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ABSTRACT. We study the existence of special solutions of second order Riccati type equations.

We apply these results to third order linear differential equations with almost constant coefficients.

We give new sufficient conditions to know the asymptotic behavior of the logarithmic derivative of a

solution y. We recover Poincaré and Perron’s results and other asymptotic formulae. Furthermore,

we obtain some weaker versions of Levinson and Hartman-Wintner type Theorems.
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1. INTRODUCTION

In this paper, using a Riccati type equation, [1, chap. 6] and [8, 19, 20], we study

the classical problem of Poincaré [22] and Perron [17] for a third order scalar linear

differential equation

(1.1) y′′′ + (a2 + r2(t))y
′′ + (a1 + r1(t))y

′ + (a0 + r0(t))y = 0,

where λ1, λ2, λ3 are the roots of the polynomial P (λ) = λ3 + a2λ
2 + a1λ + a0,

Reλ1 > Reλ2 > Reλ3 and the locally integrable functions rk, k = 0, 1, 2 are assumed

small in some sense, obtaining an explicit and precise formula for the asymptotic

behavior of the solutions of type

yi(t) = exp

(∫ t

t0

λ̂i(s) ds

)

and

(1.2) λ̂i(t) = λi +

m∑

j=1

θij(t) + ψi m+1(t), i = 1, 2, 3,

where θij have explicit expressions in terms of the variable coefficients rk, k = 0, 1, 2

and the error function ψi m+1 satisfies an integral equation and it can be estimated

by known terms. We have given such a formula with m = 1 in Theorems 1, 2, 3 and

4. In Theorem 5, we show a formula (1.2) with m = 2. Usually in applications, the
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equations are transformed to equations of Perron-Poincaré type where our results can

be applied (see [4, 15, 16, 18, 21]).

The asymptotic theory of a linear differential equation asks for a representation

of a fundamental system of solutions in a vicinity of t = +∞. Its importance can

hardly be overestimated for several reasons. For its own sake and for the reason

that the asymptotic behavior of solution of nonlinear problems require quite often

asymptotic integration of a linearized problem. A comprehensive account of the

“nonanalytic theory” is given in the texts books [3, 4, 7, 14]. In [2], it is treated also

the “analytic theory” which has been largely studied. The others methods are based

in the reduction to a first order differential system and in several transformations.

An important feature is given by the fact that for the eigenvalue λ̂ which repre-

sents the asymptotic formulae (1.2) for the solutions begin always with the original

eigenvalue λ of the unperturbed equation. In this way the original “physical mean-

ing” represented by λ is preserved. In quantum mechanics, the physical meaning of

the eigenvalues λ are of great importance since they are proportional to the energy

levels of a quantum mechanical system.

Given γ ∈ C with Reγ > 0 define the operators

Gγ
±[r](t) =

∫ ∞

t0

e±γ (t, s) r(s) ds,

and for α > 0

Lα
±[r](t) = ±

∫ ∞

t0

e±α (t, s) |r(s)| ds,

where e±γ (t, s) = ±e∓γ(t−s) if ±(t−s) ≥ 0 and e±γ (t, s) = 0 otherwise. These operators

satisfy the useful inequality
∣∣∣Gα

±
[
bGβ

±[a]
]∣∣∣ ≤ Lα−β

± [b]Lβ
±[a], β < α.

Our conditions are given in terms of the functions r̂i = r0 + λir1 + λ2
i r2, r1 + 2λir2,

i = 1, 2, 3 and r2. In this way, Hartman’s results [12] are extended, for third order

equations, to Gi[r̂i](t) → 0 as t→ ∞ and for some explicit ν ∈ (0, 1/2),

‖Lβ
±[r1 + 2λir2]‖∞ + ‖Lβ

±[r2]‖∞ ≤ ν,

where Gi[r](t) = |Gi[r](t)| + |Gi[r]
′(t)| , Gi is a linear combination of Gγ

±’s, ‖ · ‖∞ is

the supremum norm on [t0,∞) and 0 < β < γ = min{Re(λ1 − λ2),Re(λ2 − λ3)}.
The uniform smallness of Lγ

±[r1 + 2λir2] and Lγ
±[r2] should be valid in a vicinity of

t = +∞. They need not tend to zero as t→ +∞. The terms r̂i, r1 +2λir2 and r2 are

not necessarily uniformly small. Moreover, it is possible that Gi[ri](t) → 0 as t→ ∞
even when ri is not small. The used method is scalar [8, 19] and does not need a

reduction to a first order system, nor any transformation as the usual diagonalization

process [2, 4, 5, 6, 7, 11, 18].
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Studying similar results for n-order differential equations, Hartman [12, 13] ex-

tends Perron’s result, assuming

sup
s≥t

(1 + s− t)−1

∫ s

t

|rk(τ)| dτ → 0 as t→ ∞, k = 0, 1, 2,

which is equivalent to Lα
±[rk](t) → 0 as t→ ∞, k = 0, 1, 2 (see Lemma 1) and also to

lim
t→∞

∫ t+1

t

|rk(s)| ds = 0, k = 0, 1, 2.

Actually, our extension gives a formula for the solutions y of equation (1.1), which

allows several applications. Moreover, the famous theorems of Levinson and Hartman-

Wintner and others can be deduced as a by product of ours results. Furthermore,

equations with unbounded coefficients are usually reduced to equations (1.1). See

[18, 23] and [2, 3, 4, 7]. All the errors in the asymptotic approximation can be

estimated. Our results are suitable to deduce the number of linearly independent

L2-solutions, that is the deficiency index. See Gilbert [10] and [15, 16].

2. PRELIMINARIES

We consider a new variable z = (y′/y) − λ, where λ ∈ C is a root of P . We will

find such a function z with property z(t) → 0 as t → ∞. Also, we want to express a

such z as sum of terms known. We will need the following results, see [1, 4, 12].

