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Abstract. In this paper we consider optimal output feedback boundary control problems for a class of

semilinear uncertain parabolic systems. The uncertain initial boundary value problem is converted into an

equivalent Cauchy problem described by a differential inclusion in appropriate Banach spaces. We follow

game-theoretic formalism and prove existence of saddle points giving optimal strategies. This is an extension

of a recent result of the author from linear to a class of nonlinear feedback operators. The paper is concluded

with a brief description of open problems and future directions.
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1. INTRODUCTION

This paper presents an extension of a recent result of the author [1] on the existence

of saddle points (optimal strategies) of a games problem arising from control problem of an

uncertain parabolic system. Optimal control of uncertain systems described by differential

inclusions on Banach spaces have been widely considered in the literature [5, 6, 7] (see also

the references therein). These papers present results on existence of optimal (open loop)

strategies. Recently Mordukhovich [4] considered the problem of optimal design of output

feedback controller for a class of uncertain systems described by second order parabolic

equations with Dirichlet boundary control. The design variable here is the feedback control

law mapping output into control actions on the boundary. In a recent paper of the author

[1], a general class of uncertain parabolic systems was considered with the class of output

feedback control laws chosen from the class of bounded linear operators furnished with

the strong operator topology. Here we consider a class of continuous nonlinear operators

furnished with the topology of pointwise convergence [11]. The problem considered is the

question of existence of saddle points and the corresponding optimal strategies.

The rest of the paper is organized as follows: In section 2 we present the system

model on output feedback boundary control of uncertain parabolic systems. In section 3

we formulate this as an abstract differential inclusion on a Banach space and conclude with

the problem formulation as a games problem where an optimal feedback operator from the

space of observations to the control space is sought. In section 4 we prove existence of saddle

points. In section 5 we present an extension of this result to systems with state dependent

multifunction representing state dependent uncertainty. We conclude the paper pointing

out some open problems and future directions.
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2. UNCERTAIN PARABOLIC BOUNDARY CONTROL PROBLEM

Let Ω be an open bounded connected domain in Rn with smooth boundary ∂Ω, I =

[0, T ], T < ∞, and L an elliptic (partial) differential operator and B a suitable boundary

operator compatible with the differential operator L and F is a multifunction. The system is

governed by the following parabolic inclusion representing a boundary controlled uncertain

system:

∂φ/∂t + Lφ ∈ F (t, ξ) (t, ξ) ∈ I × Ω(1)

Bφ = u, (t, ξ) ∈ I × ∂Ω,(2)

φ(0, ·) = φ0.(3)

The function u defined on I × ∂Ω is the control and φ0 is the initial state.

Let E and Y denote any pair of suitable Banach spaces of functions or generalized

functions defined on Ω and ∂Ω respectively with φ taking values from E and control u

taking values from Y at any given time t ∈ I. In addition to the system equation, there is

the output equation given by

z = G(φ), (measured output),(4)

with z taking values from another suitable Banach space Z representing the output space

and G : E −→ Z is a continuous map giving the output. Here F : I × Ω −→ 2R \ ∅ is a

suitable multifunction representing the uncertainty. Loosely stated, the problem is to find

an output-feedback control law f : Z −→ Y giving

u = f(G(φ))(5)

that minimizes the maximum risk or loss which is given by a suitable functional of the

measured output as the observation.

3. SEMIGROUP SETTING OF THE BASIC PROBLEM

It is shown in [2, p. 59–66] and [3, p. 214–220] that the controlled initial-boundary

problem as stated above can be formulated as a controlled initial value (Cauchy) problem

in the Banach space E (state space) as follows:

ẋ + Ax ∈ F + ARu, x(0) = x0,(6)

u ≡ f(G(x)), f ∈ C(Z, Y ), t ∈ I,(7)

where

A ≡ L|KerB, R ≡
(

B|KerL

)−1
, F : I −→ 2E \ ∅,

and G : E −→ Z, is the state-output map and C(Z, Y ) is the space of continuous maps

from the Banach space Z to the Banach space Y representing potential feedback control

laws mapping the output space into the space where controls take their values from. For

detailed derivation leading to the above formulation see [2, p 59–66; 3, p 214–220].

