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ABSTRACT. We state sufficient conditions for the existence of positive bounded, almost auto-

morphic or almost periodic solutions of the following nonlinear infinite delay integral equation:

x(t) =

∫

t

−∞

a(t, t − s)f(s, x(s)) ds.

Then we apply these results to a finite delay integral equation when the delay is time-dependent

and for a delay differential equation.
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1. INTRODUCTION

For a continuous map f : R × R
+ −→ R

+, we consider the following nonlinear

integral equation:

(1.1) x(t) =

∫ t

−∞

a(t, t− s)f(s, x(s)) ds,

where a : R×R
+ −→ R

+ is a map such that a(t, .) is nonnegative integrable function

on R
+, for each t ∈ R. In this paper we give sufficient conditions for the existence of

positive bounded solutions of Equation (1.1). We also treat almost periodic solutions

and the almost automorphic solutions. Then we apply these results to the following

finite delay integral equation:

(1.2) x(t) =

∫ t

t−σ(t)

f(s, x(s)) ds,

when the delay is time-dependent. Also, we apply our results to the delay differential

equation:

(1.3) x′(t) + α(t)x(t) = f(t, x(t− τ))
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where α : R −→ R and τ ≥ 0.

Almost automorphic functions are an extension of almost periodic functions. The

notion of almost automorphy has been introduced in the literature by Bochner [8] and

more recently, it was developed by N’Guerekata [22].

Similar equations were considered, notably in connection with epidemic problems,

by Cooke and Kaplan [12], Nussbaum [23], Busenberg and Cooke [10], Kaplan, Sorg

and Yorke [19], Leggett and Williams [20, 21], Smith [24], Guo and Lakshmikantham

[18], Burton and Hatvani [9] and Ait Dads, Arino and Ezzinbi [1], all those authors are

considered the periodic case. The extensions of the periodic case were treated by Fink

and Gatica [17], Torrejón [26], Chen and Torrejón [11], Ait Dads et al [2, 3, 4, 5, 6],

Ezzinbi and Hachimi [15], more recently by Xu and Yuan [27, 28]. All those works

are concerned with almost periodic type solutions.

Ait Dads and Ezzinbi [5] state sufficient conditions for the existence of positive

pseudo almost periodic solutions for the following infinite delay integral equation:

(1.4) x(t) =

∫ t

−∞

b(t− s)f(s, x(s)) ds,

that is a particular case of Equation (1.1). In this work it is assumed that the

function f(t, .) is nondecreasing on R
+. Then to avoid the hypothesis of monotony of

the function f(t, .), Xu and Yuan [28] construct a new fixed point theorem in a cone.

In [28], the authors state the existence of positive almost periodic type solutions of

equations (1.2) and (1.4). They do not assume that f(t, .) is nondecreasing, but only

that f(t, x) = f1(t, x) + f2(t, x) where f1(t, .) (respectively f2(t, .)) is nondecreasing

(respectively nonincreasing). For Equation (1.2) when the delay is constant, Xu and

Yuan [27] established similar results.

The purpose of our work is to state a generalization of hypotheses on the function

f(t, .) done in Ait Dads and Ezzinbi [5], Ezzinbi and Hachimi [15] and Xu and Yuan

[28], and to extend theses results to Equation (1.1).

In the nonlinear case, Favard-type conditions ensure that an almost periodic

differential equation has an almost periodic solution as soon as it has a bounded

solution, under stability or Favard’s separation conditions [29]. However the Favard’s

approach cannot be applied for the existence of an almost periodic solution of the

nonlinear integral equation (1.1). The Favard’s approach is generalized to the compact

almost automorphic differential equation, but not to the almost automorphic case,

because the convergence uniform on any compact subset of R which appears in the

definition of the almost periodic or compact almost automorphic function, plays a

crucial role in this theory. In this paper, we do not use Favard-type conditions,

on the only result (Proposition 6.5) where it is applicable, because it is a corollary

of the study of the existence of almost periodic or almost automorphic solution of
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integral equation (1.1). Moreover hypotheses of Proposition 6.5 to get the existence

of bounded solution of the semilinear differential (1.3), permit us to state the almost

periodicity of the bounded solution without using Favard’s approach.

The paper is organized as follows: in Section 2 we recall some notations and

definitions on almost periodic and almost automorphic, then we recall the main no-

tions related on the Hilbert’s projective metric. In this section we give the list of

hypotheses which are used in this paper. In Section 3, we state results on the positive

bounded solutions for equations (1.1) and (1.2). We treat the almost automorphic

case in Section 4 and the almost periodic case in Section 5. We will compare some

results of Xu and Yuan in [28] on almost periodic solutions in Section 5. Section 6 is

concerned with application of these results to Equation (1.3).

2. NOTATION AND DEFINITIONS

2.1. Some results on almost periodic type functions. Let E and F be two met-

ric sets, C(E,F ) (respectively Cb(E,F )) denotes the space of continuous (respectively

continuous and bounded) functions defined on E with values in F . In the particular

case where F = R, we denote C(E,R) (respectively Cb(E,R)) by C(E) (respectively

Cb(E)). We denote by L∞(R) the space of essentially bounded measurable functions

in R and L1(R+) the Lebesgue space of order one in R
+. Let (X, ‖ . ‖) a Banach

space. Throughout the paper X will be R or L1(R+) with the norm

‖ g‖L1(R+) =

∫ +∞

0

| g(t) | dt.

Let g ∈ C(R, X) (respectively C(R × R
+)). Define the linear shift operator τs for

some s ∈ R by τsg(t) = g(t+ s) for each t ∈ R, (respectively τsg(t, x) = g(t+ s, x)),

for each (t, x) ∈ R × R
+).

Definition 2.1. A function g ∈ C(R, X) (respectively C(R × R
+)) is called almost

periodic (respectively almost periodic in t uniformly with respect to x ∈ R
+), if for

each ǫ > 0 (respectively ǫ > 0 and compact K ⊂ R
+), there exists lǫ > 0 such that

every interval of length lǫ contains a number µ with the property that

sup
t∈R

‖ τµg(t) − g(t)‖X < ǫ

(respectively sup
(t,x)∈R×K

| τµg(t, x) − g(t, x) |< ǫ).

Denote AP (X) (respectively AP (R × R
+)) the set of all such functions.