Lemma 2.1. Let γ ∈ C, α = Reγ > 0 and let r be a locally integrable function on

[t0,∞). Consider the functions

(2.1) r∗(t) =

∫ t+1

t

|r(τ)| dτ and r(t) = sup
s≥t

(1 + s− t)−1

∫ s

t

|r(τ)| dτ.

Then the following statements are equivalent: r∗(t) → 0 as t → ∞, r(t) → 0

as t → ∞, Lα
+[r](t) → 0 as t → ∞ and Lα

−[r](t) → 0 as t → ∞. Further-

more, Gγ
±[r](t) → 0 as t → ∞ holds if r is conditionally integrable in [t0,∞). If

r ∈ Lp[t0,∞) for some p ≥ 1, then Lα
±[r](t) → 0 as t→ ∞ and Lα

±[r] ∈ Lp[t0,∞).

Note that given a locally integrable function in [t0,∞), say r, if either

r(t) → 0 as t → ∞ or r ∈ Lp[t0,∞) then r∗(t) → 0 as t → ∞. Also, given γ ∈ C,

α = Reγ > 0, we have |Gγ
±[r](t)| ≤ Lα

±[r](t) for all t ∈ [t0,∞).

Lemma 2.2. Consider α > 0 and let ξ : [t0,∞) → IR be a locally integrable function

such that either Lα
+[ξ] or Lα

−[ξ] is bounded in [t0,∞). If r(t) → 0 as t → ∞ then

Lα
±[ξr](t) → 0 as t→ ∞.

Proof. If Lγ
±[ξ] are bounded then ξ∗ is bounded for some M > 0. So, given ε > 0

there exists N such that |r(t)| < ε/M for all t ≥ N . Then
∫ t+1

t

|ξ(s)r(s)| ds ≤ ε

M
ξ∗(t) ≤ ε
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for all t ≥ N . Therefore, (ξr)∗(t) =
∫ t+1

t
|ξ(s)r(s)| ds → 0 as t → ∞ and the result

follows by the previous Lemma.

We define Lα
0 as Lα

0 = Lα
+ + Lα

−. Note that Lα
±[r](t) → 0 as t → ∞ if and only

if Lα
0 [r](t) → 0 as t → ∞. Let us see an interesting inequality satisfied by these

operators.

Lemma 2.3. If β < α then

(2.2)

Lα
±
[
bLβ

±[a]
]
(t) ≤ Lα−β

± [b](t)Lβ
±[a](t) and Lα

0

[
bLβ

0 [a]
]
(t) ≤ 2Lα−β

0 [b](t)Lβ
0 [a](t).

Proof. First, we have

Lα
+

[
bLβ

+[a]
]
(t) =

∫ t

t0

e−α(t−s)|b(s)|
∫ s

t0

e−β(s−τ)|a(τ)| dτ ds

= e−αt

∫ t

t0

∫ t

τ

e(α−β)seβτ |a(τ)||b(s)| ds dτ

≤ e−αt

∫ t

t0

eβτ |a(τ)|
∫ t

t0

e(α−β)s|b(s)| ds dτ = Lβ
+[a]Lα−β

+ [b].

Similarly, Lα
−
[
bLβ

−[a]
]
(t) ≤ Lα−β

− [b](t)Lβ
−[a](t). Moreover,

Lα
0

[
bLβ

0 [a]
]
(t) = Lα

+

[
bLβ

0 [a]
]
(t) + Lα

−
[
bLβ

0 [a]
]
(t)

≤ Lα
+

[
bLβ

+[a]
]
(t) + Lα

+

[
bLβ

−[a]
]
(t) + Lα

−
[
bLβ

+[a]
]
(t) + Lα

−
[
bLβ

−[a]
]
(t).

Now, we have

Lα
+

[
bLβ

−[a]
]
(t) =

∫ t

t0

e−α(t−s)|b(s)|
∫ ∞

s

eβ(s−τ)|a(τ)| dτ ds

= e−αt

[ ∫ t

t0

e−βτ |a(τ)|
∫ τ

t0

e(α+β)s|b(s)| ds dτ

+

∫ ∞

t

e−βτ |a(τ)|
∫ t

t0

e(α+β)s|b(s)| ds dτ
]

= e−αt

∫ t

t0

e−βτ |a(τ)| e(α+β)τ

∫ τ

t0

e−(α+β)(t−s)|b(s)| ds dτ

+ e−αt

∫ ∞

t

e−βτ |a(τ)| e(α+β)t

∫ t

t0

e−(α+β)(t−s)|b(s)| ds dτ

=Lα
+

[
aLα+β

+ [b]
]
(t) + Lβ

−[a](t)Lα+β
+ [b](t)

and also Lα
−
[
bLβ

+[a]
]
(t) = Lα

−
[
aLα+β

− [b]
]
(t) + Lβ

+[a](t)Lα+β
− [b](t). So,

Lα
0

[
bLβ

0 [a]
]
(t) ≤Lα−β

+ [b](t)Lβ
+[a](t) + Lα

+

[
aLα+β

+ [b]
]
(t) + Lβ

−[a](t)Lα+β
+ [b](t)

+ Lα
−
[
aLα+β

− [b]
]
(t) + Lβ

+[a](t)Lα+β
− [b](t) + Lα−β

− [b](t)Lβ
−[a](t)

≤Lβ
+[a](t)

(
Lα−β

+ [b] + Lα+β
− [b](t)

)
+ Lβ

−[a](t)
(
Lα+β

+ [b] + Lα−β
− [b](t)

)

+ Lα
+

[
aLα−β

+ [b]
]
(t) + Lα

−
[
aLα−β

− [b]
]
(t)
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≤Lβ
0 [a](t)Lα−β

0 [b](t) + Lβ
+[a](t)Lα−β

+ [b](t) + Lβ
−[a](t)Lα−β

− [b](t)

≤ 2Lβ
0 [a](t)Lα−β

0 [b](t).

Therefore (2.2) is proved.

