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ABSTRACT. We prove an extension theorem for a small perturbation of the Ornstein-Uhlenbeck
operator (L, D(L)) in the space of all uniformly continuous and bounded functions f : H — R, where
H is a separable Hilbert space. We consider a perturbation of the form Nop = Ly + (D, F) where
F: H— H is bounded and Fréchet differentiable with uniformly continuous and bounded differen-
tial. Hence, we prove that Ny is essentially m-dissipative and its closure in Cy(H) coincides with
the infinitesimal generator of a diffusion semigroup associated to a stochastic differential equation
in H.
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1. INTRODUCTION AND SETTING OF THE PROBLEM

Let H be a separable Hilbert space endowed with scalar product (-, -) and norm |-|.
We shall always identify H with its topological dual space H*. L(H) is the Banach
space of all the linear and continuous maps in H, endowed with the usual norm
| - |zcmy- With Cy(H) (resp. Cy(H; H)) we denote the Banach space of all uniformly
continuous and bounded functions f : H — R (resp. f : H — H), endowed with
the supremum norm || - || (resp. || - |lo). We also denote by C{(H) (resp. C}(H; H))
the space of all f € Cy(H) (resp. Cy(H; H)) that are Fréchet differentiable with
differential in Cy(H; H) (resp. with uniformly continuous and bounded differential
Df:H — L(H)). We assume the following

Hypothesis 1.1. (i) A: D(A) C H — H is the infinitesimal generator of a strongly

continuous semigroup ()0 of type G(1,w), i.e. there exists w € R such that
(1.1) e ey < e, t>0;
(il) Q € L(H) is self adjoint and positive;
(iii) For anyt > 0 the linear operator @)y, defined as
(1.2) Qix = /t Qe vds, v e H, t >0,
0
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s of trace class.
(iv) F € Cy(H; H), and K = sup | DF ()| z(m)-
zeH

It is well known (see, for instance, [4]) that thanks to conditions (i)—(iii) it is
possible to define the so called Ornstein-Uhlenbeck (OU) semigroup (R;):>o in Cy(H)
by the formula

(1.3) Ruplz) = / ez +y)No,(dy), =€ H,

where N, is the Gaussian measure on H of mean 0 and covariance operator (),
(see [4]). It turns out that the OU semigroup in Cy(H) is not a strongly continuous
semigroup with respect to the supremum norm, but it is strongly continuous with
respect to weaker topologies (See [1], [5], [6], [9]). However, it is possible to define
its infinitesimal generator by its resolvent or, in a equivalent way, by means of the

approach of the mw-semigroups introduced in [9]

(

R _
D(L) = {ap € Cy(H):3g € C’b(H),tlirél+ ts@(x)t () = g(x),
r € H, sup ‘M <oo}
(1.4) SCRVE
Le(x) = lim Rt‘p(‘”)t_ 2@ e D) veH.
\ t—

We are interested in the operator (Ny, D(Ny)) defined by
Now = Lo+ Fp, ¢ € D(No) = D(L) N Cy(H),
where
Fo(x) = (De(x), F(x)).
Now let us consider the stochastic differential equation in H
(15) dX () = (AX(t) + F(X(1))dt + QY2dW (t) t >0,
. X(0)==x x € H,

where (W (t)):>0 is a cylindrical Wiener process defined on a stochastic basis (2, G,
(Gt)e>0,P). Since F € C}(H; H), problem (1.5) has a unique mild solution

(X (¢, x))t>0’er (see [4]), that is for any € H the process {X (-, z),t > 0} is adapted
to the filtration (G;):>o and it is continuous in mean square, i.e.