Every g ∈ AP (X) possesses a mean value

M{g(t)}t := lim
r→+∞

1

2r

∫ r

−r

g(t)dt.
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For each ω ∈ R, a(g, ω) := M{g(t)e−iωt}t is the Fourier-Bohr coefficient of g as-

sociated at ω and Λ(g) := {ω ∈ R; a(g, ω) 6= 0} is the set of exponents of g. The

module of g denoted by mod(g), is the additive group generated by Λ(g). Similarly,

if g ∈ AP (R × R
+), the module of g, denoted also by mod(g), is the additive group

generated by

Λ(g) := ∪x∈R+{ω ∈ R;M{g(t, x)e−iωt}t 6= 0}.

Theorem 2.2 (Bochner [7]). Let g ∈ C(R, X). A function g ∈ AP (X) if and only

if for any pair of sequences of real numbers (t′n)n and (s′n)n, there exists a common

subsequence of (t′n)n and (s′n)n, denoted (tn)n and (sn)n such that

∀t ∈ R, lim
m→+∞

lim
n→+∞

g(t+ tn + sm) = lim
n→+∞

g(t+ tn + sn).

The limits above mean that for each t ∈ R, h(t) = lim
n→+∞

g(t+ tn) is well-defined and

lim
n→+∞

g(t+ tn + sn) = lim
m→+∞

h(t+ sm).

For some preliminary results on almost periodic functions, we refer to [13, 16, 29].

Definition 2.3. Let g ∈ C(R, X) (respectively C(R,R×R
+)) is called almost auto-

morphic (respectively almost automorphic in t uniformly with respect to x ∈ R
+) if

for any sequence of real numbers (t′n)n, there exists a subsequence of (t′n)n, denoted

(tn)n such that for each t ∈ R

lim
m→+∞

lim
n→+∞

g(t+ tn − tm) = g(t)

(respectively ∀x ∈ R
+ lim

m→+∞
lim

n→+∞
g(t+ tn − tm, x) = g(t, x)).

Denote AA(X) (respectively AA(R × R
+)) the set of all such functions.

Remark 2.4. Because the convergence is point-wise, the function

g∗(t) = lim
n→+∞

g(t+ tn)

is in L∞(R, X), but it is not necessarily continuous. It is also clear from the definition

above that almost periodic functions are almost automorphic.

For some details on almost automorphic functions, we refer to [22]. With these

definitions, we have the following inclusions:

AP (X) ⊂ AA(X) and AP (R × R
+) ⊂ AA(R × R

+).
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2.2. Hilbert’s projective metric. Let X be a real Banach space. A closed convex

set K in X is called a convex cone if the following conditions are satisfied:

(i) if x ∈ K, then λx ∈ K for λ ≥ 0

(ii) if x ∈ K and − x ∈ K, then x = 0.

A cone K induces a partial ordering ≤ in X by

x ≤ y if and only if y − x ∈ K.

A cone K is called normal if there exists a constant k such that

0 ≤ x ≤ y implies that ‖ x ‖≤ k ‖ y ‖

where ‖ . ‖ is the norm on X. If K is now a general cone in a Banach space X and

x and y are elements of K∗ = K − {0}, we say that x and y are comparable if there

exist real numbers α > 0 and β > 0 such that

αx ≤ y ≤ βx.

This define an equivalence relation on K∗ and divides K∗ into disjoint subsets which

we call components of K. If x and y are comparable, we define the numbers m(y/x)

and M(y/x) by

(2.1) m(y/x) := sup {α > 0;αx ≤ y}

(2.2) M(y/x) := inf {β > 0; y ≤ βx} .

We define a metric which was introduced by Thompson [25]. If x and y ∈ K∗ are

comparable, define d(x, y) by

d(x, y) := max (logM(y/x), logM(x/y))

(2.3) = max(log(M(y/x),− logm(y/x)).

If C is a component of K, one can easily prove (see [25]) that d gives a metric on C.

Moreover Thompson proves the following result.

Theorem 2.5 (Thompson [25]). Let K be a normal cone in a Banach space X and

let C be a component of K. Then C is a complete metric space with respect to the

metric d.

Proposition 2.6 (Thompson [25]). Let K be a normal cone in a Banach space X

with nonempty interior
◦

K. Then
◦

K is a component of K.

It follows that if K is a normal cone with nonempty interior
◦

K, then
◦

K is a

complete metric space with respect to the metric d.
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Theorem 2.7 (Deimling [14]). Let E be a complete space with respect to the metric

d. If f be a mapping from E into E satisfying

d(f(x), f(y)) ≤ Φ(d(x, y)) for all x and y ∈ E,

where Φ is a positive nondecreasing function continuous on [0,+∞[ and verifying

Φ(r) < r for every r > 0, Φ(0) = 0, then f has exactly one fixed point in E.

Now we give a list of hypotheses which are used. From f : R × R
+ → R

+ and

a : R × R
+ −→ R

+, we formulate the following hypotheses.

(H1) f ∈ C(R × R
+,R+) and there exists x1 > 0 such that f(., x1) ∈ Cb(R).

(H2) There exists a continuous map φ : (0, 1) −→ R satisfying φ(λ) > λ and for each

x and y > 0, t ∈ R and λ ∈ (0, 1), one has

λx ≤ y ≤ λ−1x =⇒ f(t, y) ≥ φ(λ)f(t, x).

(H3) For each t ∈ R, a(t, .) ∈ L1(R+) and there exists x2 > 0 such that

inf
t∈R

∫ +∞

0

a(t, s)f(t− s, x2) ds > 0.

(H4) The function t 7→ a(t, .) is in Cb(R, L
1(R+)).

(H5) f : R×R
+ → R

+ is an almost automorphic function in t uniformly with respect

to x ∈ R
+.

(H6) The function t 7→ a(t, .) is in AA(L1(R+)).

(H7) f : R × R
+ → R

+ is an almost periodic function in t uniformly with respect to

x ∈ R
+.

(H8) The function t 7→ a(t, .) is in AP (L1(R+)).

3. EXISTENCE OF POSITIVE BOUNDED SOLUTIONS

In this section, we state some results of existence and uniqueness of the continuous

and bounded solution with a positive infinimum.

Theorem 3.1. Suppose that (H1)–(H4) hold. Then Equation (1.1) has a unique

continuous and bounded solution on R with a positive infinimum.

An easy consequence of this last result for the finite delay integral Equation (1.2)

is the following result.

Corollary 3.2. Suppose that (H1) and (H2) hold. In addition, we assume that

i) σ is a positive continuous and bounded function on R,
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ii) there exists x2 > 0 such that

(3.1) inf
t∈R

∫ t

t−σ(t)

f(s, x2) ds > 0.

Then Equation (1.2) has a unique continuous and bounded solution on R with a

positive infinimum.