Lemma 2.4. Suppose that the roots λ1, λ2 and λ3 of P are distinct. Then there are

three solutions yi, i = 1, 2, 3 of (1.1) such that

(2.3) yi(t) = exp

(∫ t

t0

[λi + zi(s)] ds

)
, i = 1, 2, 3,

where zi, i = 1, 2, 3 satisfy

z′′i + (3λi + a2)z
′
i + (3λ2

i + 2a2λi + a1)zi + r0(t) + λir1(t) + λ2
i r2(t)

+ (r1(t) + 2λir2(t))zi + r2(t)z
′
i + 3ziz

′
i + (3λi + a2 + r2(t))z

2
i + z3

i = 0.
(2.4)

Now, we will study equation (2.4), a second order non-linear Riccati type equa-

tion, to know the asymptotic behavior of the solutions of equation (1.1). So, we

need to study the non perturbed linear part of equation (2.4), namely, to know the

characteristic roots of equation

z′′ + (3λ+ a2)z
′ + (3λ2 + 2a2λ+ a1)z = 0.

Lemma 2.5. If the roots of P , λi, i = 1, 2, 3 are distinct, then µ = λj − λi, i 6= j

satisfy the equation

µ2 + (3λi + a2)µ+ 3λ2
i + 2a2λi + a1 = 0.

Consider the scalar differential equation

(2.5) z′′ + b1z
′ + b0z = a(t) + f(t, z, z′),

where b1 and b2 are constant, f : [t0,∞) × C × C → IR for some t0 ∈ IR; a

and f(·, x, y) (for each x, y ∈ C) are locally integrable functions on [t0,∞). Let

Q(λ) = λ2 + b1λ + b0 be the characteristic polynomial of associated homogeneous

equation, namely, x′′ + b1x
′ + b0x = 0 and let γk, k = 1, 2 be the roots of Q, with

γ1 6= γ2 and Reγk 6= 0, k = 1, 2. Note, there are three situations, depending of

values of b0 and b1. These are: (i) Reγ1,Reγ2 < 0; (ii) Reγ1 < 0 < Reγ2 and (iii)

Reγ1,Reγ2 > 0. For each one of them, we define the Green function by

(γ1 − γ2) g+(t, s) =





eγ1(t−s) − eγ2(t−s), if t ≥ s

0, otherwise
, when Reγ1,Reγ2 < 0,

(γ1 − γ2) g0(t, s) =




eγ1(t−s), if t ≥ s

eγ2(t−s), otherwise
, when Reγ1 < 0 < Reγ2,
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and

(γ1 − γ2) g−(t, s) =





0, if t ≥ s

eγ2(t−s) − eγ1(t−s), otherwise
, when Reγ1,Reγ2 > 0.

Define, for n = ±, 0, the corresponding Green operators Gn and the auxiliary opera-

tors Gn and Ln by

Gn[r](t) =

∫ ∞

t0

gn(t, s)r(s) ds, Gn[r](t) = |Gn[r](t)| + |Gn[r]′(t)|

and Ln[r](t) =

∫ ∞

t0

(
|gn(t, s)| +

∣∣∣∣
∂gn

∂t
(t, s)

∣∣∣∣
)
|r(s)| ds,

where gn is the Green function of the equation x′′ + b1x
′ + b0x = 0. Note that, taking

α = min{|Reγ1|, |Reγ2|} we have the following estimates
∫ ∞

t0

|gn(t, s)||r(s)| ds ≤
2

|γ1 − γ2|
Lα

n[r](t),

∫ ∞

t0

∣∣∣∣
∂gn

∂t
(t, s)

∣∣∣∣ |r(s)| ds ≤
|γ1| + |γ2|
|γ1 − γ2|

Lα
n[r](t),

and adding we obtain Ln[r](t) ≤ γ̃ Lα
n[r](t), for n = ±, 0, where γ̃ = 2+|γ1|+|γ2|

|γ1−γ2| .

The following results are related to equation (2.5). Both apply to the three

mentioned situations above (so, we omit the index n of the Green functions gn, Green

operators Gn and auxiliary operators Gn and Lα
n, n = ±, 0).

Lemma 2.6. Suppose that in (2.5) there exists G[a] and G[a](t) → 0 as t → ∞.

Moreover, assume that f(·, 0, 0) = 0 and for some constant M > 0 there exists

ξM : [t0,∞) → [0,∞) such that for all t ≥ t0 and |xk| + |yk| ≤M , k = 1, 2

|f(t, x1, y1) − f(t, x2, y2)| ≤ ξM(t)(|x1 − x2| + |y1 − y2|).

If for all t ≥ t0

(2.6) γ̃ Lα[ξM ](t) ≤ ε0 < 1, γ̃ =
2 + |γ1| + |γ2|

|γ1 − γ2|
, α = min{|Reγ1|, |Reγ2|}

then for every t0 such that |G[a](t)| ≤ (1 − ε0)M for all t ≥ t0, there is a solution

z of (2.5), on [t0,∞), such that z(t), z′(t) → 0 as t → ∞ and satisfies the integral

equation

(2.7) z = G[a + f(·, z, z′)].

Proof. Consider the space C1
0 defined by

C1
0 [t0,∞) = {x : [t0,∞) → C | x, x′ are continuous and x(t), x′(t) → 0 as t→ ∞}.
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Observe that C1
0 is a Banach space with the norm ‖x‖ = supt∈[t0,∞){|x(t)| + |x′(t)|}.

Define the operator T as

Tz(t) =

∫ ∞

t0

g(t, s)
[
a(s) + f(s, z(s), z′(s))

]
ds = G[a + f(·, z, z′)](t).

Note that if z ∈ C1
0 then we have Tz and (Tz)′ are continuous. Indeed, we have

(Tz)′(t) =

∫ ∞

t0

∂g

∂t
(t, s)

[
a(s) + f(s, z(s), z′(s))

]
ds = G[a+ f(·, z, z′)]′(t).

Let B = {x ∈ C1
0 | ‖x‖ ≤ M}. Thus, if z ∈ B then |f(t, z, z′)| ≤ ξM(t)(|z| + |z′|).

