, and we can define its infinitesimal generator (N,D(N)) in the same way

as for the OU semigroup










































D(N) =

{

ϕ ∈ Cb(H) : ∃g ∈ Cb(H), lim
t→0+

Ptϕ(x) − ϕ(x)

t
= g(x),

x ∈ H, sup
t∈(0,1)

∥

∥

∥

∥

Ptϕ− ϕ

t

∥

∥

∥

∥

<∞

}

Nϕ(x) = lim
t→0+

Ptϕ(x) − ϕ(x)

t
, ϕ ∈ D(N), x ∈ H.

The main result of this paper is the following

Theorem 1.2. Let us assume that Hypothesis 1.1 holds. Then, the operator (N0, D(N0)),

defined by D(N0) = D(L)∩C1
b (H) and N0ϕ = Lϕ+Fϕ, ∀ϕ ∈ D(N0), is m-dissipative

in Cb(H) and its closure is the operator (N,D(N)).

In [2], it is proved that Theorem 1.2 holds with F ∈ C1,1
b (H;H), that is F is

Fréchet differentiable and its differential DF : H → L(H) is Lipschitz continuous.

Perturbations of OU operators as been the object of several papers (see, for

instance, [2, 3, 5–7, 10]). Frequently, additional assumptions are taken on the OU

operator in order to have D(L) ⊂ C1
b (H), see [5], [6].

In order to prove Theorem 1.2 we develope a technique introduced in [2]. The

idea is the following: since F ∈ C1
b (H;H), there exists a unique solution η(·, x) of the

abstract Cauchy problem






d

dε
η(ε, x) = F (η(ε, x)), ε > 0,

η(0, x) = x, x ∈ H.

Then, for any ε > 0 we define the operators Fε : Cb(H) → Cb(H) and Nε : D(Nε) ⊂

Cb(H) → Cb(H) by setting

Fεϕ(x) =
1

ε

(

ϕ(η(ε, x)) − ϕ(x)
)

,






D(Nε) = D(L) ∩ C1
b (H),

Nεϕ = Lϕ+ Fεϕ, ϕ ∈ D(Nε).

By an approximation argument, we are able to prove that the operator (N0, D(N0))

is m-dissipative in Cb(H). Then, by the Lumer-Phillips theorem, it will follow that

the closure of (N0, D(N0)) coincides with the operator (N,D(N)).
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1.1. Properties of Fε. The following lemma collects some useful properties of η.

Lemma 1.3. The following estimates hold

(1.6) |η(t, x)| ≤ e‖F‖0t|x|;

(1.7) |η(t, x) − η(t, y)| ≤ eKt|x− y|;

(1.8) |η(t, x) − x| ≤ c‖F‖0t

(1.9) ‖ηx(t, x)‖L(H) ≤ eKt

(1.10) ‖ηx(t, x) − ηx(t, y)‖L(H) ≤ eKtθDF (eKt|x− y|),

where θDF : R
+ × R

+ → R
+ is the modulus of continuity of DF .

Proof. (1.6), (1.8), (1.9) have been proved in [2, Lemma 2.1].

(1.7). We have

|η(t, x)−η(t, y)| ≤ |x−y|+

∫ t

0

∣

∣F (η(s, x))−F (η(s, y))|ds ≤ K

∫ t

0

|η(s, x)−η(s, y)|ds.

Then (1.7) follows by Gronwall’s Lemma.

(1.10). Let x, y, h ∈ H and set

rh(t) = ηx(t, x) · h− ηx(t, y) · h = ph(t, x) − ph(t, y),

where P h(t, x) = ηx(t, x) ·h and ph(t, y) = ηx(t, y) ·h. Then rh(t) fulfills the following

equation










d

dt
rh(t) = DF (η(t, x))rh(t) +

[

DF (η(t, x)) −DF (η(t, y))
]

ph(t, x), t > 0

rh(0) = 0.

Since |DF (η(t, x))rh(t)| ≤ K|rh(t)| it follows that rh(t) is bounded by

|rh(t)| ≤

∫ t

0

eK(t−s)
∥

∥DF (η(s, x)) −DF (η(s, y))
∥

∥

L(H)
|ph(s, x)|ds.