Proof. We use Theorem 3.1 with the function a(t, s) := 1[0,σ(t)](s) (where 1[0,σ(t)] is

the function defined by 1[0,σ(t)](s) = 1 if 0 ≤ s ≤ σ(t) and 0 elsewhere). (H3) follows

from ii). By using ‖ 1[0,σ(t)] ‖L1(R+)= σ(t) and

(3.2) ‖ 1[0,σ(t+τ)] − 1[0,σ(t)] ‖L1(R+)=| σ(t+ τ) − σ(t) |,

we deduce that (H4) is satisfied.

For the proof of Theorem 3.1, we use the following lemmas.

Lemma 3.3. Suppose that (H1) and (H2) hold. Then one has

i) ∀x, y > 0, ∀t ∈ R, f(t, y) ≥ min

(

x

y
,
y

x

)

f(t, x).

ii) For each [a, b] ⊂]0,+∞[, f is bounded on R × [a, b].

iii) For each [a, b] ⊂]0,+∞[, ∃L ≥ 0, ∀x, y ∈ [a, b], ∀t ∈ R,

| f(t, x) − f(t, y) |≤ L | x− y | .

Proof. Let x and y > 0. We can assume x 6= y, by taking λ = min

(

x

y
,
y

x

)

, we obtain

λx ≤ y ≤ λ−1x, then

f(t, y) ≥ min

(

x

y
,
y

x

)

f(t, x).

ii) By i) one has for x ∈ [a, b],

f(t, x1) ≥ min

(

x

x1
,
x1

x

)

f(t, x) ≥ min

(

a

x1
,
x1

b

)

f(t, x),

the result is a consequence of (H1).

iii) For each t ∈ R and x, y ∈ [a, b], with i) of this lemma and

min

(

x

y
,
y

x

)

− 1 = − | x− y |
max (x, y)

,

we deduce that

f(t, y) − f(t, x) ≥ − | x− y |
max (x, y)

f(t, x).

If we denote L :=
1

a
sup
t∈R

sup
a≤z≤b

f(t, z) < +∞, then we obtain

f(t, y) − f(t, x) ≥ −L | x− y | .

By interchanging the roles of x and y, the result follows.
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Lemma 3.4. Let (tn)n be a sequence of real numbers. Let α and β : R × R
+ −→ R

be such that α(t, .) and β(t, .) are in L1(R+) for each t ∈ R. Let u and v ∈ L∞(R).

We denote by h and k the functions defined by

h(t) :=

∫ t

−∞

α(t, t− s)u(s) ds and k(t) :=

∫ t

−∞

β(t, t− s)v(s) ds.

If lim
n→+∞

u(t + tn) = v(t) and lim
n→+∞

‖ α(t + tn, .) − β(t, .)‖L1(R+) = 0 for each t ∈ R,

then lim
n→+∞

h(t+ tn) = k(t) for each t ∈ R.

Proof. The functions h and k are also equal to:

h(t) =

∫ +∞

0

α(t, s)u(t− s) ds and k(t) =

∫ +∞

0

β(t, s)v(t− s) ds.

From the following inequality

| h(t+ tn) − k(t) |≤
∫ +∞

0

| α(t+ tn, s) − β(t, s) || u(t+ tn − s) | ds

+

∫ +∞

0

| β(t, s) || u(t+ tn − s) − v(t− s) | ds,

we obtain

| h(t+ tn) − k(t) |≤‖ u ‖∞‖ α(t+ tn, .) − β(t, .) ‖L1(R+)

(3.3) +

∫ +∞

0

Fn(t, s) ds,

where Fn(t, s) :=| β(t, s) || u(t + tn − s) − v(t − s) |. Then lim
n→+∞

Fn(t, s) = 0 and

0 ≤ Fn(t, s) ≤ (‖ u ‖∞ + ‖ v ‖∞) | β(t, s) | where β(t, .) ∈ L1(R+), so by the Lebesgue

dominated convergence theorem, we deduce that lim
n→+∞

∫ +∞

0

Fn(t, s) ds = 0. By using

(3.3), we deduce the conclusion.

Lemma 3.5. Let a : R × R
+ −→ R be such that the function t 7→ a(t, .) is in

Cb(R, L
1(R+)). If f ∈ Cb(R), then the function

h(t) =

∫ t

−∞

a(t, t− s)f(s) ds

is also continuous and bounded on R.

Proof. The function h satisfies

| h(t) |=|
∫ +∞

0

a(t, s)f(t− s) ds |≤‖ f ‖∞ sup
t∈R

‖ a(t, .) ‖L1(R+)< +∞,

since the function t 7→ a(t, .) is bounded, therefore h is bounded.

Let (tn)n be a sequence of real numbers such that lim
n→+∞

tn = 0. By continuity of

the functions t 7→ a(t, .) and f , we have

lim
n→+∞

‖ a(t+ tn, .) − a(t, .)‖L1(R+) = 0 and lim
n→+∞

f(t+ tn) = f(t).
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By using Lemma 3.4 with α = β = a and u = v = f , we obtain lim
n→+∞

h(t+tn) = h(t),

which proves that h is continuous, and this completes the proof.

Lemma 3.6. Suppose that (H1), (H2) and (H4) hold. If x ∈ Cb(R) and x has a

positive infinimum, then the function

F (t) =

∫ t

−∞

a(t, t− s)f(s, x(s)) ds

is also continuous and bounded on R.

Proof. Let x ∈ Cb(R) such that inft∈R x(t) > 0. Then there exist a and b ∈ R such

that 0 < a ≤ x(t) ≤ b, for all t ∈ R. By Lemma 3.3, we deduce that t 7→ f(t, x(t)) is

continuous and bounded. The hypotheses of Lemma 3.5 are satisfied, then one has

F ∈ Cb(R).

Proof. Here, we prove Theorem 3.1. We apply the results of the preceding section in

order to prove the existence and uniqueness of the continuous and bounded solution

of Equation (1.1) with a positive infinimum. Let X = Cb(R) be the Banach space

of continuous and bounded functions endowed with the norm of convergence uniform

on R: ‖ f‖∞ = sup
t∈R

| f(t) |. Let K be the cone of nonnegative functions in Cb(R).

Then K is a normal convex cone. Furthermore, one has

0 ≤ x ≤ y =⇒ ‖ x‖∞ ≤‖ y‖∞.

The interior of K is given by
◦

K= {x ∈ Cb(R) ; inf
t∈R

x(t) > 0}. We denote by T the

operator associated with the right-hand side of Equation (1.1), namely

(3.4) (Tx)(t) =

∫ t

−∞

a(t, t− s)f(s, x(s)) ds.

Note that the solutions of Equation (1.1) defined on the whole line are fixed points

of T .