Hence, for t ≥ t0

|Tz(t)| ≤ |G[a](t)| +
∫ ∞

t0

|g(t, s)| ξM(s) (|z(s)| + |z′(s)|) ds and

|(Tz)′(t)| ≤ |G[a]′(t)| +
∫ ∞

t0

∣∣∣∣
∂g

∂t
(t, s)

∣∣∣∣ ξM(s) (|z(s)| + |z′(s)|) ds.

So, |Tz(t)|+ |(Tz)′(t)| ≤ G[a](t)+L[ξM(|z|+ |z′|)](t) ≤ G[a](t)+ γ̃ Lγ[ξM(|z|+ |z′|)](t).
Therefore, using Lemma 2.2, we have Lγ[ξM(|z|+ |z′|)](t) → 0 as t→ ∞ since Lγ[ξM ]

is bounded and we can conclude that limt→∞ |Tz(t)| + |(Tz)′(t)| = 0. Thus Tz ∈ C1
0 .

Similarly, for z1, z2 ∈ B, we have

|Tz1(t)− Tz2(t)|+ |(Tz1)′(t)− (Tz2)
′(t)| ≤ L[ξM ](t)‖z1 − z2‖ ≤ γ̃ Lγ[ξM ](t)‖z1 − z2‖.

Now, let t0 ≥ 0 such that G[a](t) ≤ (1 − ε0)M for all t ≥ t0. Consider z ∈ B,

then for t ≥ t0

|Tz(t)| + |(Tz)′(t)| ≤ G[a](t) +ML[ξM ](t) ≤ G[a](t) + γ̃ MLγ [ξM ](t).

Thus, ‖Tz‖ ≤ M . Therefore, T : B → B is a contractive operator, namely, for

z1, z2 ∈ B we have ‖Tz1 − Tz2‖ ≤ ε0‖z1 − z2‖. So, there exists a unique z ∈ B such

that Tz = z. Then, z is a solution of (2.5) such that z(t), z′(t) → 0 as t→ ∞.

Note that if z is the solution given by the previous Lemma and f satisfies

f(t, z(t), z′(t)) → 0 as t→ ∞, then a(t) → 0 as t→ ∞ implies z′′(t) → 0 as t→ ∞.

Now, we can characterize better the solution given by Lemma 2.6. Indeed, using

Lemma 2.3 we can deduce an estimation for the solution of (2.5) given by Lemma 2.6.

Corollary 2.7. Consider the equation (2.5), under the same hypothesis of Lemma 2.6.

In addition, suppose that

(2.8) ‖Lα−β[ξM ]‖∞ <
|γ1 − γ2|

2(2 + |γ1| + |γ2|)
=

1

2γ̃
,

where 0 < β < α. Then the solution z of (2.5) given by Lemma 2.6 satisfies z, z′ =

O
(
Lβ[a]

)
.
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Proof. Without loss of generality, suppose γ1, γ2 ∈ IR. For the contractive operator T

defined in the proof of the Lemma 2.6, the sequence given by z0 = 0 and zn+1 = Tzn

for n ≥ 0 satisfies zn → z as n→ ∞ in C1
0 . Now, we will prove that for all t ≥ t0 and

n ∈ IN

(2.9) |zn(t)| + |z′n(t)| ≤ γ̃ N Lβ[a],

with K and N satisfying respectively ‖Lα−β[ξM ]‖∞ ≤ K < 1
2eγ

and 1 ≤ N [1 − 2γ̃K].

Observe that N > 0 since K < 1
2eγ

. The induction in (2.9) is clear for n = 0, 1.

Suppose that (2.9) is true for n = k. So, for n = k + 1, using Lemma 2.3 we have

|zk+1(t)| ≤
2

|γ1 − γ2|
{Lα[a](t) + Lα[(|zk| + |z′k|)ξM ](t)}

≤ 2

|γ1 − γ2|

{
Lβ[a](t) +

2N

|γ1 − γ2|
(2 + |γ1| + |γ2|)Lα−β[ξM ](t)Lβ[a](t)

}

≤ 2

|γ1 − γ2|

{
1 +

2NK

|γ1 − γ2|
(2 + |γ1| + |γ2|)

}
Lβ[a](t).

Now, for the derivative we have

|z′k+1(t)| ≤
|γ1| + |γ2|
|γ1 − γ2|

{
Lα[a](t) + Lα[(|zk| + |z′k|)ξM ](t)

}

≤ |γ1| + |γ2|
|γ1 − γ2|

{
1 +

2NK

|γ1 − γ2|
(2 + |γ1| + |γ2|)

}
Lβ[a](t).

So, |zk+1(t)| + |z′k+1(t)| ≤ γ̃ N Lβ[a](t), and the result follows.

Note that inequality (2.8) implies the inequality in (2.6) and that this Corollary

implies z, z′ ∈ Lp[t0,∞) if a ∈ Lp[t0,∞). Define

(2.10) ν0 :=
|γ1 − γ2|

2(2 + |γ1| + |γ2|)
and note that ν0 < 1/2.

Remark 2.8. An interesting improvement to Lemma 2.6 and Corollary 1 is possible,

namely, if θ = G[a] then u = z − θ satisfies equation (2.7) with f(·, θ, θ′) instead of a

and f(·, u+ θ, u′ + θ′) − f(·, θ, θ′) instead of f(·, z, z′), that is to say,

u = G[f(·, θ, θ′) + f̂(·, u, u′)], f̂(·, u, u′) = f(·, u+ θ, u′ + θ′) − f(·, θ, θ′).

Then, by Lemma 2.6 and Corollary 1 we have u = O(Lβ[f(·, θ, θ′)]). Indeed, we

can use the same associated function ξM . This fact has several applications (see

Examples 1,2 and 3), as to obtain formula (1.2) and also Theorems 4-5. Furthermore,

it is possible to apply these results to the equation (2.5) with

f(t, z, z′) = b(t)z + c(t)z′ + c1zz
′ + (c2 + h(t))z2 + z3

and then to equation (2.4). In this particular case, we have

ξM(t) = |b(t)| + |c(t)| + 2M(|c1| + |c2|) + 2M |h(t)| + 3M2
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and taking ‖Lα−β[b]‖∞ + ‖Lα−β[c]‖∞ < ν0, where ν0 is given by (2.10) and h a

bounded function, there exists M > 0 such that inequality (2.8) is true, since for all

t ≥ t0 we have

Lα−β[ξM ](t) ≤ ‖Lα−β[b]‖∞+‖Lα−β[c]‖∞+
4M

α− β
(|c1|+|c2|)+2M‖Lα−β[h]‖∞+

6M2

α− β
.

