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QUANTUM STOCHASTIC DIFFERENTIAL INCLUSIONS

SATISFYING A GENERAL LIPSCHITZ CONDITION
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ABSTRACT. We establish further results concerning the existence and non-uniqueness of solu-

tions of quantum stochastic differential inclusions in the framework of Hudson and Parthasarathy

formulation of quantum stochastic calculus. Our results are established by considering a general Lip-

schitz condition on the coefficients of the inclusion. We present examples of continuous multivalued

maps satisfying the general Lipschitz condition in the sense of this paper.
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1. INTRODUCTION

Some very important preoccupations of classical analysis are the numerical and

analytical characterizations of solutions of classical differential inclusions defined in

finite dimensional Euclidean spaces. Indeed the existence and non uniqueness of

solutions of such inclusions have been thoroughly investigated (see, for example, [1,

11, 13, 16]). Indeed, many features of reachable sets, the solution sets and their

selection theorems have been studied to a great extent [6, 7, 11, 13, 15, 16].

However, in the non commutative quantum setting, the situation is different.

The analysis of quantum stochastic differential inclusions (QSDI) concerns quantum

stochastic processes as solutions that live in certain infinite dimensional locally convex

spaces. In addition, there are several locally convex operator topologies that may be

defined on the space of such processes arising from several theories of noncommutative

stochastic integration. There are several variants of topological conditions depending

on the underlying properties of the locally convex spaces of the integrands that may

be required of the coefficients of the quantum stochastic differential inclusions. The

objective of this paper is to further investigate the existence and non-uniqueness of
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solutions of quantum stochastic differential inclusions of the form:

X(t) ∈ X0 +

∫ t

0

(E(s, X(s))d ∧π (s) + F (s, X(s))dAf(s)(1.1)

+ G(s, X(s))dA+
g (s) +H(s, X(s))ds) , t ∈ [0, T ],

under a Lipschitz condition that generalizes similar condition employed in [8]. In

the framework of the Hudson and Parthasarathy [12, 14] formulation of quantum

stochastic calculus, we consider a more general class of Lipschitzian coefficients E,

F , G, H appearing in (1.1). The Lipschiz condition in [8] is a special case of the

present formulation. The integral in (1.1) is understood in the sense of Hudson and

Parthasarathy [12] and the maps f , g, π belong to appropriate function spaces as

described in [8]. The integrator processes ∧π, A+
f , Ag are the gauge, creation and

annihilation processes associated with the basic field operators of quantum field the-

ory. In [8], under the Lipschitz condition of that paper, the existence of solutions

and the equivalent form of QSDI (1.1) have been established. We establish a wider

class of Lipschitzian QSDI (1.1) to cover some important multivalued maps that are

Lipschitzian in the general sense of this paper. This class of maps was not covered

by the notion of Lipschitz maps due to [8]. In particular, we present a class of Lip-

schitzian multivalued maps associated with the space of continuous endomorphisms

of the locally convex space of our quantum stochastic processes as an important ex-

ample of multivalued maps satisfying the Lipschitz condition in our sense. This work

therefore extends the class of QSDI investigated in [2, 3, 4, 5, 8]. We remark that

a very strong motivation for studying QSDI (1.1) among others, concerns the need

for sufficient information and knowledge about the dynamics and fluctuations of the

systems described by discontinuous quantum stochastic differential equations which

may be reformulated as regularized QSDI. QSDI of the form (1.1) plays a central role

in quantum stochastic control theory and quantum dynamical systems (see [3, 4, 8]).

The rest of the paper is organized as follows: We present in Section 2, the descrip-

tion of some very important relevant spaces, some fundamental assumptions and some

results. Our main results concerning the existence, and non-uniqueness of solutions

of QSDI (1.1) are established in Section 3.

2. PRELIMINARY RESULTS AND ASSUMPTIONS

Our framework in this paper relies largely on the formulation in [8, 9, 10]. De-

tailed definitions of various spaces that appear below can be found in [8]. In what

follows, γ is a fixed Hilbert space, D is an inner product space with R as its com-

pletion, and Γ(L2
γ(R+)) is the Boson Fock Space determined by the function space

L2
γ(R+). The set E is the subset of the Fock space generated by the exponential
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vectors. If N is a topological space, then we denote by clos(N ) (resp. comp(N )), the

family of all nonempty closed subsets of N (resp. compact members of clos(N )).

In our formulations, quantum stochastic processes are Ã-valued maps on [0, T ].

The space Ã is the completion of the linear space

A = L+
W (D⊗E,R⊗ Γ(L2

γ(R+)))

endowed with the locally convex operator topology generated by the family of semi-

norms {x → ‖x‖ηξ = |〈η, xξ〉|, η, ξ ∈ D ⊗ E}. Here, A consists of linear operators

from D ⊗ E into R⊗ Γ(L2
γ(R+)) with the property that the domain of the operator

adjoint contains D ⊗ E. We adopt the notation and the definitions of Hausdorff

topology on clos(Ã) as explained in [8, 9, 10].