Now, we prove that T maps
◦

K into itself. Let x ∈
◦

K. Then there exists ǫ > 0

such that ǫ ≤ x(t) ≤ ǫ−1, for each t ∈ R. By Lemma 3.3, one has

(Tx)(t) ≥
∫ t

−∞

a(t, t− s) min

(

x(s)

x2
,
x2

x(s)

)

f(s, x2) ds

≥ ǫmin

(

1

x2
, x2

)
∫ t

−∞

a(t, t− s)f(s, x2) ds.

So

(Tx)(t) ≥ ǫmin

(

1

x2
, x2

)

inf
t∈R

∫ +∞

0

a(t, s)f(t− s, x2) ds > 0.

Furthermore, by Lemma 3.6, Tx ∈ Cb(R). Then Tx ∈
◦

K for all x ∈
◦

K.

To have a fixed point of T in
◦

K, we use Theorem 2.7. We know that (
◦

K, d) is a

complete metric space with d defined by (2.3), (c.f. Proposition 2.6). By (H3), there
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exists t0 ∈ R such that f(t0, x2) > 0 and by (H2), one has f(t0, x2) ≥ φ(λ)f(t0, x2) and

φ(λ) > λ for all λ ∈ (0, 1), then limλ→1 φ(λ) = 1. Now we consider that the function

φ is defined and continuous on ]0, 1]. We can assume that φ is nondecreasing, for

that change φ by φ1(λ) = inf{φ(µ) ; λ ≤ µ ≤ 1}). Indeed φ1 is nondecreasing and

φ1(λ) ≤ φ(λ). For λ ∈]0, 1], there exists µ ∈ [λ, 1] such that φ1(λ) = φ(µ) and

by (H2), φ(µ) > µ, therefore φ1(λ) > λ. For the continuity of φ1, we consider a

sequence (λn)n such that lim
n→+∞

λn = λ. If (λn)n is increasing, then one has λn < λ,

therefore lim
n→+∞

φ1(λn) ≤ φ1(λ). Moreover φ1 is lower semi-continuous, then one has

φ1(λ) ≤ lim inf
n→+∞

φ1(λn), we deduce that lim
n→+∞

φ1(λn) = φ1(λ). If (λn)n is decreasing,

then λn > λ and

lim
n→+∞

φ1(λn) = inf
nN

inf
λn≤µ≤1

φ(µ) = inf
λ<µ≤1

φ(µ) = φ1(λ).

Consequently φ1 is continuous. Then φ1 satisfies (H2). Let x and y ∈
◦

K, λ ∈ (0, 1)

such that λx ≤ y ≤ λ−1x. By (H2), one has

∀t ∈ R, f(t, y(t)) ≥ φ(λ)f(t, x(t)).

We also have λy ≤ x ≤ λ−1y, then

∀t ∈ R, φ(λ)f(t, x(t)) ≤ f(t, y(t)) ≤ (φ(λ))−1 f(t, x(t)),

thus

φ(λ)Tx ≤ Ty ≤ (φ(λ))−1 Tx,

therefore

d(Tx, Ty) ≤ ln

(

1

φ(λ)

)

.

For λ =
(

max
(

M( y

x
),M(x

y
)
))−1

, we have d(x, y) = ln (λ−1). If we choose the

function Φ(r) := − ln(φ(e−r)) for r ≥ 0, we deduce that

d(Tx, Ty) ≤ Φ (d(x, y)) .

Furthermore Φ is a positive, continuous and nondecreasing function on [0,+∞[ sat-

isfying Φ(r) < r for all r > 0 and Φ(0) = 0, then T has exactly one fixed point

in
◦

K which is a continuous and bounded solution of Equation (1.1) with a positive

infinimum. This ends the proof of Theorem 3.1.

Remark 3.7. We have proved Theorem 3.1 by a similar method which is done in

[5] and [15]. Notably, the same function: Φ(r) := − ln(φ(e−r)) for r ≥ 0 appeared in

[15]. We have adapted the proof to avoid the hypothesis about the monotonicity of

the function f(t, .).
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4. THE ALMOST AUTOMORPHIC CASE

In this section, we state some results of existence and uniqueness of the almost

automorphic solution with a positive infinimum.

Theorem 4.1. Suppose that (H2), (H3), (H5) and (H6) hold. Then Equation (1.1)

has a unique almost automorphic solution with a positive infinimum.

An easy consequence of this last result for the finite delay integral Equation (1.2)

is the following result.

Corollary 4.2. Suppose that (H2) and (H5) hold. In addition, we assume that

i) σ is a positive almost automorphic function,

ii) there exists x2 > 0 such that (3.1) holds.

Then Equation (1.2) has a unique almost automorphic solution with a positive

infinimum.

Proof. We use Theorem 4.1 with the function a(t, s) := 1[0,σ(t)](s). (H3) follows from

ii). For σ1 and σ2 ∈ L∞(R), we have

(4.1) ‖ 1[0,σ1(t] − 1[0,σ2(t)] ‖L1(R+)=| σ1(t) − σ2(t) | .

Let (tn)n a sequence of real numbers. By help of (4.1), we obtain that the two

following assertions are equivalent:

lim
n→+∞

σ1(t+ tn) = σ2(t)

lim
n→+∞

‖ 1[0,σ1(t+tn] − 1[0,σ2(t)] ‖L1(R+)= 0.

By using the equivalence above and the definition of an almost automorphic function,

we deduce that i) implies (H6).

In the almost automorphic case, it is possible to improve (H3) for Equation (1.2)

(condition ii) of Corollary 4.2) by showing the existence of a threshold phenomenon.

Proposition 4.3. Suppose that (H2) and (H5) hold. In addition, we assume that f is

not the zero function. Then there exists σ∗ > 0 such that for each almost automorphic

function σ satisfying

(4.2) inf
t∈R

σ(t) ≥ σ∗ ,

Equation (1.2) has a unique almost automorphic solution with a positive infinimum.

We state Theorem 4.1 before Proposition 4.3. For the proof of Theorem 4.1 we

use the following lemmas
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Lemma 4.4. Let a : R×R
+ −→ R such that the function t 7→ a(t, .) is in AA(L1(R+)).

If f ∈ AA(R), then the function

h(t) =

∫ t

−∞

a(t, t− s)f(s) ds

is also almost automorphic.

Proof. By Lemma 3.5, h is continuous and bounded. To check that h is in AA(R),

we have to prove that if (tn)n is any sequence of real numbers, then one can pick up

a subsequence of (tn)n such that

(4.3) ∀t ∈ R, lim
n→+∞

h(t+ tn) = k(t),

(4.4) ∀t ∈ R, lim
n→+∞

k(t− tn) = h(t).