This shows us a condition in terms of coefficients of f in order to satisfy condition

(2.8).

3. MAIN RESULTS

In this section, we present the results for the equation (1.1). We use the previous

results for the Riccati-type equation. First, denote BV , the vectorial space of the

bounded variation functions on [t0,∞), B the vectorial space of the bounded functions

on [t0,∞) and for α, ε > 0, Bα,ε
V defined by Bα,ε

V = {r ∈ BV | ‖Lα
0 [r]‖∞ < ε}.Moreover,

(3.1)

∫ t

t0

f1(s)G
γ
±[f2](s) ds = ±1

γ

∫ t

t0

f1(s)f2(s) ds∓
1

γ

∫ t

t0

f1(s)(G
γ
±[f2])

′(s) ds.

Now, we will prove a generalization of Perron’s theorem [17] for a third order

equation. Consider the equation (1.1), where r0, r1 and r2 are locally integrable

functions defined on [0,∞). We will suppose Reλ1 > Reλ2 > Reλ3, where λi, i =

1, 2, 3 are the roots of P (λ) = λ3 + a2λ
2 + a1λ + a0. We denote γ1 = λ1 − λ2,

γ2 = λ1 − λ3, γ3 = λ2 − λ3, α = min{Reγ1,Reγ3} and N (i) = {1, 2, 3} \ {i}. Note

that Reγk > 0, k = 1, 2, 3 and by Lemma 2.5 we have that the Green operators

associated to homogenous linear part of equations (2.4) are

G1 = (γ2 − γ1)
−1(Gγ1

+ −Gγ2

+ ), G2 = −(γ1 + γ3)
−1(Gγ3

+ −Gγ1

− )

and G3 = (γ2 − γ3)
−1(Gγ2

− −Gγ3

− ).

Following (2.10), these γk, k = 1, 2, 3 allows us to define

(3.2)

ν1 :=
|γ1 − γ2|

2(2 + |γ1| + |γ2|)
, ν2 :=

|γ1 + γ3|
2(2 + |γ1| + |γ3|)

and ν3 :=
|γ2 − γ3|

2(2 + |γ2| + |γ3|)
.

Denote r̂i = r0 + λir1 + λ2
i r2. Recall, for i = 1, 2, 3, Gi[r](t) = |Gi[r](t)| + |Gi[r]

′(t)| .
And define n(1) = +, n(2) = 0 and n(3) = −.

Theorem 3.1. Assume that for all i = 1, 2, 3, it is satisfied Gi[r̂i](t) → 0 as t → ∞,

‖Lα−β
n(i) [r1 + 2λir2]‖∞ + ‖Lα−β

n(i) [r2]‖∞ ≤ νi, where νi > 0, i = 1, 2, 3 are given by (3.2)

and 0 < β < α. Then there is a fundamental system of solutions yi, i = 1, 2, 3 of the

equation (1.1) such that

(3.3) lim
t→∞

y′i(t)

yi(t)
= λi, and lim

t→∞
y′′i (t)

yi(t)
= λ2

i .
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Furthermore, as t→ ∞
(3.4)

yi(t) = (1 + o(1))eλi(t−t0) exp


−

∏

j∈N (i)

(λj − λi)
−1

∫ t

t0

[r̂i(s) + f̃i(s, zi(s), z
′
i(s))] ds


 ,

where f̃i(t, z, z
′) = (r1(t)+2λir2(t))z+r2(t)z

′ +(3λi +a2 +r2(t))z
2 +z3, the functions

zi(t), z
′
i(t) → 0 as t→ ∞, i = 1, 2, 3, satisfy (2.4) and

(3.5) zi, z
′
i = O

(
Lβ

n(i)[r̂i]
)
, i = 1, 2, 3.

Moreover, the Wronskian of {yi}i=1,2,3 satisfies

W [y1, y2, y3] = −γ1γ2γ3 y1y2y3(1 + o(1)) as t→ ∞.

In the particular case, rk(t) → 0 as t→ ∞, k = 0, 1, 2 even we have

(3.6) lim
t→∞

y′′′i (t)

yi(t)
= λ3

i , i = 1, 2, 3.

Proof. We apply Lemma 2.6 to the equations (2.4), since we have Gi[r̂i](t) → 0 as

t→ ∞, ξM(t) = |r1(t)+2λir2(t)|+ |r2(t)|+2M(3+ |3λi +a2|)+2M |r2(t)|+3M2 and

‖Lα−β
n(i) [r1 + 2λir2]‖∞ + ‖Lα−β

n(i) [r2]‖∞ ≤ νi, i = 1, 2, 3. Thus, there are three solutions

zi such that zi(t), z
′
i(t) → 0 as t → ∞, i = 1, 2, 3. So, the equation (1.1) have three

solutions in the form (2.3). Therefore, (3.3) holds since

λi + zi(t) =
y′i(t)

yi(t)
and (λi + zi(t))

2 + z′i(t) =
y′′i (t)

yi(t)
.

Hence, (3.4) follows from (3.1) and the integral equations for zi,

(3.7) zi = −Gi

[
r̂i + fi(·, zi, z

′
i)
]
,

where fi(t, z, z
′) = f̃i(t, z, z

′) + 3zz′ and ziz
′
i is conditionally integrable i = 1, 2, 3.