By taking into account that DF : H → L(H;H) is uniformly continuous and

bounded, we denote by θDF the modulus of continuity of DF . Hence, by (1.7),

(1.9) we have

|rh(t)| ≤

∫ t

0

eKsθDF (|η(s, x) − η(s, y)|)ds|h| ≤ eKtθDF (eKt|x− y|)|h|

Proposition 1.4. For any ϕ ∈ C1
b (H) we have

lim
ε→0+

Fεϕ = Fϕ in Cb(H).(1.11)

‖Fεϕ‖ ≤ ‖Dϕ‖0‖F‖0.(1.12)
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Proof. For all ϕ ∈ C1
b (H) we have

Fεϕ(x) − Fϕ(x) =
1

ε

∫ ε

0

〈Dϕ(η(s, x)) −Dϕ(x), F (η(s, x))〉ds

+
1

ε

∫ ε

0

〈Dϕ(x), F (η(s, x)) − F (x)〉 ds.

Then by (1.8) we have

|Fεϕ(x) −Fϕ(x)| ≤

≤
1

ε

∫ ε

0

(|θDϕ(|η(s, x) − x|)‖F‖0 + ‖Dϕ‖0K|η(s, x) − x|)) ds

≤
1

ε

∫ ε

0

(θDϕ(‖F‖0s|)‖F‖0 + ‖Dϕ‖0K‖F‖0s) ds

≤ (θDϕ(‖F‖0ε|) + ‖Dϕ‖0Kε) ‖F‖0

where θDϕ, is the modulus of continuity of Dϕ. This yields (1.11). Moreover, we have

Fεϕ(x) =
1

ε

∫ ε

0

〈Dϕ(η(s, x)), F (η(s, x))〉ds

that implies (1.12).

1.2. m-dissipativity of N . Given ε > 0 we introduce the following approximating

operator

Nε = L + Fε, D(Nε) = D(L) ∩ C1
b (H).

We have

Proposition 1.5. Nε is an essentially m-dissipative operator in Cb(H) for any ε > 0.

Moreover, for any f ∈ C1
b (H) and any λ > ω + (eεK − 1)/ε the operator

R(λ,Nε) =
(

1 − Tλ)
−1R

(

λ+
1

ε
, L

)

,

where Tλ : Cb(H) → Cb(H) is defined by

(1.13) Tλψ(x) = R

(

λ+
1

ε
, L

) [

1

ε
ψ(η(ε, x))

]

, x ∈ H, ψ ∈ Cb(H)

maps C1
b (H) into D(L) ∩ C1

b (H) and

(1.14) ‖DR(λ,Nε)f‖0 ≤
1

λ− ω − eKε−1
ε

‖Df‖0.

Proof. Let ε > 0, λ > 0, f ∈ Cb(H). The equation

λϕε − Lϕε − F(ϕε) = f

is equivalent to
(

λ+
1

ε

)

ϕε − Lϕε −F(ϕε) = f +
1

ε
ϕε(η(ε, ·))



440 L. MANCA

and to

(1.15) ϕε = R

(

λ+
1

ε
, L

)

f + Tλϕε.

Since, as we can easily see, for any λ > 0

(1.16) ‖Tλψ‖ ≤
1

1 + λε
‖ψ‖, ∀ψ ∈ Cb(H),

the operator Tλ is a contraction in Cb(H) and so equation (1.15) has a unique solution

ϕε ∈ Cb(H) done by ϕε = R(λ,Nε)f . Moreover, by (1.13), (1.16) it holds

‖ϕε‖ ≤
1

λ+ 1
ε

[

‖f‖ +
1

ε
‖ϕε‖

]

.

Consequently,

‖ϕε‖ ≤
1

λ
‖f‖.

Then, Nε is m-dissipative. Now let f ∈ C1
b (H). We recall that for any λ > 0,

ψ ∈ Cb(H)

(1.17) R(λ, L)ψ(x) =

∫ ∞

0

e−λtRtψ(x)dt

and that

DRtψ(x) =

∫

H

etA
∗

Dψ(etAx+ y)NQt
(dy).

Hence, for any λ > ω

(1.18) DR(λ, L)ψ(x) =

∫ ∞

0

∫

H

e−λtetA
∗

Dψ(etAx + y)NQt
(dy)dt

and so

(1.19) ‖DR(λ, L)ψ‖0 ≤
1

λ− ω
‖Dψ‖0

Moreover, as it can be easily seen by (1.18), DR(λ, L)ψ is uniformly continuous.