In fact by assumption, we can choose a subsequence of (tn)n such that

∀t ∈ R, lim
n→+∞

‖ a(t+ tn, .) − b(t, .) ‖L1(R+)= 0,

∀t ∈ R, lim
n→+∞

‖ b(t− tn, .) − a(t, .) ‖L1(R+)= 0,

∀t ∈ R, lim
n→+∞

f(t+ tn) = g(t),

∀t ∈ R, lim
n→+∞

g(t− tn) = f(t).

Let k(t) =

∫ t

−∞

b(t, t − s)g(s) ds. By using Lemma 3.4 with α = a, β = b, u = f

and v = g, we obtain (4.3) and we state (4.4) by using Lemma 3.4 with the sequence

(−tn)n, α = b, β = a, u = g and v = f . This ends the proof.

Lemma 4.5. Suppose that (H2), (H5) and (H6) hold. If x is in AA(R) and x has a

positive infinimum, then the function

F (t) =

∫ t

−∞

a(t, t− s)f(s, x(s)) ds

is also almost automorphic.

Proof. There exist a and b ∈ R such that 0 < a ≤ x(t) ≤ b, for all t ∈ R. By Lemma

3.3, we obtain | f(t, x1) − f(t, x2) |≤ L | x1 − x2 | for all t ∈ R, x1 and x2 ∈ [a, b].

Since x ∈ AA(R) and f satisfies (H5), by composition theorem of almost automorphic

functions, we deduce that t 7→ f(t, x(t)) is almost automorphic ([22], Theorem 2.2.6,

p. 22). The hypotheses of Lemma 4.4 are satisfied, then F ∈ AA(R).

Proof. The Proof of Theorem 4.1 is similar to the one given in Theorem 3.1, by

considering K the cone of nonnegative functions in the Banach space AA(R) endowed

with the norm defined by ‖ f‖∞ = sup
t∈R

| f(t) |. Lemma 4.5 permits us to state that
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the operator T defined by (3.4) on
◦

K= {x ∈ AA(R) ; inf
t∈R

x(t) > 0} maps
◦

K into

itself.

For the proof of Proposition 4.3, we use the following lemmas.

Lemma 4.6. Let t∗ ∈ R. If φ ∈ AA(X) then

(4.5) φ([t∗,+∞[) = φ(R).

In particular, if φ ∈ AA(R), then inf
t≥t∗

φ(t) = inf
t∈R

φ(t).

Proof. Consider the sequence of natural numbers (n)n. Then there exists a subse-

quence (nk)k of (n)n such that

∀t ∈ R, lim
k→+∞

φ(t+ nk) = ψ(t),

∀t ∈ R, lim
k→+∞

ψ(t− nk) = φ(t).

Obviously, one has φ(R) = ψ(R). Let t ∈ R. Since lim
k→+∞

t + nk = +∞, there exists

k0 ∈ N such that t+ nk ≥ t∗ for each k ≥ k0. With lim
k→+∞

φ(t+ nk) = ψ(t), it yields

ψ(R) ⊂ φ([t∗,+∞[)

and with φ(R) = ψ(R), we deduce that (4.5) holds. Obviously, if φ ∈ AA(R), one

has inf
t≥t∗

φ(t) = inf
t∈R

φ(t).

Lemma 4.7. Let φ ∈ AA(R) such that φ ≥ 0. If

(4.6) ∀r > 0, inf
t∈R

∫ t

t−r

φ(s) ds = 0,

then φ is the zero function.

Proof. Let Φr(t) :=

∫ t

t−r

φ(s) ds. Applying Lemma 4.4 with a(t, s) := 1[0,r](s), we

deduce that Φr is almost automorphic. Assume that (4.6) holds: inf
t∈R

Φr(t) = 0.

By Lemma 4.6, we obtain that inf
t≥0

Φr(t) = 0 for all r > 0, then there exists a

nondecreasing sequence (rn)n with positive terms such that inf
t≥0

∫ t

t−rn

φ(s) ds = 0 for

each n ∈ N and

(4.7) lim
n→+∞

rn = +∞.

We deduce the existence of a sequence (tn)n such that tn ≥ 0 and

∀n ∈ N, 0 ≤
∫ tn

tn−rn

φ(s) ds ≤ 1

n + 1
,

therefore

(4.8) lim
n→+∞

∫ tn

tn−rn

φ(s) ds = 0.
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Since φ is almost automorphic, there exists a subsequence of (tn)n such that

(4.9) ∀t ∈ R, lim
n→+∞

φ(t+ tn) = ψ(t),

(4.10) ∀t ∈ R, lim
n→+∞

ψ(t− tn) = φ(t).

Let k ∈ N
∗ = N − {0}. By using (4.8), we deduce that

(4.11) lim
n→+∞

∫ 0

−rk

φ(s+ tn) ds = lim
n→+∞

∫ tn

tn−rk

φ(s) ds = 0

since φ ≥ 0 and the sequence (rn)n is nondecreasing. By using the Lebesgue dom-

inated convergence theorem applied to the function t 7→ φ(t + tn) on [−rk, 0], with

(4.9) and (4.11), we obtain

∫ 0

−rk

ψ(s) ds = 0, therefore ψ(t) = 0 a.e. on [−rk, 0]

because ψ ≥ 0. With (4.7), we obtain

(4.12) ψ(t) = 0 a.e. on R
−.

With tn ≥ 0, (4.10) and (4.12), we deduce that φ(t) = 0 for all t ≤ 0, then by almost

automorphicity, φ is the zero function ([22], Theorem 2.1.8, p. 17).

Proof. Here, we prove Proposition 4.3. We use Corollary 4.2. It suffices to prove that

Hypothesis ii) is satisfied. Since f is not the zero function, there exists x2 > 0 such

that f(., x2) is not the zero function. By using Lemma 4.7 with φ(t) = f(t, x2), we

deduce that ∃σ∗ > 0, such that δ := inf
t∈R

∫ t

t−σ∗

f(s, x2) ds > 0. Consequently for each

σ such that inf
t∈R

σ(t) ≥ σ∗, (3.1) holds, therefore Hypothesis ii) is satisfied.

5. THE ALMOST PERIODIC CASE

In this section, we state some results of existence and uniqueness of the almost

periodic solution with a positive infinimum.

Theorem 5.1. Suppose that (H2), (H3), (H7) and (H8) hold. Then Equation (1.1)

has a unique almost periodic solution x with a positive infinimum. Furthermore, we

have

(5.1) mod(x) ⊂ mod(f) +mod(ã),

where ã denotes the function defined by ã(t) := a(t, .).