For any pair of η, ξ ∈ D ⊗ E such that η = c⊗ e(α),ξ = d⊗ e(β), α, β ∈ L2
γ(R+),

we shall in what follows, employ the equivalent form of (1.1) established in [8] and

given by the nonclassical ordinary differential inclusion:

d

dt
〈η, X(t)ξ〉 ∈ P (t, X(t))(η, ξ),

X(0) = X0, t ∈ [0, T ].(2.1)

The multivalued map P appearing in (2.1) is of the form

P (t, x)(η, ξ) = 〈η, Pαβ(t, x)ξ〉

where the map Pαβ : [0, T ] × Ã → 2Ã is given by

Pαβ(t, x) = µαβ(t)E(t, x) + νβ(t)F (t, x) + σα(t)G(t, x) + H(t, x).

The complex valued functions µαβ , νβ, σα : [0, T ] → C are defined by

µαβ(t) = 〈α(t), π(t)β(t)〉γ, νβ(t) = 〈f(t), β(t)〉γ,

σα(t) = 〈α(t), g(t)〉γ, t ∈ [0, T ]

for all (t, x) ∈ [0, T ]×Ã and the coefficients E, F, G, H belong to the space L2
loc([0, T ]×

Ã)mvs of multivalued stochastic processes with closed values.

As explained in [8], the map P cannot in general be written in the form:

P (t, x)(η, ξ) = P̃ (t, < η, xξ >)

for some complex valued multifunction defined on [0, T ] × C, for t ∈ [0, T ], x ∈ Ã,

η, ξ ∈ D⊗E.

Definition 2.1. (a) Let Fin[A] denote the family of all finite subsets of a nonempty

set A. For x ∈ A, and Θ ∈ Fin[(D⊗E)2], define ‖x‖Θ by

(2.2) ‖x‖Θ = max
(η,ξ)∈Θ

‖x‖ηξ.

Then, the set {‖ · ‖Θ : Θ ∈ Fin[(D⊗E)2]} is a family of seminorms on A. We denote

by τ the topology generated by this family of seminorms and we let Ã
′

represents the
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completion of the topological space (A, τ).

(b) Let I = [0, T ] ⊆ R+. A multivalued map Φ : I × Ã → clos(Ã) will be called

Lipschitzian if for any pair (η, ξ) ∈ (D⊗E)2, the map satisfies an estimate of the type

(2.3) ρηξ (Φ(t, x), Φ(t, y)) ≤ KΦ
ηξ(t)‖x − y‖ΘΦ(η,ξ)

for all x, y ∈ Ã and almost all t ∈ I and where KΦ
ηξ : I → (0,∞) lies in L1

loc(I) and

ΘΦ is a map from (D⊗E)2 into Fin[(D⊗E)2]. Similar definition holds for a map of

the form Φ : I × Ã → clos(C) where the Hausdorff metric ρ(·, ·) on clos(C) replaces

the pseudo metric ρηξ(·, ·) on clos(Ã) (see [8]).

Remark. In [8], the map (η, ξ) → ΘΦ(η, ξ) that appears in (2.3) is just the identity

map. Let L(Ã) denote the linear space of all continuous endomorphisms of Ã. Then

the above definition enables us to exhibit a class of Lipschitzian multivalued maps

which are continuous from the space R+ × Ã to the Hausdorff topological space
(

clos(Ã), τH

)

. The multivalued maps in this class are not Lipschitzian in the sense

of [8].

Theorem 2.2. Let A : R+ → L(Ã) be a single valued map on R+. For arbitrary

η, ξ ∈ D⊗E and a fixed closed ball S ∈ comp(Ã) with centre at the origin, define for

any x ∈ Ã,

F (t, x) = ‖A(t)x‖ηξS.

Then the map (t, x) → F (t, x) is Lipschitzian.

Proof: For x, y ∈ Ã, t ∈ R+, we employ some basic results similar to Lemma (II.1.5)

and Corollary (II.1.2) in [13] as follows:

ρηξ (F (t, x), F (t, y)) = ρηξ (‖A(t)x‖ηξS, ‖A(t)y‖ηξS)

≤ |‖A(t)x‖ηξ − ‖A(t)y‖ηξ|ρηξ (S, {0})

≤ ‖A(t)x − A(t)y‖ηξρηξ (S, {0})

= ‖A(t)(x − y)‖ηξρηξ (S, {0})

≤ ‖S‖ηξC
A
ηξ(t)‖x − y‖ΘA(η,ξ)

= KF
ηξ(t)‖x − y‖ΘA(η,ξ),

where ‖S‖ηξ = ρηξ (S, {0}), KF
ηξ(t) = ‖S‖ηξC

A
ηξ(t), ΘA is a map from (D⊗E)2 into

Fin(D⊗E)2 and CA
ηξ(t) is a positive function depending on the map A(t) and elements

η, ξ ∈ D⊗E.