We use the abstract model (6)–(7) to study nonlinear output feedback boundary control

problems. This generalizes our recent paper [1] where we used linear output feedback

boundary control laws.

Suppose −A is the infinitesimal generator of an analytic semigroup S(t), t ≥ 0, in E; F

is a graph measurable multifunction and is assumed to have integrable selections {w}, w(t) ∈
F (t), a.e. t ∈ I. Let SF denote the corresponding set of measurable selections (precise
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assumptions to follow shortly). Using the variation of constants formula, the evolution

inclusion (6)–(7) can be written as the following integral inclusion in E,

x(t) ∈ S(t)x0 +

∫ t

0
S(t − s)F (s)ds +

∫ t

0
AS(t − s)Rf(G(x(s)))ds, t ∈ I.

By a solution of this inclusion, we mean a solution of the integral equation

x(t) = S(t)x0 +

∫ t

0
S(t − s)w(s)ds +

∫ t

0
AS(t − s)Rf(G(x(s)))ds, t ∈ I,(8)

for each selection w ∈ SF . A solution of this integral equation is known as the mild solution

of (6)–(7) with the multifunction F replaced by a selection w ∈ SF .

The Set of Uncertainty SF : Let wkc(E) denote the class of nonempty weakly compact

convex subsets of E and F : I −→ wkc(E) be graph measurable and integrably bounded.

Let SF denote the set of all integrable selections of the multifunction F . Then it is known [8,

Theorem 3.34, p 187] that the set SF ⊂ L1(I,E) is weakly compact and convex. Therefore,

by Eberlein-Smulian theorem [8, Theorem A.3.62, p 914], it is also weakly sequentially

compact. We choose SF to be the set of uncertainty.

Admissible Control Laws Fad: Recall that Z and Y are two Banach spaces with the

former representing the space of outputs and the later the space where the controls take

their values from. Let C(Z, Y ) ⊂ Y Z denote the space of continuous maps from Z to Y

furnished with topology of pointwise convergence on Z in the weak topology of Y . We

denote this topology by τpcw and the space by (C(Z, Y ), τpcw). For a given positive number

K, let FK ⊂ C(Z, Y ) denote the class of functions satisfying the following properties:

(1) :‖ f(z) ‖Y ≤ K(1+ ‖ z ‖Z) ∀ z ∈ Z

(2) : for every r ∈ (0,∞),∃ Kr ≥ 0 such that

‖ f(z1) − f(z2) ‖Y ≤ Kr ‖ z1 − z2 ‖Z , z1, z2 ∈ Br(Z).

For each z ∈ Z, let Pz denote the evaluation map: Pz(f) = f(z), f ∈ C(Z, Y ). For

admissible control laws we choose the set Fad ⊂ FK satisfying the following two properties:

(P1): Fad is point wise closed in (C(Z, Y ), τpcw)

(P2): for each z ∈ Z, the set {Pz(f) : f ∈ Fad} ⊂ Y is relatively weakly compact.

Clearly Y furnished with the weak topology is a Hausdorff space. Thus it follows from

[11, Theorem 42.3, p 278] that this set is compact in the topology of point wise (weak)

convergence.

Remark 3.1 For any pair of Banach spaces {Z, Y }, the set FK as defined above is τpcw

closed but not necessarily compact. This is easily verified by use of Hahn-Banach theorem.

However, if Y is a reflexive Banach space, one can easily verify that the set FK itself satisfies

both the properties (P1) and (P2). In this case we can choose Fad = FK .

Here we quote a result from [2] which we use throughout the paper.