Remark. In the periodic case, namely the functions t 7→ f(t, .) and t 7→ a(t, .) are

T -periodic, by the module containment formula , we deduce that the almost periodic

solution is T -periodic.

An easy consequence of this last result for the finite delay integral Equation (1.2)

is the following result.



POSITIVE ALMOST AUTOMORPHIC SOLUTIONS 529

Corollary 5.2. Suppose that (H2) and (H7) hold. In addition, we assume that

i) σ is a positive almost periodic function,

ii) there exists x2 > 0 such that (3.1) holds.

Then Equation (1.2) has a unique almost periodic solution with a positive infini-

mum. Furthermore, we have

(5.2) mod(x) ⊂ mod(f) +mod(σ).

Proof. We use Theorem 5.1 with the function a(t, s) := 1[0,σ(t)](s). (H3) follows

from ii). By using (3.2) we deduce that (H8) holds. For the module containment

formula (5.2), it remains to show that mod(1[0,σ(.)]) ⊂ mod(σ), for that we use ([16],

Theorem 4.5, p. 61), which can easily be seen to be true for almost periodic functions

with values in a Banach space. Assume that lim
n→+∞

σ(t + tn) = σ∗(t) for each t ∈ R.

By using (4.1) we deduce that lim
n→+∞

‖ 1[0,σ(t+tn)] − 1[0,σ∗(t)] ‖L1(R+)= 0 for each t ∈ R,

so the inclusion mod(1[0,σ(.)]) ⊂ mod(σ) is established. This completes the proof.

In the almost periodic case, it is possible to improve (H3) for Equation (1.2)

(condition ii) of Corollary 5.2) by showing the existence of a threshold phenomenon.

Proposition 5.3. Suppose that (H2) and (H7) hold. In addition, we assume that f

is not the zero function. Then there exists σ∗ > 0 such that for each almost periodic

function σ satisfying (4.2), Equation (1.2) has a unique almost periodic solution with

a positive infinimum. Furthermore, the module containment formula (5.2) holds.

Proof. Since an almost periodic function is almost automorphic, Hypothesis ii) is

satisfied, see proof of Proposition 4.3.

Before to start the proof of Theorem 5.1, we compare our result (Corollary 5.2)

with a result on almost periodic solutions of Xu and Yuan [28].

Remark. Here we explain how Corollary 5.2 improves on Theorem 2 of Xu and Yuan

[28]. Let us first recall their result. For that we complete the list of hypotheses on

f : R × R
+ −→ R

+ where f(t, x) := f1(t, x) + f2(t, x) with f1 : R × R
+ −→ R

+ and

f2 : R × R
+ −→ R

+.

(A1) The function x 7→ f1(t, x) is nondecreasing and the function x 7→ f2(t, x) is

nonincreasing, for each t ∈ R.

(A2) There exists a continuous map φ : (0, 1) −→ R satisfying φ(λ) > λ and for each

x > 0, t ∈ R and λ ∈ (0, 1), one has

f1(t, λx) ≥ φ(λ)f1(t, x) and f2(t,
x

λ
) ≥ φ(λ)f2(t, x).

(A3) There exists x2 > 0 such that inf
t∈R

∫ t

t−σ(t)

f1(s, x2) ds > 0.
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The result of Xu and Yuan ([28], Theorem 2) is as follow: suppose that f1 and

f2 are almost periodic in t uniformly with respect to x ∈ R
+ and f1, f2 ≥ 0. If

the conditions (A1)–(A3) and i) (of Corollary 5.2) hold, then Equation (1.2) has a

unique almost periodic solution with a positive infinimum and the module containment

formula (5.2) holds.

Hypotheses (A1) and (A2) imply (H2), Hypothesis (A3) and f2 ≥ 0 imply ii) (of

Corollary 5.2), then our Corollary 5.2 gives the same result of ([28], Theorem 2).

If we consider σ to be an almost periodic function with a positive infinimum and

the function f defined on R × R
+ by

(5.3) f(t, x) = p(t)

(

1[0,1](x)
√
x+ 1]1,+∞[(x)

1√
x

)

,

where p is the almost periodic function defined by

(5.4) p(t) = cos2 t+ cos2 πt,

then the hypotheses of Corollary 5.2 hold with φ(λ) =
√
λ, therefore our result

permits us to conclude the existence of almost periodic solutions while theirs is not

appropriate, because (A1) is not satisfied. In fact (A1) and f1, f2 ≥ 0 imply that

f(t, .) is nondecreasing if f(t, 0) = 0, (because sup
x≥0

f2(t, x) = f2(t, 0) ≤ f(t, 0)) and

f(t, .) is nonincreasing if lim
x→+∞

f(t, x) = 0, because

sup
x≥0

f1(t, x) = lim
x→+∞

f1(t, x) ≤ lim
x→+∞

f(t, x).

In conclusion, Corollary 5.2 provides an improvement on ([28], Theorem 2).

For the proof of Theorem 5.1, we use the following lemmas.

Lemma 5.4. Let a : R × R
+ −→ R be such that the function t 7→ a(t, .) is in

AP (L1(R+)). If f ∈ AP (R), then the function

h(t) =

∫ t

−∞

a(t, t− s)f(s) ds

is also almost periodic.

Proof. By Lemma 3.5, h is continuous and bounded. To check that h is in AP (R),

we have to prove that if (tn)n and (sn)n is a pair of sequences of real numbers, then

one can pick up a common subsequence of (tn)n and (sn)n such that for each t ∈ R,

(5.5) lim
n→+∞

lim
m→+∞

h(t+ tn + sm) = lim
n→+∞

h(t+ tn + sn).

In fact by assumption, we can choose a common subsequence of (tn)n and (sn)n such

that for each t ∈ R

lim
n→+∞

lim
m→+∞

a(t+ tn + sm, .) = lim
n→+∞

a(t+ tn + sn, .) in L1(R+),
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lim
n→+∞

lim
m→+∞

f(t+ tn + sm) = lim
n→+∞

f(t+ tn + sn).

The proof of Lemma 5.4 is similar to the one given in Lemma 4.4, by using three

times Lemma 3.4.

Lemma 5.5. Suppose that (H7) and (H8) hold. If x ∈ AP (R) and x has a positive

infinimum, then the function

F (t) =

∫ t

−∞

a(t, t− s)f(s, x(s)) ds

is also almost periodic.

Proof. Since x ∈ AP (R) and f satisfies (H7), t 7→ f(t, x(t)) is almost periodic ([29],

Theorem 2.7, p. 16). The hypotheses of Lemma 5.4 are satisfied, then F ∈ AP (R).