The continuity of the multivalued map (t, x) → F (t, x) follows from the last

inequality.

Remark. (a) Since Θ is a finite set, we see that ‖x‖Θ = ‖x‖η′ξ′, for some (η′, ξ′) ∈ Θ.

Thus, in what follows, we employ in the proof of our main results the fact that a map

Φ : I ×Ã → clos(Ã) is Lipschitzian if given any (η, ξ) ∈ (D⊗E)2, there corresponds
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(η′, ξ′) ∈ (D⊗E)2 such that

(2.4) ρηξ(Φ(t, x), Φ(t, y)) ≤ KΦ
ηξ(t)‖x − y‖η′ξ′

for all x, y ∈ Ã and t ∈ I.

(b) By the definition of the map (t, x) → P (t, x)(η, ξ) that appears in (2.1), and by

the remark above, it is straightforward to show that if the coefficients of (1.1) are

Lipschitzian in the sense of (2.4), then the complex valued multifunction (t, x) →

P (t, x)(η, ξ) is also Lipschitzian. That is, there exists (η′, ξ′) ∈ (D⊗E)2 such that for

all x, y ∈ Ã,

(2.5) ρ(P (t, x)(η, ξ), P (t, y)(η, ξ)) ≤ KP
ηξ(t)‖x − y‖η

′
ξ
′

where the map KP
ηξ : [0, T ] → R+ lies in L1

loc([0, T ]) and ρ(·, ·) is the Hausdorf distance

function on clos(C).

(c) Using the definition in (a), we see that if P : R+ → comp(Ã) such that P (t) is a

closed ball with centre at the origin and (η′, ξ′) ∈ (D⊗E)2 is a fixed point, then the

multivalued map F defined by

F (t, x) = |〈η′, xξ′〉|P (t)

is Lipschitzian. This follows, since for any t ∈ R+, x, y,∈ Ã,

ρηξ(F (t, x), F (t, y)) = ρηξ (〈η′, xξ′〉P (t), 〈η′, yξ′〉P (t))

≤ | ‖x‖η′ξ′ − ‖y‖η′ξ′ |ρηξ (P (t), {0}) ≤ ‖P (t)‖ηξ‖x − y‖η′ξ′,

where

‖P (t)‖ηξ = ρηξ(P (t), {0}).

3. EXISTENCE AND NON UNIQUENESS OF SOLUTIONS

Subject to the conditions below, we shall establish the existence and non-unique-

ness of solutions of QSDI (1.1) in this section. By a solution of (1.1) we mean a

quantum stochastic process Φ : [0, T ] → Ã lying in Ad(Ã)wac

⋂

L2
loc(Ã) satisfying

QSDI (1.1).

In what follows, we consider, without loss of generality, quantum stochastic pro-

cesses and the related inclusions defined on the interval [0, 1]. We employ the notion

of adaptedness of quantum stochastic processes as explained in [8]. In connection

with the subsequent results, we list the following statements and assumptions.

(S(1)) Z : [0, 1] → Ã is a stochastic process in Ad(Ã)wac with the property that for

each pair η, ξ ∈ D⊗E, and almost all t ∈ [0, 1], there exists a positive function Wηξ(t)

lying in L1
loc([0, 1]) such that

d

(

d

dt
〈η, Z(t)ξ〉, P (t, Z(t))(η, ξ)

)

≤ Wηξ(t)
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(S(2)) γ > 0 is an arbitrary but fixed number and QZ,γ is the set

QZ,γ = {(t, x) ∈ [0, 1] × Ã : ‖x − Z(t)‖ηξ ≤ γ, ∀η, ξ ∈ D⊗E}.

(S(3)) Each of the coefficients E, F, G, H appearing in (1.1) is Lipschitzian from QZ,γ

to the Hausdorf topological space (clos(Ã), τH), i.e, for each M ∈ {E, F, G, H} there

exists a positive map KM
ηξ : [0, 1] → R+ lying in L1

loc([0, 1]) corresponding to each pair

η, ξ such that

ρηξ (M(t, x), M(t, y)) ≤ KM
ηξ (t)‖x − y‖ΘM (η,ξ)

for some map

ΘM : (D⊗E)2 → Fin[(D⊗E)2].

(S(4)) For each pair η, ξ ∈ D⊗E,

δηξ ≡ ‖x0 − Z(0)‖ηξ and δηξ ≤ γ.

(S(5))

Rηξ := max(δηξ, Wηξ)

for all η, ξ ∈ D⊗E where

Wηξ = ess sup
[0,1]

Wηξ(t).