ImE[|X (¢, z) — X(s,2)[*] =0, Vs>0.

t—s

This allows us to define a transition semigroup (P;);>o in Cy(H), by setting

Po(z) =E[p(X(t,z)], t>0,¢€Cy(H),z€H.
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The semigroup (P;);>¢ is not strongly continuous in Cy(H). However, it is a 7-
semigroup, and we can define its infinitesimal generator (N, D(V)) in the same way

as for the OU semigroup

;

. Py(r) —px
D) = { € i) : 39 € Gy, i PEDZED )
P —
x € H, sup ‘MH<OO}
te(0,1) t

No(z) = lim Pt‘p(x)t_ 2@ e p(N), sem

\ t—>0+

The main result of this paper is the following

Theorem 1.2. Let us assume that Hypothesis 1.1 holds. Then, the operator (No, D(Ny)),
defined by D(No) = D(L)NCYL(H) and Nop = Lo+Fp, Vo € D(Ny), is m-dissipative
in Cy(H) and its closure is the operator (N, D(N)).

In [2], it is proved that Theorem 1.2 holds with F' € C'(H; H), that is F is
Fréchet differentiable and its differential DF' : H — L(H) is Lipschitz continuous.

Perturbations of OU operators as been the object of several papers (see, for
instance, [2,3,5-7,10]). Frequently, additional assumptions are taken on the OU
operator in order to have D(L) C C}(H), see [5], [6].

In order to prove Theorem 1.2 we develope a technique introduced in [2]. The
idea is the following: since F' € C}(H; H), there exists a unique solution 7(-, x) of the
abstract Cauchy problem

d
d_gn
n(0,z) = x, x € H.
Then, for any € > 0 we define the operators F. : Cp(H) — Cy(H) and N, : D(N.) C
Cy(H) — Cy(H) by setting

Fupla) = = (lu(e. ) - ¢(2)).

D(N.) = D(L)NCy(H),
N.p = Lo + Feo, ¢ € D(N,).

(e,2) = F(n(e,x)), >0,

By an approximation argument, we are able to prove that the operator (Ng, D(Ny))
is m-dissipative in Cy(H). Then, by the Lumer-Phillips theorem, it will follow that
the closure of (NVg, D(Ny)) coincides with the operator (N, D(V)).
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1.1. Properties of F.. The following lemma collects some useful properties of 7.

Lemma 1.3. The following estimates hold

(1.6) In(t,z)| < ellot|z;

(1.7) In(t, z) = n(t,y)| < ez —yl;

(1.8) n(t, ) — 2| < c|| Fllot

(1.9) 172 (t, )| ey < €*

(1.10) 172 (t, &) = 1 (8, 9) | ey < €*'0pr(e™' |z —yl),

where Opp : RT x RT — RY is the modulus of continuity of DF.

Proof. (1.6), (1.8), (1.9) have been proved in [2, Lemma 2.1].
(1.7). We have

n(t, x) =n(t,y)| < Ifc—y|+/0 |F(n(s,2)) = F(n(s, y))lds < K/O n(s, ) =n(s,y)|ds.

Then (1.7) follows by Gronwall’s Lemma.
(1.10). Let z,y,h € H and set

() = m(t,x) - b=t y) - ho=pl(t,2) — (¢, y),
where P"(t,x) = n,(t,z)-h and p"(t,y) = n.(t,y) - h. Then r"(¢) fulfills the following

equation

%Th(t) = DF(i(t, 2))r"(t) + [DF(n(t,x)) — DF (n(t,y))]p"(t,2), >0

r™(0) = 0.
Since |DF (n(t,z))r"(t)| < K|r®(t)| it follows that r"(¢) is bounded by
t
01 < [ I DP s, ) = DP(s. )| 5.2

By taking into account that DF : H — L(H;H) is uniformly continuous and
bounded, we denote by 0pr the modulus of continuity of DF. Hence, by (1.7),
(1.9) we have

t
()] < / " Opr(In(s, ) —n(s,y)|)ds|h| < "' Opr(e™|z —y|)|h|
0

Proposition 1.4. For any ¢ € C}(H) we have
(1.11) 1i:r(1]1+ F.o=Fp inCy(H).
(1.12) [Fell < 1Dellol[£lo-
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Proof. For all p € C}(H) we have