Theorem 3.2 Suppose the following assumptions hold: (A1): −A is the generator of an

analytic semigroup S(t), t ≥ 0, in E, (A2): There exist constants c > 0 and β ∈ (0, 1] such

that

‖ AS(t)R ‖L(Y,E)≤
c

t1−β
, t > 0,

(A3): there exists a p ∈ (1/β,∞) such that SF ⊂ Lp(I,E), (A4): G : E −→ Z is locally

Lipschitz having at most linear growth. Then for each x0 ∈ E, w ∈ SF and f ∈ FK , the

integral equation (8) has a unique solution x ∈ C(I,E) and hence the system (6)–(7) has a

nonempty set of mild solutions.

Proof. See [2, Theorem 3.1, p 64; Theorem 3.2, p 69].
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Problem Statement: Let Fad ⊂ FK denote the class of admissible (output) feedback

operators. Suppose x0 ∈ E is fixed, and let x(w, f) ≡ x(·, w, f) denote the mild solution of

the evolution equation

ẋ + Ax = w + ARf(G(x)), x(0) = x0, t ∈ I,(9)

or more precisely (equivalent) the solution of the integral equation (8) corresponding to

(w, f) ∈ SF ×Fad. Define

J(w, f) ≡

∫

I

ℓ(t,G(x(t, w, f)))dt + Φ(G(x(T,w, f))),(10)

where the first term gives the running cost and the second gives the terminal cost with

ℓ : I × Z −→ R and Φ : Z −→ R being Borel measurable. Precise assumptions on ℓ and

Φ are given in Lemma 4.2 below. The problem is to find a feedback control law f o ∈ Fad

such that

Jo(f o) ≤ Jo(f) ≡ max{J(w, f), w ∈ SF }

for all f ∈ Fad. This is the basic problem and it is equivalent to the minmax problem: find

a pair (wo, f o) ∈ SF ×Fad such that

J(wo, f o) = min
f∈Fad

max
w∈SF

J(w, f).(11)

Clearly, this is a games problem (games against natural uncertainty), and naturally we are

interested in the saddle point of the problem (if one exists).

Definition 3.3 A point (wo, f o) ∈ SF × Fad is said to be a saddle point of the functional

J if it satisfies the following inequalities

J(w, f o) ≤ J(wo, f o) ≤ J(wo, f) ∀ (w, f) ∈ SF ×Fad.(12)

A celebrated result on games theory due to Von Neumann-Ky Fan-Sion (1928, 1952,

1958) can be found in [9, Theorem 9.1, p 458]. This result requires the Banach spaces

involved to be reflexive and the functional J(w, f) to be quasi-concave in w and quasi-

convex in f . Unfortunately these conditions are not satisfied for the problem considered

here. Clearly the space (C(Z, Y ), τpcw) is not reflexive, E is not assumed to be reflexive and

further the concavity and convexity conditions do not hold. In view of this we must attack

the problem directly.

4. EXISTENCE OF OPTIMAL STRATEGIES: SADDLE POINTS

In this section we prove the existence of a saddle point for the functional given by (10)

and hence existence of an optimal feedback control law. For this we need the continuity of

the map

(w, f) −→ x(w, f).

Let τw denote the weak topology on Lp(I,E) and τpcw denote the topology of point wise

(weak) convergence in (C(Z, Y ), τpcw) as introduced earlier (see admissible control laws).

Let τu denote the standard topology of uniform convergence in C(I,E) and τp the point

wise convergence topology. We prove, under certain assumptions, that the map (w, f) −→

x(w, f) is continuous with respect to the topologies τw×τpcw on SF ×Fad and τp on C(I,E).

Lemma 4.1 Suppose the assumptions of Theorem 3.2 hold. Further assume that the

semigroup S(t), t > 0, is compact. Then the map (w, f) −→ x(w, f) is continuous with

respect to the topologies τw × τpcw on SF ×Fad and τp on C(I,E).