(S(6)) For any countably infinite sequence of points {(ηn, ξn) ⊆ (D⊗E)2, n = 1, 2, . . .},

sup
n∈N

{

ess sup
t∈[0,1]

KP
ηnξn

(t)

}

< ∞.

(S(7)) {Lηjξj
}j=∞

j=1 is a sequence of positive real numbers indexed by a countably infinite

sequence of elements {(ηj, ξj)}∞j=1 ⊆ (D⊗E)2 that depends on an arbitrary pair (η, ξ) ∈

D⊗E and defined as follows:

Lη1ξ1 = Rη1ξ1

and

Lηjξj
:= ess sup

[0,1]

KP
ηjξj

(t), j ≥ 2.

(S(8)) From (S(7)) above, we set

Lηξ,n = max
j=1,2,...,n

{Lηjξj
} and Lηξ = sup

n∈N

{Lηξ,n}.

(S(9)) For arbitrary η, ξ ∈ D⊗E and t ∈ [0, 1], we define

Eηξ(t) = 2Lηξ + 2Lηξ

∫ t

0

(

KP
ηξ(s)e

Lηξs
)

ds,

where the constant Lηξ is given by S(8) above.

(S(10)) J is the subset of the interval [0, 1] defined by

J = {t ∈ [0, 1] : Eηξ(t) ≤ γ, ∀η, ξ ∈ D⊗E}.
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Next we present a proposition which is useful for the proof of the existence result

that follows.

Proposition 3.1. Let {Φi}
∞
i=1 be a sequence of weakly absolutely continuous maps

from [0, 1] to Ã which satisfy the following conditions:

(i) (t, Φi(t)) ∈ QZ,γ, i ≥ 1, for almost all t ∈ J.

(ii) There exists a sequence {Vi}∞i=1 such that for arbitrary η, ξ ∈ D⊗E and a constant

Lηξ > 0,

(a) Φi(t) = X0 +
∫ t

0
Vi−1(s)ds, i ≥ 1

(b) | d
dt
〈η, Φi(t)ξ〉 −

d
dt
〈η, Φi−1(t)ξ〉| ≤ 2Li−1

ηξ KP
ηξ(t)

ti−2

(i−2)!
, for almost all t ∈ J . Then,

(c) ‖Φi(t) − Φi−1(t)‖ηξ ≤ 2Lηξ

∫ t

0
KP

ηξ(s)
(Lηξs)i−2

(i−2)!
ds, t ∈ J , i ≥ 2.

Proof. Let (i) and (ii) hold. Then

‖Φi(t) − Φi−1(t)‖ηξ = |

∫ t

0

〈η, (Vi−1(s) − Vi−2(s))ξ〉ds|, by (ii)(a)

= |

∫ t

0

{
d

ds
〈η, Φi(s)ξ〉 −

d

ds
〈η, Φi−1(s)ξ〉}ds|, by (ii)(a)

≤

∫ t

0

|
d

ds
〈η, Φi(s)ξ〉 −

d

ds
〈η, Φi−1(s)ξ〉|ds

≤ 2Li−1
ηξ

∫ t

0

KP
ηξ(s)

si−2

(i − 2)!
ds

= 2Lηξ

∫ t

0

KP
ηξ(s)

(Lηξs)
i−2

(i − 2)!
ds, t ∈ J, i ≥ 2, by (ii)(b).

This concludes the proof.

Next, we present our result on the existence of solution of QSDI (1.1) subject to

the conditions (S(1)) − (S(10)) above. The result shall be established by employing a

similar line of argument as in the proof of Theorem (8.2) in [8].

Theorem 3.2. Suppose that the conditions S(1) − S(10) hold and the coefficients

E, F, G, H are continuous from [0, 1] × Ã to
(

clos(Ã), τH

)

.

Then there exists a solution Φ of (1.1) such that

(3.1) ‖Φ(t) − Z(t)‖ηξ ≤ Eηξ(t), t ∈ J,

and

(3.2) |
d

dt
〈η, Φ(t)ξ〉 −

d

dt
〈η, Z(t)ξ〉| ≤ Lηξ

(

1 + 2KP
ηξ(t)e

Lηξt
)

.

Proof. In what follows, η, ξ ∈ D⊗E are arbitrary elements. Our proof will be estab-

lished by constructing a Cauchy sequence {Φn}n≥0 in Ã of successive approximations

of Φ in such a way that the sequence { d
dt
〈η, Φn(t)ξ〉} is also Cauchy in the field of

complex numbers.
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Define Φ0(t) = Z, then Φ0 is adapted. By Theorem (1.14.2) in [1] (See also [8]),

there exists a measurable selection V0(·)(η, ξ) ∈ P (·, Φ0(·))(η, ξ) such that

|V0(t)(η, ξ) −
d

dt
〈η, Φ0(t)ξ〉|

= d

(

d

dt
〈η, Φ0(t)〉, P (t, Φ0(t))(η, ξ)

)

≤ Wηξ(t).(3.3)

As the map (η, ξ) → V0(t)(η, ξ) is a sesquilinear form on D⊗E, for almost all t ∈ J ,

then there exists V0(t) ∈ Ã such that V0(t)(η, ξ) = 〈η, V0(t)ξ〉. Since V0(·)(η, ξ) is

locally absolutely integrable, then V0 ∈ L1
loc(Ã).