Then R(λ, L) : C1
b (H) → C1

b (H). Now, in order to prove that Tλ : C1
b (H) → C1

b (H)

it is sufficient to show that ψ(η(ε, x)) ∈ C1
b (H), for any ψ ∈ C1

b (H). Indeed, by a

standard computation, we have

Dψ(η(ε, ·))(x) = η∗x(ε, x)Dψ(η(ε, x)), x ∈ H.

Consequently, by (1.7), (1.10) we have

|Dψ(η(ε, ·))(x) −Dψ(η(ε, ·))(x)| ≤ ‖η∗x(ε, x) − η∗x(ε, x)‖L(H)|Dψ(η(ε, x))|

+ ‖η∗x(ε, x)‖L(H)|Dψ(η(ε, x)) −Dψ(η(ε, x))|

≤ eεKθDF (eεK|x− x|)‖Dψ‖0 + eεKθDψ(|η(ε, x) − η(ε, x)|)

≤ eεKθDF (eεK|x− x|)‖Dψ‖0 + eεKθDψ(eεK|x− x|),
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for any x, x ∈ H. So, DTλψ(·) is uniformly continuous. Now we prove that Tλ is a

contraction in C1
b (H). By (1.13), (1.17) we have

Tλψ(x) =
1

ε

∫ ∞

0

e−(λ+ 1

ε
)tRtψ(η(ε, ·))(x)dt

=
1

ε

∫ ∞

0

∫

H

e−(λ+ 1

ε
)tψ(η(ε, etAx + y))NQt

(dy)dt

Then

DTλψ(x) =
1

ε

∫ ∞

0

∫

H

e−(λ+ 1

ε
)tetA

∗

η∗x(ε, e
tAx+ y)Dψ(η(ε, etAx + y))NQt

(dy)dt

By (1.9) it follows

|DTλψ(x)| ≤
1

ε

∫ ∞

0

e−(λ+ 1

ε
−ω)teεK‖Dψ‖0dt =

eεK

1 + ε(λ− ω)
‖Dψ‖0.

Therefore, for any λ > ω + (eεK − 1)/ε the linear operator Tλ is a contraction in

C1
b (H) and its resolvent satisfies

(1 − Tλ)
−1(C1

b (H)) ⊂ C1
b (H),

(1.20) ‖D(1 − Tλ)
−1ψ‖0 ≤

1

1 − eεK

1+ε(λ−ω)

‖Dψ‖0.

This implies

R(λ,Nε)(C
1
b (H)) = (1 − Tλ)

−1R
(

λ+
1

ε
, L

)

(C1
b (H)) ⊂ C1

b (H).

Then, since C1
b (H) is dense in Cb(H), it follows that Nε is essentially m-dissipative.

Finally, (1.14) follows by (1.19) and (1.20).

Lemma 1.6. The operator N0 is dissipative in Cb(H).

Proof. We have to prove that ‖λϕ−N0ϕ‖ ≥ λ‖ϕ‖ for any ϕ ∈ D(N0), λ > 0. So, if

ϕ ∈ D(L) ∩ C1
b (H) and λ > 0 we set

λϕ− Lϕ− Fϕ = f.

then for any ε > 0 we have

λϕ−Nεϕ = f + Fϕ− Fεϕ.

It follows

ϕ = R(λ,Nε)(f + Fϕ− Fεϕ)

and

‖ϕ‖ ≤
1

λ
(‖f‖ + ‖Fϕ−Fεϕ‖)

Then by (1.11) it follows

‖ϕ‖ ≤
1

λ
‖f‖.
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Since N0 is dissipative, its closure N 0 is still dissipative (maybe it is multivalued).

By the following theorem follows Theorem 1.2.

Theorem 1.7. N0 is essentially m-dissipative.

Proof. Let f ∈ C1
b (H), ε ∈ (0, 1) and λ > ω + eK − 1. We denote by ϕε the solution

of

λϕε −Nεϕε = f.

By Proposition (1.5) we have ϕε ∈ D(L) ∩ C1
b (H) = D(N0), then ϕε is solution of

λϕε −N0ϕε = f + Fεϕε − Fϕε.