Proof Let (wn, fn) be a sequence from SF ×Fad with

wn τw

−→ wo, fn τpcw
−→ f o.
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Since SF × Fad is τw × τpcw compact (wo, f o) ∈ SF × Fad. By Theorem 3.1, equation (9)

has unique mild solutions corresponding to the pairs (wn, fn) and (wo, f o) respectively. Let

xn ≡ x(wn, fn) ∈ C(I,E), xo ≡ x(wo, f o) ∈ C(I,E) denote these solutions. Define

vn ≡ wn − wo, and en = xn − xo.

Using the variation of constants formula, the reader can easily verify that

en(t) =

∫ t

0
S(t − s)vn(s)ds +

∫ t

0
AS(t − s)R{fn(G(xo(s))) − f o(G(xo(s)))}ds

+

∫ t

0
AS(t − s)R

{

fn(G(xn(s))) − fn(G(xo(s)))
}

ds(13)

≡ En
1 (t) + En

2 (t) +

∫ t

0
AS(t − s)R

{

fn(G(xn(s))) − fn(G(xo(s)))
}

ds(14)

where for convenience we have denoted the first two components by En
1 and En

2 respectively.

Since weakly convergent sequences are bounded in norm and by assumption both G as well

as the elements of the set Fad ⊂ FK have at most linear growth, it is clear that the sequence

xn including xo are contained in a bounded subset of C(I,E). Hence there exists a finite

positive number b, possibly dependent on the growth rate of G and that of the family FK ,

such that {xn(t), xo(t)} ∈ Bb(E) for all t ∈ I where Bb(E) denotes the ball of radius b in

E. Thus it follows from the local Lipschitz hypothesis on G and the family FK that there

exists a positive number Kb < ∞, independent of n, such that for all n ∈ N ,

|fn(G(xn(t))) − fn(G(xo(t)))|Y ≤ Kb|x
n(t) − xo(t)|, t ∈ I.

Using this fact and the assumptions (A2)-(A4) of Theorem 3.1, it follows from (14) that

|en(t)|E ≤ |En
1 (t)|E + |En

2 (t)|E +

∫ t

0
(cKb)/(t − s)1−β |en(s)|Eds, t ∈ I.(15)

Since vn τw

−→ 0 and the semigroup S(t), t > 0, is compact, En
1 (t)

s
−→ 0 in E uniformly on I.

Considering En
2 , we prove that it converges (strongly) in E to zero for each t ∈ I. Define

gn(t) ≡ [fn(G(xo(t))) − f o(G(xo(t)))], t ∈ I.

Since {fn, f o} ⊂ Fad ⊂ FK and G is a continuous map from E to Z, and xo ∈ C(I,E), the

function t −→ gn(t) is continuous. Further, since fn τpcw
−→ f o it is clear that gn(t)

w
−→ 0 in

Y for each t ∈ I. By assumption, S(t), t > 0, is a compact semigroup and R is a bounded

operator from Y to E and so the composition (SR)(t), t > 0, is also a family of compact

operators from Y to E. Thus

ηn(t) ≡

∫ t

0
S(t − s)Rgn(s)ds

s
−→ 0 in E

for each t ∈ I. It follows from assumption (A2) and (A3) of Theorem 3.1 with 1/β < p < ∞,

that the integral operator H given by

(Hg)(t) ≡

∫ t

0
AS(t − r)Rg(r)dr, t ∈ I

maps Lp(I, Y ) to E for each t ∈ I. Since A is a closed operator and gn ∈ Lp(I, Y ), this

means that, for each t ∈ I, ηn(t) ∈ D(A) and that

Aηn(t) = (Hgn)(t)
s

−→ 0 in E.

Thus we have proved that

En
2 (t)

s
−→ 0 in E
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for each t ∈ I, and hence

En(t) ≡ |En
1 (t)|E + |En

2 (t)|E −→ 0 for each t ∈ I.