Next we define

Φ1(t) = X0 +

∫ t

0

V0(s)ds, t ∈ J.

As V0(t) ∈ Ã for almost all t ∈ J , it follows that Φ1(t) ∈ Ãt, i.e Φ1 is adapted.

Furthermore, for t ∈ J,

‖Φ1(t) − Φ0(t)‖ηξ ≤ ‖X0 − Φ0(t0)‖ηξ +

∫ t

0

|V0(s)(η, ξ) −
d

ds
〈η, Φ0(s)ξ〉|ds

≤ δηξ +

∫ t

0

Wηξ(s)ds(3.4)

Notice that by (3.3),

(3.5) |
d

dt
〈η, Φ1(t)ξ〉 −

d

dt
〈η, Φ0(t)ξ〉| ≤ Wηξ(t).

Again there exists a measurable selection V1(·)(η, ξ) ∈ P (·, Φ1(·))(η, ξ) such that

|V1(t)(η, ξ) −
d

dt
〈η, Φ1(t)ξ〉| = d

(

d

dt
〈η, Φ1(t)ξ〉, P (t, Φ1(t))(η, ξ)

)

≤ ρ (P (t, Φ0(t))(η, ξ), P (t, Φ1(t))(η, ξ))

≤ KP
ηξ(t)‖Φ0(t) − Φ1(t)‖η1ξ1

≤ KP
ηξ(t)

(

δη1ξ1 +

∫ t

0

Wη1ξ1(s)ds

)

,(3.6)

for some η1, ξ1 ∈ D⊗E that depend on η, ξ.

By a similar argument as for the existence of V0(·), there exists V1 ∈ L1
loc(Ã) such

that for almost all t ∈ J ,

V1(t)(η, ξ) = 〈η, V1(t)ξ〉.

Next we define,

Φ2(t) = X0 +

∫ t

0

V1(s)ds, t ∈ J.

Again, Φ2(t) ∈ Ãt since V1(t) ∈ Ã for almost all t ∈ J , i.e. Φ2 is adapted.

Furthermore, for t ∈ J ,

‖Φ2(t) − Φ1(t)‖ηξ = ‖

∫ t

0

(V1(s) − V0(s)) ds‖ηξ



QUANTUM STOCHASTIC DIFFERENTIAL INCLUSIONS 495

= |

∫ t

0

〈η, (V1(s) − V0(s)) ξ〉ds|

≤

∫ t

0

|〈η, V1(s)ξ〉 − 〈η, V0(s)ξ〉|ds

≤

∫ t

0

ρ (P (s, Φ1(s))(η, ξ), P (s, Φ0(s))(η, ξ))ds

≤

∫ t

0

KP
ηξ(s)‖Φ1(s) − Φ0(s)‖η1ξ1ds

By applying (3.4), we have the estimate

(3.7) ‖Φ2(t) − Φ1(t)‖ηξ ≤

∫ t

0

(

KP
ηξ(s)

[

δη1ξ1 +

∫ s

0

Wη1ξ1(r)dr

])

ds.

We may write (3.6) as

(3.8) |
d

dt
〈η, Φ2(t)ξ〉 −

d

dt
〈η, Φ1(t)ξ〉| ≤ KP

ηξ(t)

(

δη1ξ1 +

∫ t

0

Wη1ξ1(r)dr

)

.

Continuing the procedure, there exists a measurable selection V2(·)(η, ξ) ∈

P (·, Φ2(·))(η, ξ) and a pair of elements η2, ξ2 ∈ D⊗E depending on η, ξ such that

|V2(t)(η, ξ) −
d

dt
〈η, Φ2(t)ξ〉| = d

(

d

dt
〈η, Φ2(t)ξ〉, P (t, Φ2(t))(η, ξ)

)

≤ ρ (P (t, Φ1(t))(η, ξ), P (t, Φ2(t))(η, ξ))

≤ KP
ηξ(t)‖Φ1(t) − Φ2(t)‖η2ξ2

≤ KP
ηξ(t)

∫ t

0

(

KP
η2ξ2

(s)

[

δη1ξ1 +

∫ s

0

Wη1ξ1(r)dr

])

ds,(3.9)

on account of (3.7).