By Corollary 1, we have (3.5). Now, {yi}i=1,2,3 is a fundamental system of solutions

since, by (3.3)

lim
t→∞

[
y′2
y2

y′′3
y3

− y′′2
y2

y′3
y3

+
y′′1
y1

y′3
y3

− y′1
y1

y′′3
y3

+
y′3
y3

y′′2
y2

− y′′1
y1

y′2
y2

]
(t) = −γ1γ2γ3 6= 0

and the Wronskian of {yi}i=1,2,3 satisfies

W [y1, y2, y3] = y1y2y3

[
y′2
y2

y′′3
y3

− y′′2
y2

y′3
y3

+
y′′1
y1

y′3
y3

− y′1
y1

y′′3
y3

+
y′3
y3

y′′2
y2

− y′′1
y1

y′2
y2

]
.

Finally, if rk(t) → 0 as t→ ∞, k = 0, 1, 2 then Gi[r̂i](t) → 0 as t→ ∞ and

‖Lα−β
n(i) [r1 + 2λir2]‖∞ + ‖Lα−β

n(i) [r2]‖∞ ≤ νi, i = 1, 2, 3, for t0 big enough. So, we have

(3.3), (3.4), (3.5) and z′′i (t) → 0 as t→ ∞, i = 1, 2, 3. Therefore, (3.6) follows from

(λi + zi(t))
3 + 3(λi + zi(t))z

′
i(t) + z′′i (t) =

y′′′i (t)

yi(t)
.
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Theorem 3.1 is a generalization, for third order, of Perron’s and Hartman’s

theorems. Observe that G1[r̂1](t) → 0 as t → ∞ if and only if Gγ1

+ [r̂1](t) and

Gγ2

+ [r̂1](t) → 0 as t → ∞. Analogous statements can be obtained for G2[r̂2] and

G3[r̂3]. Although, r̂i /∈ Lp[t0,∞), r̂i(t) does not necessarily tend to zero as t → +∞,

nor for t0 big enough r̂i is uniformly small, the function Gi[r̂i] could be Lp[t0,∞) for

some p ≥ 1 (see Example 1, Section 4). Furthermore, if r2 ∈ BV then the term r2z
′

disappears in the asymptotic formula (3.4). If, in addition r1 + 2λir2 ∈ BV , then the

first linear term in f̃ is simplified since by (3.1)
∫ t

t0

[r1(s)+2λir2(s)]zi(s) ds

= −
∏

j∈N (i)

(λj − λi)
−1

∫ t

t0

[r̂i(s) + fi(s, zi(s), z
′
i(s))] [r1(s) + 2λir2(s)] ds

+ c+ o(1)

as t→ ∞, where c is a constant. So, in (3.4) it will appear only the last integral (see

Ths. 2-5 and example 3).

Remark 3.2. Formulae (3.3) and (3.6) have the following error bounds:

y
(k)
i =

[
λk

i +O
(
Lβ

n(i)[r̂i]
)]
yi, k = 1, 2,

y′′′i =
[
λ3

i +O(|r̂i|) +O(|r1 + 2λir2| + |r2|)Lβ
n(i)[r̂i] +O(Lβ

n(i)[r̂i])
]
yi,

where r̂i = r0 + λir1 + λ2
i r2, i = 1, 2, 3.

Formula (3.4) can be largely used. In the following results, we take ν = min{νi |
i = 1, 2, 3} and denote

(3.8) θi = −Gi[r̂i], θ̂i = r1+2λir2+θi[2(3λi+a2+r2)+3θi]+3(θi+θ
′
i), i = 1, 2, 3.

Theorem 3.3. Assume for some i ∈ {1, 2, 3}, r̂i ∈ L1[t0,∞), ‖Lα−β
n(i) [r1 + 2λir2]‖∞ +

‖Lα−β
n(i) [r2]‖∞ ≤ νi, where νi > 0, i = 1, 2, 3 are given by (3.2). Then equation (1.1)

has a solution y such that

y(t) = (1 + εi(t)) exp λit,

where

εi(t) = O

(
exp

(∫ ∞

t

Lβ
n(i)[r̂i](s) ds

)
− 1

)
.

Proof. Applying the same ideas that in the previous result, we know that there exists

a solution in the form (2.3), where zi, z
′
i = O

(
Lβ

n(i)[r̂i]
)
. Since r̂i ∈ L1[t0,∞), we have

zi ∈ L1[t0,∞),

y(t) = c

[
1 + exp

(
−
∫ ∞

t

zi(s) ds

)
− 1

]
exp λit,

and the result follows.
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Theorem 3.4. Assume for some i ∈ {1, 2, 3}, r̂i, r1+2λir2 ∈ L2[t0,∞) and r2 ∈ Bα,ν
V .

Then equation (1.1) has a solution y such that

y(t) = (1 + o(1))eλi(t−t0) exp


−

∏

j∈N (i)

(λj − λi)
−1

∫ t

t0

r̂i(s) ds


 .

Proof. Since r̂i, r1 + 2λir2 ∈ L2[t0,∞) and r2 ∈ Bα,ν
V we have that the hypothesis of

Theorem 1 are satisfied. So, there exists a solution satisfying formula (3.4). Moreover,

since zi, z
′
i = O(Lβ

n(i)[r̂i]), by Lemma 2.1, zi, z
′
i ∈ L2[t0,∞). Hence, using that r2 is

a bounded variation function we can conclude
∫ t

t0
f̃i(s, zi(s), z

′
i(s)) ds = c + o(1), and

the result follows.

Recall,

fi(t, z, z
′) = (r1(t) + 2λir2(t))z + r2(t)z

′ + 3zz′ + (3λi + a2 + r2(t))z
2 + z3

= f̃i(t, z, z
′) + 3zz′.

Theorem 3.5. Assume that fi(·, θi, θ
′
i) ∈ L1[t0,∞) and for all i = 1, 2, 3,

‖Lα−β
n(i) [r1+2λir2]‖∞+‖Lα−β

n(i) [r2]‖∞ ≤ νi, where νi, i = 1, 2, 3 are given by (3.2). Then

there exists a fundamental system of solutions yi, i = 1, 2, 3 such that

yi(t) = (1 + o(1))eλi(t−t0) exp


−

∏

j∈N (i)

(λj − λi)
−1

∫ t

t0

r̂i(s) ds


 .