Fepla) = Fola) = - [ (Deln(s.a)) — Do), Flats.a)) ds

+2 [ (De(o). Flu(s.) — Py as.
Then by (1.8) we have
| Fep(x) — Folz)| <
< 2 [ matints2) — D 1E Lo + 1D loRTn(s,2) — ) ds

1 £
B /0 Ope ([ FllosDIIFllo + 1 Dello K Fllos) ds

< (Ope(I1Fllog]) + [[Dello ) [| 1l

IN

where 6p,, is the modulus of continuity of Dy. This yields (1.11). Moreover, we have

Faplo) = [ (Dptats. o), Flats, ) ds

that implies (1.12). O

1.2. m-dissipativity of N. Given ¢ > 0 we introduce the following approximating
operator

N. =L+ F., D(N.) = D(L)NC}(H).
We have

Proposition 1.5. N. is an essentially m-dissipative operator in Cy(H) for anye > 0.
Moreover, for any f € CH(H) and any X > w + (% — 1) /e the operator

RO N.)=(1-T\)"'R ()\ + % L) ,
where Ty : Cy(H) — Cy(H) is defined by
(113)  Tw(z) =R <>\ + %L) Elp(n(a«,x))} s H e Cy(H)
maps CL(H) into D(L) N CL(H) and

1
(114) IR N fllo < == Df o

Proof. Let € > 0, A\ > 0, f € Cy,(H). The equation

Ap: — L. _}—(SOE) =f

is equivalent to

(341) o= Lo = Flod = £+ Loulafer)
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and to

1
(1.15) @E:R()\%—E,L) [+ Thpe.
Since, as we can easily see, for any A\ > 0

(1.16) 1Tl < 0l Vi € G,

the operator T) is a contraction in Cy(H) and so equation (1.15) has a unique solution
e € Cp(H) done by ¢. = R(A, N;) f. Moreover, by (1.13), (1.16) it holds

1+ |wm]

o < 55 |

Consequently,
1
< — .
liell < 3171

Then, N. is m-dissipative. Now let f € C}(H). We recall that for any A > 0,
Y € Cy(H)
(1.17) R(A,L)w(x):/ e MRpp(x)dt
0
and that
DR(a) = [ ¢4 Dules +y)No, (dy).
H

Hence, for any A > w

(1.18) DR / / M Dy 4 y) No, (dy)dt
and so

1
(1.19) IDROL L6l < 5= 11DYly

Moreover, as it can be easily seen by (1.18), DR(A, L)y is uniformly continuous.
Then R(\, L) : C}(H) — C}(H). Now, in order to prove that Ty : C}(H) — C}(H)
it is sufficient to show that ¢ (n(e,z)) € C}(H), for any ¢ € C}(H). Indeed, by a
standard computation, we have

Dip(n(e, -))(x) = ny(e, ©) Dp(n(e, x)), =€ H.
Consequently, by (1.7), (1.10) we have

DY (e, ) (@) = Dp(n(e, ) (@) < lnz (e, 2) = m(e, @) e | DY (n(e, )]
+ 1nz(&, T) | e [ D (n(e, x)) — Dip(n(e, 7))
< e Opp(e |z =z DYl + e Opy(In(e, ) — n(e, 7))
< e Opr(e™ |z — TN DY]lo + e Opy (e o — T)),
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for any x,7 € H. So, DT\%(+) is uniformly continuous. Now we prove that T} is a
contraction in C{(H). By (1.13), (1.17) we have

Toi(a) = - / e O R ((e, ) (2)dt

€ Jo

1 [ iyl
=2 [ [ Ot e ) No, )t

€ Jo H
Then

1 & *
DIwa) =2 [ [ e e et 4 ) Dt e + ) No (dy)dt
0 H

By (1.9) it follows

1 o] 3 1, 6€K
D)) < - / K D lodt = S 1D .
Therefore, for any A > w + (e*® — 1)/e the linear operator T) is a contraction in