Again, (3.9) may be written as

|
d

dt
〈η, Φ3(t)ξ〉 −

d

dt
〈η, Φ2(t)ξ〉|

≤ KP
ηξ(t)δη1ξ1

∫ t

0

KP
η2ξ2

(s)ds + KP
ηξ(t)

∫ t

0

KP
η2ξ2

(s)

∫ s

0

Wη1ξ1(r)dr ds(3.10)

As before, it is straightforward to show that there exist V3, V2 ∈ L1
loc(Ã) defining

adapted processes Φ3, Φ4 for t ∈ J by

Φ3(t) = X0 +

∫ t

0

V2(s)ds, t ∈ J

Φ4(t) = X0 +

∫ t

0

V3(s)ds, t ∈ J(3.11)
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and satisfy the following inequalities

‖Φ3(t) − Φ2(t)‖ηξ

≤

∫ t

0

(

KP
ηξ(s)

[

∫ s

0

KP
η2ξ2

(s
′

)

[

δη1ξ1 +

∫ s
′

0

Wη1ξ1(r)dr

]

ds
′

])

ds

=

∫ t

0

KP
ηξ(s)

∫ s

0

δη1ξ1K
P
η2ξ2

(s
′

)ds
′

ds

+

∫ t

0

KP
ηξ(s)

∫ s

0

KP
η2ξ2

(s′)

∫ s′

0

Wη1ξ1(r)dr ds′ds.(3.12)

and

‖Φ4(t) − Φ3(t)‖ηξ

≤

∫ t

0

KP
ηξ(s)

∫ s

0

KP
η3ξ3

(s′)

∫ s′

0

δη1ξ1K
P
η2ξ2

(s′′)ds′′ds′ds

+

∫ t

0

KP
ηξ(s)

∫ s

0

KP
η3ξ3

(s′)

∫ s′

0

KP
η2ξ2

(s′′)

∫ s′′

0

Wη1ξ1(r)drds
′′

ds
′

ds.(3.13)

Furthermore

|
d

dt
〈η, Φ4(t)ξ〉 −

d

dt
〈η, Φ3(t)ξ〉| ≤ KP

ηξ(t)

∫ t

0

KP
η3ξ3

(s)

∫ s

0

δη1ξ1K
P
η2ξ2

(s′)ds′ds

+ KP
ηξ(t)

∫ t

0

KP
η3ξ3

(s)

∫ s

0

KP
η2ξ2

(s′)

∫ s′

0

Wη1ξ1(r)drds′ds(3.14)

so that from (3.13) and (3.14)

‖Φ4(t) − Φ3(t)‖ηξ ≤

∫ t

0

KP
ηξ(s)

∫ s

0

Lη3ξ3

∫ s′

0

δη1ξ1Lη2ξ2ds′′ds′ds

+

∫ t

0

KP
ηξ(s)

∫ s

0

Lη3ξ3

∫ s′

0

Lη2ξ2

∫ s′′

t0

Wη1ξ1dr ds′′ds′ds

≤ 2L3
ηξ

∫ t

0

KP
ηξ(s)

s2

2
ds,

and

|
d

dt
〈η, Φ4(t)ξ〉 −

d

dt
〈η, Φ3(t)ξ〉|

≤ KP
ηξ(t)

[

δη1ξ1Lη2ξ2Lη3ξ3

∫ t

0

∫ s

0

ds′ds

+ Wη1ξ1Lη2ξ2Lη3ξ3

∫ t

0

∫ s

0

∫ s′

0

dr ds′ds

]

= KP
ηξ(t)

[

δη1ξ1Lη2ξ2Lη3ξ3

t2

2
+ Wη1ξ1Lη2ξ2Lη3ξ3

t3

6

]

≤ KP
ηξ(t)

[

L3
ηξ,3

t2

2
+ L3

ηξ,3

t3

6

]

≤ 2KP
ηξ(t)L

3
ηξ

t2

2
, t ∈ [0, 1].(3.15)
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Indeed, there exists a sequence {Φi}i≥0 of weakly absolutely continuous processes

from [0, 1] to Ã satisfying the hypothesis (i) and (ii) of Proposition (3.1) and hence

its conclusion.

To prove this claim, we assume that the sequence {Φi} has already been defined

and satisfies the hypothesis (i) and (ii) of the proposition for i = 0, 1, 2 . . . , n. We shall

show that there exists a map Φn+1 : J → Ã for which (i) and (ii) of the proposition

also hold.

Again by Theorem (1.14.2) in [1], there exists

Vn(·)(η, ξ) ∈ P (·, Φn(·))(η, ξ)

such that

|
d

dt
〈η, Φn(t)ξ〉 − Vn(t)(η, ξ)| = d

(

d

dt
〈η, Φn(t)ξ〉, P (t, Φn(t))(η, ξ)

)

, a.e. on J.