For convenience of notation we set ϕn(t) ≡ |en(t)|E and rewrite inequality (15) as follows

ϕn(t) ≤ En(t) +

∫ t

0
M/(t − s)1−βϕn(s)ds, t ∈ I,(16)

with M = (cKb). Clearly t −→ ϕn(t) is continuous and nonnegative. The function En(t)

is also nonnegative, bounded measurable, and converges point wise to zero. We must show

that ϕn(t) −→ 0 point wise in I. By repeated substitution of (16) into itself it is easy to

verify that

ϕn(t) ≤ En(t) + (KEn)(t), t ∈ I,(17)

where the operator K is the Volterra integral operator, called the resolvent operator,

(Kh)(t) =

∫ t

0
K(t − s)h(s)ds, t ∈ I

with the kernel K given by

K(t) =
∞

∑

m=1

Km(t),

Km(t) ≡
{

(MΓ(β))m/Γ(mβ)
}

(1/t1−mβ), m ≥ 1,

where Γ denotes the standard gamma function. These are obtained by repeated iteration

of the basic kernel K1(t) ≡ M/t1−β , t ∈ I, which appears in our integral inequality (16).

For example, the (m + 1)-th iterated kernel is given by

Km+1(t − s) ≡

∫ t

s

Km(t − r)K1(r − s)dr, t > s.

By simple computation using standard gamma functions one can easily verify that

Km+1(t − s) =

(

(MΓ(β))m+1

Γ((m + 1)β)

)

1/(t − s)1−(m+1)β), t > s.

Using the properties of Γ functions, it is easy to verify that, for each ε > 0, the infinite

series giving the kernel K converges uniformly on Iε ≡ [ε, T ] for every finite T > 0. Further

K ∈ L+
1 [0, T ] for any finite T ≥ 0. Thus the integral operator K maps Lp(I) to Lp(I) for

every p ∈ [1,∞]. Let B(I,R) ⊂ L∞(I,R), furnished with the sup norm topology, denote

the Banach space of bounded measurable functions on I with values in R. Clearly K is

also a bounded linear operator in B(I,R). Since En ∈ B(I,R) and it converges to zero

point wise on I, it follows from the inequality (17) that ϕn(t) → 0 point wise on I. Thus

en(t)
s

−→ 0 in E for each t ∈ I proving that xn(t)
s

−→ xo(t) in E point wise on I. This

proves the continuity as stated in the lemma. •

Lemma 4.2 Suppose the assumptions of Lemma 4.1 hold and that the integrand ℓ : I ×
Z −→ R̄ is measurable in the first argument and continuous in the second and there exist

h ∈ L+
1 (I), r ≥ 1 and c1 ≥ 0 such that

|ℓ(t, z)| ≤ h(t) + c1|z|
r
Z , ∀ (t, z) ∈ I × Z.(18)

The functional Φ : Z −→ R̄ is continuous and there exist constants c2 ≥ 0, c3 ≥ 0 such that

|Φ(z)| ≤ c2 + c3|z|
r
Z ∀ z ∈ Z.(19)

Then the objective functional (w, f) −→ J(w, f) given by (10) is jointly continuous from

SF ×Fad to R with respect to the product topology τw × τpcw.
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Proof By Lemma 4.1, (w, f) −→ x(w, f) is continuous from SF × Fad to C(I,E) with

respect to the topologies τw × τpcw and τp respectively. Since G : E −→ Z is continuous, it

is clear that

(w, f) −→ G(x(t, w, f))

is continuous for all t ∈ I. For convenience of notation let τww denote the product topology

τw × τpcw and suppose

(wn, fn)
τww

−→ (wo, f o).

Then by Lemma 4.1,

xn(t) ≡ x(t, wn, fn)
s

−→ x(t, wo, f o) = xo(t) in E

for each t ∈ I. Thus by continuity of G from E to Z, and continuity of ℓ in its second

argument on Z, and continuity of Φ on Z, we conclude that

ℓ(t,G(xn(t))) −→ ℓ(t,G(xo(t))) a.e t ∈ I,(20)

Φ(G(xn(T ))) −→ Φ(G(xo(T ))).(21)

It follows from (18) and the growth assumptions on G and ℓ, that there exists a constant

c̃1 > 0 such that

|ℓ(t,G(xn(t)))| ≤ h(t) + c̃1(1 + |xn(t)|rE), t ∈ I.(22)

Since fn, f o ∈ Fad ⊂ FK and G is assumed to have at most linear growth there exists a

constant b > 0 such that

sup{‖ xn ‖C(I,E), ‖ xo ‖C(I,E)} ≤ b.