Proof. Here, we prove Theorem 5.1. The proof of the existence and uniqueness of

the almost periodic solution with a positive infinimum, is similar to the one given

in Theorem 4.1, by considering the Banach space AP (R) instead of AA(R) endowed

with the same norm.

Now we prove the formula of the modules. Let (tn)n be a numerical sequence

such that for all compact K of R
+

(5.6) f(t+ tn, x) → g(t, x) as n→ +∞

uniformly on R ×K and

(5.7) ‖ a(t+ tn, .) − b(t, .)‖L1(R+) → 0 as n→ +∞

uniformly on R where b ∈ AP (L1(R+)). To state the module containment formula,

it suffices to prove that the sequence (x(. + tn))n converges uniformly on R ([29],

Theorem 2.8, p. 18). By using Lemma 3.4 with α = a, β = b, u = f(., x2) and

v = g(., x2), we deduce that

lim
n→+∞

∫ +∞

0

a(t+ tn, s)f(t+ tn − s, x2) ds =

∫ +∞

0

b(t, s)g(t− s, x2) ds,

therefore b and g satisfy all hypotheses of Theorem 5.1, then Equation

(5.8) y(t) =

∫ t

−∞

b(t, t− s)g(s, y(s)) ds,

has a unique almost periodic solution y with a positive infinimum. Let a subsequence

of (x(.+ tn))n which we denote by the similar manner. Since this last subsequence is

with values in AP (R), it has a cluster point x∗ in AP (R), so we have:

(5.9) x(t+ tn) → x∗(t) as n→ +∞

uniformly on R. From (5.6) and (5.9), we deduce that

(5.10) ∀t ∈ R, lim
n→+∞

f(t+ tn, x(t+ tn)) = g(t, x∗(t)).
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On the other hand, by using (5.7), (5.10) and Lemma 3.4 with α = a, β = b,

u(t) = f(t, x(t)) and v(t) = g(t, x∗(t)), we obtain

∀t ∈ R, lim
n→+∞

x(s + tn) =

∫ t

−∞

b(t, t− s)g(s, x∗(s)) ds,

thus with (5.9), we deduce that x∗ is an almost periodic solution of Equation (5.8)

with a positive infinimum. By uniqueness of this last solution, we have x∗ = y. We

deduce that (x(t+ tn))n converges uniformly on R. In conclusion, we have the desired

result.

6. APPLICATION TO A DIFFERENTIAL EQUATION

In this section, we apply our results for the existence of the almost automorphic

and almost periodic solutions with a positive infinimum to the following first order

semilinear differential Equation (1.3). Let α ∈ Cb(R) and τ ≥ 0. Recall that the

homogeneous linear equation

(6.1) x′(t) + α(t)x(t) = 0

has an exponential dichotomy if there exist k and c > 0 such that

(6.2) exp

(

−
∫ t

s

α(ξ) dξ

)

≤ ke−c(t−s), ∀t ≥ s.

If Equation (6.1) has an exponential dichotomy, then for any p ∈ Cb(R), the linear

equation

x′(t) + α(t)x(t) = p(t)

has a unique bounded solution which is given by

x(t) =

∫ t

−∞

exp

(

−
∫ t

s

α(ξ) dξ

)

p(s) ds.

Similarly, if Equation (6.1) has an exponential dichotomy and if f is bounded on

every R × K where K is a compact subset of R
+, then x is a bounded solution of

Equation (1.3) if and only if x is a bounded solution of

(6.3) x(t) =

∫ t

−∞

exp

(

−
∫ t

s

α(ξ) dξ

)

f(s, x(s− τ)) ds.

By making the change of variables of s to s+ τ , one can rewrite Equation (6.3) as

(6.4) x(t) =

∫ t

−∞

exp

(

−
∫ t

s+τ

α(ξ) dξ

)

1[τ,+∞](t− s)f(s+ τ, x(s)) ds.

To start, we give a result on the exponential dichotomy of Equation (6.1) in the

almost automorphic case.
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Lemma 6.1. Let α ∈ Cb(R).

i) If there exists r0 > 0 such that

(6.5) inf
t∈R

∫ t

t−r0

α(ξ) dξ > 0,

then Equation (6.1) has an exponential dichotomy.

ii) In particular if α ∈ AA(R), α ≥ 0 and α is not the zero function, then

Equation (6.1) has an exponential dichotomy.

Remark. In fact Equation (6.1) has an exponential dichotomy if and only if there

exists r0 > 0 such that (6.5) holds.

Proof. i) Denote by

δ0 := inf
t∈R

∫ t

t−r0

α(ξ) dξ > 0.

Let s ≥ 0. Then there exists n0 ∈ N such that n0r0 ≤ s < (n0 + 1)r0. By using the

following inequalities

∫ t

t−n0r0

α(ξ) dξ ≥ n0δ0 ≥
(

s

r0
− 1

)

δ0

and

|
∫ t−n0r0

t−s

α(ξ) dξ |≤ r0 ‖ α‖∞,

we deduce that

∀s ≥ 0,

∫ t

t−s

α(ξ) dξ ≥ δ0
r0
s− (δ0 + r0 ‖ α‖∞),

therefore (6.2) holds with k = exp(δ0 + r0 ‖ α‖∞) and c =
δ0
r0

.

ii) By using Lemma 4.7, we can assert that there exists r0 > 0 such that (6.5)

holds. The first sentence of this lemma permits us to conclude. This ends the proof.

Proposition 6.2. We assume that f satisfies (H2), (H5) and f is not the zero func-

tion. In addition we suppose that α ∈ AA(R) and there exists r0 > 0 such that (6.5)

holds. Then Equation (1.3) has a unique almost automorphic solution with a positive

infinimum.

Remark. In Proposition 6.2, we can replace hypotheses on α by α ∈ AA(R) such

that α ≥ 0 and α is not the zero function (see Lemma 6.1).

For the proof of Proposition 6.2, we use the following lemmas.
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Lemma 6.3. Let c > 0 and let φ ∈ AA(R) such that φ ≥ 0. If

(6.6) inf
t∈R

∫ +∞

0

e−csφ(t− s) ds = 0,

then φ is the zero function.

Proof. Let r > 0, by following inequalities
∫ t

t−r

φ(s) ds ≤ ecr

∫ t

−∞

e−c(t−s)φ(s) ds = ecr

∫ +∞

0

e−csφ(t− s) ds

and by (6.6) we deduce that

∀r > 0, inf
t∈R

∫ t

t−r

φ(s) ds = 0.

Thank to Lemma 4.7, we obtain the result.