As (η, ξ) → Vn(t)(η, ξ) is a sesquilinear form on D⊗E, for almost all t ∈ J , there exist

Vn ∈ L1
loc(Ã) such that

Vn(t)(η, ξ) = 〈η, Vn(t)ξ〉, a.e on J

Define

Φn+1(t) = X0 +

∫ t

0

Vn(s)ds, t ∈ J.

Then, for some pair of elements ηn, ξn ∈ D⊗E depending on η, ξ, we have the

following estimates:

|
d

dt
〈η, Φn+1(t)ξ〉 −

d

dt
〈η, Φn(t)ξ〉| = |〈η, Vn(t)ξ〉 − 〈η, Vn−1(t)ξ〉|

≤ ρ (P (t, Φn(t))(η, ξ), P (t, Φn−1(t))(η, ξ))

≤ KP
ηξ(t)‖Φn(t) − Φn−1(t)‖ηnξn

≤ KP
ηξ(t)

[

2Lηξ

∫ t

0

KP
ηnξn

(s)
(Lηξs)

n−2

(n − 2)!
ds

]

≤ 2Ln
ηξK

P
ηξ(t)

tn−1

(n − 1)!
,

which proves (ii)(b) of Proposition (3.1).

Furthermore, for t ∈ J ,

‖Φn+1(t) − Φ0(t)‖ηξ ≤ ‖Φ1(t) − Φ0(t)‖ηξ + ‖Φ2(t) − Φ1(t)‖ηξ

+ · · ·+ ‖Φn+1(t) − Φn(t)‖ηξ

≤ 2Lηξ + 2Lηξ

n−1
∑

k=0

∫ t

0

KP
ηξ(s)

(Lηξs)
k

k!
ds

≤ 2Lηξ

(

1 +

∫ t

0

KP
ηξ(s)e

Lηξsds

)

≤ γ.(3.16)
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This shows that (t, Φn+1(t)) ∈ QZ,γ and therefore proves (ii)(c) of Proposition 3.1. It

follows that the sequence {Φn(t)} is a τω-Cauchy sequence and therefore converges to

some Φ(t) ∈ Ã. We conclude that Φ(t) is a solution of (1.1) for almost all t ∈ J in

the same way as in the proof of Theorem 8.2 in [8].

Finally, by using (ii)(b) of Proposition 3.1, we have the following:

|
d

dt
〈η, Φn+1(t)ξ〉 −

d

dt
〈η, Φ0(t)ξ〉| ≤ |

d

dt
〈η, Φ1(t)ξ〉 −

d

dt
〈η, Φ0(t)ξ〉|

+

n−1
∑

k=0

2LηξK
P
ηξ(t)

[Lηξt]
k

k!
≤ Lηξ + 2LηξK

P
ηξ(t)e

Lηξt.

Taking the limit as n → ∞, we obtain inequality (3.2). Similarly, inequality (3.1)

follows from (3.16) above.

Corollary 3.3. Suppose that the conditions S(1) − S(10) hold in the region

QX0,γ = {(t, x) ∈ [0, 1] × Ã : ‖x − X0‖ηξ ≤ γ},

then the solution X(t) of (1.1) exists on the segment.

Proof. The conditions of Theorem (3.2) will be satisfied if we set Z(t) ≡ X0, a

trivially adapted quasi solution, and the function

Wηξ(t) = d (0, P (t, X0)(η, ξ))

is continuous, by the continuity of the map (t, x) → P (t, x)(η, ξ).

Our next result shows that new solutions of QSDI (1.1) exist in some neighbour-

hoods of a solution. This establishes the nonuniqueness of solutions as in the case of

Lipschitz differential inclusions in finite dimensional Euclidean spaces (see [1]).

Theorem 3.4. Let Φ0(t) be a solution of problem (1.1). Suppose that in the region

QΦ0,ǫ0, the conditions of Theorem (3.2) are satisfied with Lipschitz constant Kηξ that

depends only on arbitrary elements η, ξ ∈ D⊗E, for some constant ǫ0 > 0.

Then for any

(3.17) ǫ > 2Lηξ + 2Kηξ(e
Lηξ − 1)

valid for all η, ξ ∈ D⊗E, a solution Φ(t) of QSDI (1.1) exists such that

‖Φ(t) − Φ0(t)‖ηξ < ǫ, on [0, 1].

Suppose in addition that the map t → d
dt
〈η, Φ0(t)ξ〉 is continuous on the interval [0, 1],

then there exists a constant Mηξ > 0 depending on η, ξ such that

(3.18) |
d

dt
〈η, Φ(t)ξ〉| < Mηξ, almost all t ∈ [0, 1].

Proof. We employ an adaptation of the argument in the proof of Theorem 2 in [11]

as follows:
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We consider the region QΦ0,ǫ for ǫ0 big enough such that 0 < ǫ < ǫ0 in view of

the constraint (3.17). By the continuity of the map (t, x) → d (0, P (t, x)(η, ξ)) on the

region QΦ0,ǫ0, we have

sup
QΦ0,ǫ0

d (0, P (t, x)(η, ξ)) = Sηξ < ∞.