So ℓn(·) ≡ ℓ(·, G(xn(·))) ∈ L1(I) and it is dominated by the integrable function given by

ℓ̃(t) ≡ h(t) + c̃1(1 + br). Hence by Lebesgue dominated convergence theorem, we have

lim
n→∞

∫

I

ℓ(t,G(xn(t)))dt =

∫

I

lim
n→∞

ℓ(t,G(xn(t)))dt =

∫

I

ℓ(t,G(xo(t)))dt.(23)

By continuity of Φ and G it is clear that

lim
n→∞

Φ(G(xn(T ))) = Φ(G(xo(T ))).(24)

Thus it follows from the expression (10) defining the functional J that

J(wn, fn) −→ J(wo, f o).

This proves the joint continuity as stated in the lemma. •

Now we are prepared to prove the existence of a saddle point for the functional J as

stated in the problem statement in section 3. The basic steps of proof are similar to those

of our paper [1, Theorem 3.3, p 67]. Recall that SF denotes the set of uncertainty and Fad

the admissible control laws.

Theorem 4.3 Consider the objective functional J as defined by (10) and let the assumptions

of Lemma 4.2 hold. Suppose the uncertainty set SF ⊂ Lp(I,E) is compact in the weak

topology τw, and the admissible control laws Fad ⊂ (C(Z, Y ), τpcw) is compact in the

topology τpcw. Then J has a saddle point.

Proof Define the map W : Fad −→ SF by

arg{max
w∈SF

J(w, f)} ≡ W (f).(25)

Since for each f ∈ Fad, w −→ J(w, f) is weakly continuous and SF is weakly compact,

J(·, f) attains its maximum on SF and so W (f) is well defined. Thus J(W (f), f) ≥ J(w, f)

for all w ∈ SF and for all f ∈ Fad. Hence for any sequence fn ∈ Fad we have J(W (fn), fn) ≥
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J(w, fn), ∀ w ∈ SF . We show that W : Fad −→ SF is continuous with respect to the given

topologies. Denote the sequence W (fn) by wn giving

J(W (fn), fn) = J(wn, fn) ≥ J(w, fn),∀w ∈ SF .(26)

By definition of the map W , we have {wn} ⊂ SF . Since SF × Fad is compact with respect

to the topology τww ≡ τw × τpcw, there exists a subsequence of the sequence {wn, fn},
relabeled as the original sequence, and an element {wo, f o} ∈ SF ×Fad such that

{wn, fn}
τww

−→ {wo, f o}.

By Lemma 4.2, J is jointly continuous and thus letting n → ∞, it follows from the expression

(26) that

J(wo, f o) ≥ J(w, f o),∀w ∈ SF .(27)

Since by definition, W (f o) ∈ SF , it follows from the above inequality that

J(wo, f o) ≥ J(W (f o), f o).(28)

On the other hand since wo ∈ SF , and W (f o) is a maximizer of w −→ J(w, f o) over SF ,

we also have

J(W (f o), f o) ≥ J(wo, f o).(29)

From these we conclude that

J(wo, f o) = J(W (f o), f o)(30)

proving that

W (fn)
τw

−→ W (f o)

as fn τpcw
−→ f o. Similarly, for a fixed but any w ∈ SF , define the map Π : SF −→ Fad by

arg{ min
f∈Fad

J(w, f)} ≡ Π(w),(31)

giving

J(w,Π(w)) ≤ J(w, f) ∀ f ∈ Fad.(32)

Following similar arguments again one can verify that, for any sequence wn ∈ SF converging

weakly to wo, we have

Π(wn)
τpcw
−→ Π(wo) in Fad.