Lemma 6.4. Let (tn)n be a sequence of real numbers. Let u and v ∈ L∞(R). We

denote by A and B the functions defined by

A(t, s) := exp

(

−
∫ t

t+τ−s

u(ξ) dξ

)

1[τ,+∞[(s),

B(t, s) := exp

(

−
∫ t

t+τ−s

v(ξ) dξ

)

1[τ,+∞[(s).

We assume that there exist k and c > 0 such that

(6.7) exp

(

−
∫ t

t−s

u(ξ) dξ

)

≤ ke−cs, ∀s ≥ 0.

If for each t ∈ R

(6.8) lim
n→+∞

u(t+ tn) = v(t),

then

(6.9) exp

(

−
∫ t

t−s

v(ξ) dξ

)

≤ ke−cs, ∀s ≥ 0

and

(6.10) lim
n→+∞

‖ A(t+ tn, .) −B(t, .) ‖L1(R+)= 0.

Proof. By Lebesgue dominated convergence theorem and by (6.8), we obtain

(6.11) ∀c, d ∈ R, lim
n→+∞

∫ d+tn

c+tn

u(ξ) dξ =

∫ d

c

v(ξ) dξ.

For n ∈ N, t ∈ R and s ≥ 0, we denote Fn(t, s) := A(t + tn, s). The function Fn

satisfies 0 ≤ Fn(t, s) ≤ ke−c(s−τ) and

(6.12) lim
n→+∞

Fn(t, s) = B(t, s).
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By using Lebesgue theorem, we obtain

lim
n→+∞

∫ +∞

0

| Fn(t, s) − B(t, s) | ds = 0,

so (6.10) is fulfilled. Obviously (6.9) follows from (6.7) and (6.11). This ends the

proof.

Proof. Here, we prove Proposition 6.2. By Lemma 6.1, Equation (6.1) admits an

exponential dichotomy, then an almost automorphic function x is a solution of Equa-

tion (1.3) if and only if x is a solution of Equation (6.4). To state Proposition 6.2,

we use Theorem 4.1 with the functions

(6.13) a(t, s) := exp

(

−
∫ t

t+τ−s

α(ξ) dξ

)

1[τ,+∞[(s),

and

(6.14) (t, x) 7→ f(t+ τ, x).

It suffices to prove that hypotheses (H3) and (H6) are satisfied. First we state (H3).

Since f is not the zero function, there exists x2 > 0 such that f(t, x2) is not the

zero function. Moreover ‖ α‖∞ > 0, because α is not the zero function. By using

Lemma 6.3, we obtain

δ := inf
t∈R

∫ +∞

0

e−s‖α‖
∞f(t− s, x2) ds > 0,

then (H3) is fulfilled because

inf
t∈R

∫ +∞

0

a(t, s)f(t+ τ − s, x2) ds ≥ δ > 0.

For Hypothesis (H6), we use Lemma 6.4. Remark that, for each t ∈ R, the function

s 7→ a(t, s) ∈ L1(R+) because Equation (6.1) admits an exponential dichotomy. To

check that the function t 7→ a(t, .) is in AA(L1(R+)), we have to prove that if (tn)n is

any sequence of real numbers, then one can pick up a subsequence of (tn)n such that

(6.15) ∀t ∈ R, lim
n→+∞

‖ a(t+ tn, .) − b(t, .) ‖L1(R+)= 0,

(6.16) ∀t ∈ R, lim
n→+∞

‖ b(t− tn, .) − a(t, .) ‖L1(R+)= 0,

In fact by assumption, we can choose a subsequence of (tn)n such that

∀t ∈ R, lim
n→+∞

α(t+ tn) = β(t),

∀t ∈ R, lim
n→+∞

β(t− tn) = α(t).

Let b(t, s) = exp

(

−
∫ t

t+τ−s

β(ξ) dξ

)

1[τ,+∞[(s). By using Lemma 6.4 with u = α and

v = β, we obtain (6.15) and we state (6.16) by using Lemma 6.4 with the sequence

(−tn)n, u = β and v = α. This ends the proof.
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Proposition 6.5. We assume that f satisfies (H2), (H7) and f is not the zero func-

tion. In addition we suppose that α ∈ AP (R) such that M{α(t)}t > 0. Then Equa-

tion (1.3) has a unique almost periodic solution with a positive infinimum. Further-

more, we have

(6.17) mod(x) ⊂ mod(f) +mod(α).

Proof. Since α ∈ AP (R) such that M{α(t)}t > 0, then

lim
r→+∞

1

r

∫ t

t−r

α(s) ds = M{α(s)}s > 0

uniformly with respect to t ∈ R. Consequently, there exist L > 0 and r0 > 0 such

that

∀r ≥ r0, ∀t ∈ R,
1

r

∫ t

t−r

α(s) ds ≥ L,

therefore (6.5) holds. By Lemma 6.1, we can assert that Equation (6.1) has an expo-

nential dichotomy. To state Proposition 6.5, we use Theorem 5.1 with the functions

(6.13) and (6.14). Since an almost periodic function is almost automorphic, Hypoth-

esis (H3) is satisfied. It remains to prove that hypotheses (H8) is fulfilled. Remark

that, for each t ∈ R, the function s 7→ a(t, s) ∈ L1(R+) because Equation (6.1) admits

an exponential dichotomy. To check that t 7→ a(t, .) is in AP (L1(R+)), we have to

prove that if (tn)n and (sn)n is a pair of sequences of real numbers, then one can pick

up a common subsequence of (tn)n and (sn)n such that for each t ∈ R,

lim
n→+∞

lim
m→+∞

a(t+ tn + sm, .) = lim
n→+∞

a(t+ tn + sn, .) in L1(R+).

In fact by assumption, we can choose a common subsequence of (tn)n and (sn)n such

that for each t ∈ R

lim
n→+∞

lim
m→+∞

α(t+ tn + sm) = lim
n→+∞

α(t+ tn + sn).

The proof of Proposition 6.5 is similar to the one given in Proposition 6.2, by using

three times Lemma 6.4. For the module containment formula (6.17), it remains to

show that

(6.18) mod(ã) ⊂ mod(α),

where ã = a(t, .). Assume that lim
n→+∞

α(t + tn) = α∗(t) for each t ∈ R. By using

Lemma 6.4 with u = α and v = α∗ we deduce that

lim
n→+∞

‖ a(t+ tn, .) − a∗(t, .) ‖L1(R+)= 0

for each t ∈ R with a∗(t, s) = exp

(

−
∫ t

t+τ−s

α∗(ξ) dξ

)

1[τ,+∞[(s). Using ([16], Theo-

rem 4.5, p. 61), we deduce (6.18), so the formula (6.17) is established. This ends the

proof.
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