Proof. We omit the index i. If θ̃ := f(·, θ, θ′) and z satisfies (3.7), then u = z − θ

satisfies

(3.9) u = −G[θ̃ + f̂(·, u, u′)], f̂(·, u, u′) = f(·, u+ θ, u′ + θ′) − θ̃.

Thus

f̂(·, u, u′) = θ̂u+ r2u
′ + 3uu′ + [3λ+ a2 + r2 + 3θ]u2 + u3

and from Lemma 2.6 and Corollary 1 there exists u satisfying (3.9) with u, u′ =

O(Lβ[θ̃]). Then, u, u′ ∈ L1[t0,∞) by Lemma 2.1 since θ̃ ∈ L1[t0,∞). Using (3.1) and

z = θ + u the result follows.

If rk ∈ B, r∗k(t) → 0 as t → ∞, k = 0, 1, 2, where r∗k is given by (2.1) and

θi ∈ L1[t0,∞), for all i = 1, 2, 3 then f(·, θi, θ
′
i) ∈ L1[t0,∞), for all i = 1, 2, 3 and

‖Lα−β
n(i) [r1 + 2λir2]‖∞ + ‖Lα−β

n(i) [r2]‖∞ ≤ νi, where νi, i = 1, 2, 3 are given by (3.2),

for t0 big enough. Therefore, conditions of Theorem 3.5 are satisfied. Note that

the same result is true if for all i = 1, 2, 3, fi(·, θi, [θi]
′) ∈ L1[t0,∞), ‖Lα−β

n(i) [θ̂i]‖∞ +

‖Lα−β
n(i) [r2]‖∞ ≤ νi, where νi, i = 1, 2, 3 are given by (3.2) and Lα

n(i)[θi] ∈ B holds.

Now, studying equation (3.9) we can deduce the following result which mixes

different type of conditions.
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Theorem 3.6. Assume that for all i = 1, 2, 3, fi(·, θi, θ
′
i) ∈ Lp[t0,∞) for some

p ∈ (1, 2], θ̂i ∈ Lq1 [t0,∞), r2 ∈ Lq2 [t0,∞) ∪ Bα,ν
V for some q1, q2 ∈ [1, q] and

θi ∈ B ∪ Lp′[t0,∞), where 1
p

+ 1
q

= 1 and p′ ≥ 1. Then there exists a fundamen-

tal system of solutions yi, i = 1, 2, 3 of equation (1.1) such that

(3.10)

yi(t) = (1+o(1))eλi(t−t0) exp


−

∏

j∈N (i)

(λj − λi)
−1

∫ t

t0

[
r̂i(s) + f̃i

(
s, θi(s), θ

′
i(s)
)]
ds


 .

Proof. Again we omit the index i. Using the same ideas and notations in the pre-

vious result, from (3.9) we have now u, u′ = O(Lβ[θ̃]). Then, u, u′ ∈ Lp[t0,∞) by

Lemma 2.1, since θ̃ ∈ Lp[t0,∞). So, by (3.1) and z = θ−G[θ̃+ f̂(·, u, u′)], the result

follows.

For example, Theorem 5 is satisfied if one of the following conditions holds

(a) r1, r2 ∈ B, θi, θ
′
i ∈ L1[t0,∞), θ̂i ∈ L2[t0,∞) and r2 ∈ Bα,ν

V .

(b) fi(·, θi, θ
′
i) ∈ L2[t0,∞), θ̂i ∈ L1[t0,∞), θi ∈ B and r2 ∈ L2[t0,∞).

All the errors functions can be estimated. The method can be iterated to obtain

an expansion as (1.2).

4. EXAMPLES

Now, we will show some examples of the above results. Consider the equation

(4.1) y′′′ + r2(t)y
′′ − (1 − r1(t))y

′ + r0(t)y = 0.

Here, we have λ1 = 1, λ2 = 0, λ3 = −1, γ1 = γ3 = 1, γ2 = 2. We begin showing two

cases where the known results (see Eastham [4]) cannot be applied.

Denote C0 = {x : [t0,∞) → C | x are continuous and x(t) → 0 as t→ ∞}.
Example 1. Let r2 = 0, r1 = 0 and r0(t) = cos(tβ). Note that r0 /∈ Lp for

all p ≥ 1 and its derivatives does not improve its integrable character. Also, note

that if β > 1 then r0 is conditionally integrable, so for any γ ∈ C with Reγ > 0,

Gγ
±[r0](t) → 0 as t→ ∞. Furthermore, given p ≥ 1 if β > 1+1/p then for any γ ∈ C

with Reγ > 0, Gγ
±[r0] ∈ Lp. So, for any β > 1, using Remark 2, we can say

zi = −Gi[r0] +O(Lα[fi(·,−Gi[r0],−Gi[r0]
′)]), 0 < α < 1

where fi(t, z, z
′) = 3zz′ + 3λiz

2 + z3. Using formula (3.4) we have that there exists a

fundamental system of solutions of equation (4.1) such that

yi(t) = (1+o(1))eλi(t−t0) exp



−
∏

j∈N (i)

(λj − λi)
−1

∫ t

t0

[cos(sβ) + f̃i(s, zi(s), z
′
i(s))] ds



 ,

where f̃i(t, z, z
′) = 3λiz

2 + z3. For example:
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1. If β > 2 then Gi[r0], Gi[r0]
′ ∈ L1 ∩ C0 and fi(·,−Gi[r0],−Gi[r0]

′) ∈ L1 ∩ C0 for

all i = 1, 2, 3. Thus, we have zi, z
′
i ∈ L1 ∩ C0. Then, there exists a fundamental

system of solutions {yi}i=1,2,3 of equation (4.1) such that

(4.2) yi(t) =

(
1 +O

[
exp

(∫ ∞

t

|Lα
n(i)[r0](s)| ds

)
− 1

])
eλi(t−t0).