We claim that Fεϕε −Fϕε → 0 in Cb(H) as ε→ 0+. Indeed it holds

Fεϕε(x) − Fϕε(x) =
1

ε

∫ ε

0

(〈Dϕε(η(s, x)), F (η(s, x))〉+ 〈Dϕε(x), F (x)〉) ds

=
1

ε

∫ ε

0

(〈Dϕε(η(s, x)) −Dϕε(x), F (η(s, x))〉

+ 〈Dϕε(x), F (η(s, x)) − F (x)〉) ds.

Hence

|Fεϕε(x) −Fϕε(x)|

≤
1

ε

∫ ε

0

(|Dϕε(η(s, x)) −Dϕε(x)|‖F‖0 + ‖Dϕε‖0|F (η(s, x)) − F (x)|) ds

By (1.8) we have

|F (η(s, x)) − F (x)| ≤ K|η(s, x) − x| ≤ K‖F‖0s ≤ K‖F‖0ε.

Notice now that since ϕε = R(λ,Nε)f and ε ∈ (0, 1), by (1.14) it follows

‖Dϕε‖0 ≤ c1‖Df‖0,

for all ε ∈ (0, 1), where c1 = (λ− ω −KeK)−1. This also implies

|Dϕε(η(s, x)) −Dϕε(x)‖0 ≤ c1‖Df(η(s, x) + ·) −Df(x+ ·)‖0

≤ c1|θDf (|η(s, x) − x|) ≤ c1θDf (‖F‖0ε),

where θDf : R
+ → R

+ is the modulus of continuity of Df . So we find

|Fεϕε(x) − Fϕε(x)| ≤ c1‖F‖0θDf (‖F‖0ε) + c1‖Df‖0K‖F‖0ε.

Then Fεϕε −Fϕε → 0 in Cb(H), as ε→ 0+. Finally, we have obtained

lim
ε→0+

[

λϕε −N0ϕε] = f

in Cb(H). Therefore the closure of the range of λ−N0 includes C1
b (H), which is dense

in Cb(H). So, since N0 is dissipative, by the Lumer-Phillips theorem the closure N 0

of N0 is m-dissipative.
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1.3. Proof of Theorem 1.2. By Theorem 1.7 the operator N0 is m-dissipative in

Cb(H). It is also known that if ϕ ∈ D(L) ∩ C1
b (H), then Nϕ = Lϕ + Fϕ (see,

for instance, [8]) and therefore (N,D(N)) is an extension of (N0, D(N0)). Finally,

since the operator (N,D(N)) is closed (see Proposition 3.4 in [9]), by the Lumer-

Phillips theorem it follows that the closure of (N0, D(N0)) in Cb(H) coincides with

(N,D(N)).

REFERENCES

[1] Cerrai S., A Hille-Yosida theorem for weakly continuous semigroups, Semigroup Forum 49

(1994), no. 3, 349–367.

[2] Da Prato G., Perturbations of Ornstein-Uhlenbeck operators: an analytic approach, and eco-

nomics (Levico Terme, 2000), Progr. Nonlinear Differential Equations Appl., vol. 55, Birkhäuser,
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Barcelona, Birkhäuser Verlag, Basel, 2004.

[4] Da Prato G. and Zabczyk J., Stochastic equations in infinite dimensions, Encyclopedia of Math-

ematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1992.

[5] Farkas B., Perturbations of bi-continuous semigroups with applications to transition semigroups

on Cb(H), Semigroup Forum 68 (2004), no. 1, 87–107.

[6] Goldys B. and Kocan M., Diffusion semigroups in spaces of continuous functions with mixed

topology, J. Differential Equations 173 (2001), no. 1, 17–39.

[7] Manca L., On a class of stochastic semilinear PDEs, Stoch. Anal. Appl. 24 (2006), no. 2,

399–426.

[8] , Kolmogorov equations for measures, 2007. To appear on Journal of Evolution Equations.

[9] Priola E., On a class of Markov type semigroups in spaces of uniformly continuous and bounded

functions, Studia Math. 136 (1999), no. 3, 271–295.

[10] Zambotti L., An analytic approach to existence and uniqueness for martingale problems in

infinite dimensions, Probab. Theory Related Fields 118 (2000), no. 2, 147–168.