Define the number

Aηξ =
2ǫ

ǫ − 2Lηξ − 2Kηξ(eLηξ − 1)
.

Then in view of (3.17), Aηξ > 0. Thus, by a similar reason as in [11], we can find

numbers b ≥ Kηξǫ, b ≥ Sηξ such that

(3.19)

∫

B

|
d

dt
〈η, Φ0(t)ξ〉|dt <

ǫ

Aηξ

where

B = {t ∈ [0, 1] : |
d

dt
〈η, Φ0(t)ξ〉| > b}.

By the argument in the proof of Theorem 3.2, since Φ0(t) is a solution of (1.1), there

exists an element V0 ∈ L1
loc(Ã) such that

Φ0(t) = X0 +

∫ t

0

V0(s)ds

and
d

dt
〈η, Φ0(t)ξ〉 = 〈η, V0(t)ξ〉, almost all t ∈ [0, 1].

Next we define

V (t) = V0(t), t ∈ ([0, 1]\B)

= 0, t ∈ B.

and

Y (t) = X0 +

∫ t

0

V (s)ds.

We note here that the process Y lies in Ad(Ã)wac.

For t ∈ ([0, 1]\B),

〈η, Y (t)ξ〉 = 〈η, X0ξ〉 +

∫ t

0

〈η, V (s)ξ〉ds = 〈η, Φ0(t)ξ〉.

For t ∈ B,

〈η, Y (t)ξ〉 = 〈η, X0ξ〉.

Therefore we have for both cases using (3.19)

|〈η, Y (t)ξ〉 − 〈η, Φ0(t)ξ〉| = ‖Y (t) − Φ0(t)‖ηξ ≤
ǫ

Aηξ

,

and

d

(

d

dt
〈η, Y (t)ξ〉, P (t, Y (t))(η, ξ)

)

= Wηξ(t),
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almost everywhere on [0, 1].

Furthermore,

(3.20) Wηξ(t) ≤ Sηξ < b, for t ∈ B,

For t ∈ ([0, 1]\B), we have

d

dt
〈η, Y (t)ξ〉 =

d

dt
〈η, Φ0(t)ξ〉 ∈ P (t, Φ0(t))(η, ξ).

Thus

(3.21) Wηξ(t) = d

(

d

dt
〈η, Φ0(t)ξ〉, P (t, Y (t))(η, ξ)

)

= 0 ≤ Kηξǫ.

Hence by Theorem 3.2, there exists a solution Φ of (1.1) satisfying

‖Φ(t) − Y (t)‖ηξ ≤ Eηξ(t), t ∈ J,

and where Eηξ(t) is given by S(9).

By the definition of the set B ⊆ [0, 1], and the estimate (3.19) above, we have

(3.22)

∫

B

bds <

∫

B

|
d

ds
〈η, Φ0(s)ξ〉|ds ≤

ǫ

Aηξ

.

By (3.19), (3.22) and S(9), we have,

Eηξ(t) <

∫

B

Sηξds + 2Lηξ + 2Lηξ

∫ t

0

(

Kηξe
Lηξs
)

ds

<
ǫ

Aηξ

+ 2Lηξ + 2Kηξ(e
Lηξ − 1).

Hence, we have

‖Φ(t) − Φ0(t)‖ηξ ≤ ‖Φ(t) − Y (t)‖ηξ + ‖Y (t) − Φ0(t)‖ηξ

≤
2ǫ

Aηξ

+ 2Lηξ + 2Kηξ(e
Lηξ − 1) = ǫ.

Again by Equation (3.2), Φ(t) satisfies

|
d

dt
〈η, Φ(t)ξ〉 −

d

dt
〈η, Y (t)ξ〉| ≤ Lηξ(1 + 2Kηξe

Lηξt)

≤ Lηξ(1 + 2KηξUηξ) := Nηξ,(3.23)

where

Uηξ = sup
t∈[0,1]

(eLηξt).

Thus by definition, d
dt
〈η, Y (t)ξ〉 = 0 for t ∈ B and for t ∈ ([0, 1]\B),

d

dt
〈η, Y (t)ξ〉 =

d

dt
〈η, Φ0(t)ξ〉.

Putting

sup
[0,1]

|
d

dt
〈η, Φ0(t)ξ〉| = Tηξ,
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then from (3.23)

|
d

dt
〈η, Φ(t)ξ〉| ≤ Nηξ, t ∈ B,

and

|
d

dt
〈η, Φ(t)ξ〉| ≤ Tηξ + Nηξ, t ∈ ([0, 1]\B).

Inequality (3.18) follows by defining

Mηξ = Tηξ + Nηξ.
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