2. If β ∈ (3
2
, 2] then for any γ ∈ C with Reγ > 0, Gγ

±[r0] ∈ L2 ∩ C0. So,

Gi[r0], Gi[r0]
′ ∈ L2 ∩ C0 and fi(·,−Gi[r0],−Gi[r0]

′) ∈ L1 ∩ C0 for all i = 1, 2, 3.

Thus, by Theorem 5 we have zi, z
′
i ∈ L2 ∩ C0 and there exists a fundamental

system of solutions {yi}i=1,2,3 of equation (4.1) satisfying

(4.3) yi(t) = (1 + o(1))eλi(t−t0)

since r0 is conditionally integrable. Notice the similarity between (4.2) and (4.3).

3. If β ∈ (4
3
, 3

2
] then for any γ ∈ C with Reγ > 0, Gγ

±[r0] ∈ L3 ∩ C0. So,

Gi[r0], Gi[r0]
′ ∈ L3 ∩ C0 and fi(·,−Gi[r0],−Gi[r0]

′) ∈ L
3

2 ∩ C0 for all i = 1, 2, 3.

Thus, we have f̂i(·, ui, u
′
i) ∈ L1, where ui = zi − Gi[r0]. Then, by Theorem 5,

there exists a fundamental system of solutions {yi}i=1,2,3 of equation (4.1) such

that

yi(t) = (1 + o(1))eλi(t−t0) exp


−

∏

j∈N (i)

(λj − λi)
−1

∫ t

t0

f̃i

(
s,Gi[r0](s), Gi[r0]

′(s)
)
ds


 .

Although, Gi[r0] ∈ Lp[t0,∞), linear transformations as

y = exp

(
λt−

∫ t

t0

G[r0](s) ds

)
ỹ

does not simplify the study of equation (4.1). In example 1, the integrals θi of the

bad perturbations r0 help to improve the successive approximations in (1.2). This is

not the case in example 2.

Example 2. Let r2 = r1 = 0 and r0(t) = sin t/ log t. Note that r0(t) → 0 as

t → ∞, for any p ≥ 1, r0 /∈ Lp and r′0 /∈ L1. Moreover, for any p ≥ 1, θi = −Gi[r0] /∈
Lp, but θi are conditionally integrable for every i = 1, 2, 3. Again, we cannot apply

the known results (see [4, 7]). However, Perron’s formulae for the solutions are valid

and (3.4) can be used to obtain an asymptotic expression

yi(t) = (1 + o(1))eλi(t−t0) exp

(
−
∏

j∈N i

(λj − λi)
−1

∫ t

t0

[
sin s

log s
+ 3λiz

2(s) + z3(s))

]
ds

)
,

and zi, z
′
i = O

(
Lα

n(i)[r0]
)
, i = 1, 2, 3 and 0 < α < 1. Note that

Gγ
±[r0](t) =

±γ sin t− cos t

(1 + γ2) log t
+ φ±(t),
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where φ± ∈ L1, which shows that the integrals cannot improve. The successive terms

θi k in (1.2), neither. So, we will obtain a series which must approach the characteristic

roots λ̂i(t) of the corresponding variable characteristic polynomial, see [3, 7, 9, 21].

Example 3. Let r0(t) = 1
2
√

t
, r1(t) = 1√

t+1
and r2 = r0. We know rl /∈ L2,

l = 0, 1, 2 but r̂3, r1 + 2λ3r2 ∈ L2, where r̂3 = r0 − r1 + r2, r1 + 2λ3r2 = r1 − 2r2. So,

for i = 3, the hypothesis of Theorem 3 are satisfied and there exists a solution y3 of

equation (4.1) such that

y3(t) = (1 + o(1))e−(t−t0) exp

(
−1

2

∫ t

t0

[
1√
s
− 1√

s+ 1

]
ds

)

and we have the formula

y3(t) = (1 + o(1))e−t exp
(√

t+ 1 −
√
t
)
.

On the other hand, note that r̂i ∈ Lp for all p > 2, i = 1, 2. Hence, for i = 1, 2,

θi = Gi[r̂i] ∈ Lp for all p > 2, f(·, θi, [θi]
′) ∈ Lq1 for all q1 > 1 and θ̂i ∈ Lq2 for all q2 > 2

in (3.8). Thus, the hypothesis of Theorem 5 are satisfied and we conclude that there

exists a solution for each i = 1, 2 satisfying (3.10). Moreover, since r2[θi]
2 + [θi]

3 ∈ L1

and r2[θi]
′ + 3θi[θi]

′ is conditionally integrable, we have

y1(t) =(1 + o(1))et−t0×

exp

(
−1

2

∫ t

t0

[
1√
s

+
1√
s+ 1

+

(
1√
s+ 1

+
1√
s

)
θ1(s) + 3[θ1]

2(s)

]
ds

)
,

and

y2(t) = (1 + o(1)) exp

(∫ t

t0

[
1

2
√
s

+
1√
s+ 1

θ2(s)

]
ds

)
.

Finally, integrating by parts this formula (see (3.1)), we deduce the following asymp-

totic solutions

y1(t) = (1 + o(1))t−1/8(t+ 1)−1/8

(
t+

1

2
+
√
t(t+ 1)

)−1/4

et exp
(
−
√
t−

√
t+ 1

)

and

y2(t) = (1 + o(1))

(
t+

1

2
+
√
t(t+ 1)

)1/2

e
√

t.

Since in this case rk ∈ L3 ∩ BV , reducing equation (4.1) to a first order system, and

using matrix transformations, the L3-Hartman-Wintner’s or Levinson’s theorems can

be applied. So, it is possible to approximate eigenvalues up to L1 perturbation by a

simple iteration [1, 2, 7, 10, 18]. Doing this yields asymptotic formulae with simpler

calculations and more compact form. In fact, it is possible to obtain

y1(t) = (1 + o(1))t−1/2et−2
√

t, y2(t) = (1 + o(1))t−1/2e
√

t

and y3(t) = (1 + o(1))e−t.
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This asymptotic formulae are compatible with the previous ones. In fact our formulae

can be simplified to obtain the last ones.
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