C}(H) and its resolvent satisfies

(1=T3)"(Cy(H)) C Cy(H),

®

(1.20) 1D(1 = T3 lly < ————— (1D o

T 14e(A—w)
This implies
1
RO N)(CH(H)) = (1= T3)'R(A+ =, L) (GH(H)) € CL(H).
Then, since C¢(H) is dense in Cy(H), it follows that N, is essentially m-dissipative.
Finally, (1.14) follows by (1.19) and (1.20). O

Lemma 1.6. The operator Ny is dissipative in Cy(H).

Proof. We have to prove that ||[A\p — Nop|| > A||p|| for any ¢ € D(Ny), A > 0. So, if
€ D(L)NCY(H) and A > 0 we set
Xp— Ly —Fop=f.
then for any € > 0 we have
Ap = Nep = f+Fo—Fop.
It follows
= R\ N)(f + Fo— Fep)

and

1
loll = S+ 179 = Fepll)
Then by (1.11) it follows

1
lell < <1
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Since Ny is dissipative, its closure Ny is still dissipative (maybe it is multivalued).

By the following theorem follows Theorem 1.2.
Theorem 1.7. Ny is essentially m-dissipative.

Proof. Let f € CL(H), e € (0,1) and A > w + €& — 1. We denote by . the solution
of

Ape — Newe = f.
By Proposition (1.5) we have ¢. € D(L) N C}(H) = D(Ny), then . is solution of
)\Soa_NOSOa Zf‘l-}—e%—}-%-

We claim that F.o. — Fp. — 0in Cy(H) as ¢ — 07. Indeed it holds

Fapelw) = Foulo) = - [ (Dpelnto. ). Fln(o,2) + (Dielo), Fla)) ds

_! / (D (n(s,2)) — Depu(a), F(n(s,2))

+ (Do.(x), F(n(s,z)) — F(x))) ds.
Hence

‘f€¢€(x) - -,Fgﬁs(x”

1 €
< g/o (1Dee(n(s, 2)) = Doe(@)|[|Fllo + [ Deello| F(n(s, x)) — F(x)]) ds
By (1.8) we have
[F(n(s,2)) = F(z)| < Kln(s, z) — 2] < K| Fllos < K| F][oz.
Notice now that since . = R(\, N.)f and ¢ € (0, 1), by (1.14) it follows
[1D¢ello < call D fllo,
for all € € (0,1), where ¢; = (A —w — Kef)~!. This also implies
[ Dipe(n(s, x)) — De=(z)llo < crl[Df(n(s,z) +-) = Df(z+-)lo
< albps(In(s, ) — x]) < crbps([|Fllog),
where 6p; : Rt — R is the modulus of continuity of Df. So we find
[ Fepe(@) = Foe(@)| < el Fllofps ([ Fllog) + call Df oK F]loc
Then F.p. — Fp. — 01in Cy(H), as € — 0. Finally, we have obtained

lim [)‘906 - NO‘P&] =/

e—0t
in Cy(H). Therefore the closure of the range of A— Ny includes C} (H), which is dense
in Cy(H). So, since Ny is dissipative, by the Lumer-Phillips theorem the closure N

of Ny is m-dissipative. O
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1.3. Proof of Theorem 1.2. By Theorem 1.7 the operator Ny is m-dissipative in
Cy(H). Tt is also known that if ¢ € D(L) N CY(H), then No = Lo + Fo (see,
for instance, [8]) and therefore (N, D(NNV)) is an extension of (No, D(Np)). Finally,
since the operator (N, D(N)) is closed (see Proposition 3.4 in [9]), by the Lumer-
Phillips theorem it follows that the closure of (Ng, D(Ny)) in Cy(H) coincides with
(N, D(N)). O
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