Now we consider the maps

Fad ∋ f −→ J(W (f), f) ∈ R̄ and SF ∋ w −→ J(w,Π(w)) ∈ R̄.(33)

Choose {fn} ⊂ Fad a minimizing sequence for the first and {wn} ⊂ SF a maximizing

sequence for the second function. Since these sets are compact, there exist f o ∈ Fad and

wo ∈ SF such that, along a subsequence if necessary, fn τpcw
−→ f o and wn τw

−→ wo and

J(W (fn), fn) −→ J(W (f o), f o) ≡ Mmin(34)

J(wn,Π(wn)) −→ J(wo,Π(wo)) ≡ Mmax.(35)

Clearly

J(w, fn) ≤ J(W (fn), fn) ∀ n ∈ N,w ∈ SF .

Hence in the limit, by continuity of J and W , it follows from the above inequality and (34)

that

J(w, f o) ≤ J(W (f o), f o) ≤ J(W (f o), f) ∀ w ∈ SF , f ∈ Fad.(36)
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Thus the pair (W (f o), f o) is a saddle point of the functional J . By similar arguments one

can conclude that the pair (wo,Π(wo)) is also a saddle point for the functional J . We show

that the values corresponding to these saddle points are the same, that is, Mmin = Mmax.

For convenience of notation set

(W (f o), f o) ≡ (wo
1, f

o
1 ) and (wo,Π(wo)) ≡ (wo

2, f
o
2 ).

Then by definition of saddle points it is easy to see that

J(wo
2, f

o
1 ) ≤ J(wo

1, f
o
1 ) ≤ J(wo

1, f
o
2 )

J(wo
1, f

o
2 ) ≤ J(wo

2, f
o
2 ) ≤ J(wo

2, f
o
1 ) .

This leads to the following inequality,

J(wo
1, f

o
2 ) ≤ J(wo

2, f
o
2 ) ≤ J(wo

2, f
o
1 ) ≤ J(wo

1, f
o
1 ) ≤ J(wo

1, f
o
2 ),

and hence the equality

J(wo
1, f

o
2 ) = J(wo

2, f
o
2 ) = J(wo

2, f
o
1 ) = J(wo

1, f
o
1 ) = J(wo

1, f
o
2 ) .(37)

This proves that

J(wo
1, f

o
1 ) = J(wo

2, f
o
2 ) = Mmin = Mmax.

Thus we have proved that J has a saddle point and that

min
f∈Fad

max
w∈SF

J(w, f) = max
w∈SF

min
f∈Fad

J(w, f).(38)

This completes the proof. •

Remark 4.4 Since the functional J may not be strictly concave and convex in the first and

second argument respectively, there may be multiple saddle points.

5. EXTENSION TO STATE DEPENDENT UNCERTAINTY

In section 4, we considered the multifunction F , representing the uncertainty, to be

independent of state. Here we present a class of systems with state dependent uncertainty

for which the technique of proof of the results presented in section 3 remain the same.

Let Ξ be a reflexive Banach space with dual Ξ∗ and Ba(Ξ
∗) the closed ball in Ξ∗ of radius

a > 0 around the origin. Let L∞(I,Ξ∗) denote the space of essentially bounded measurable

functions with values in Ξ∗ and SBa(Ξ∗) denote the set of all measurable selections of the

(constant) multifunction Ba(Ξ
∗), that is, measurable functions {w} with values w(t) ∈

Ba(Ξ
∗) for all t ∈ I. Clearly, it follows from well known results on the theory of measurable

selections [8, Theorem 2.14, p 158; Lemma 3.2, p 175] that the set SBa(Ξ∗) is a nonempty

subset of B(I,Ξ∗) ⊂ L∞(I,Ξ∗). Let H : I ×E −→ L(Ξ∗, E) be an operator valued function

and define the multifunction F given by

F (t, x) ≡ {H(t, x)w(t) : w ∈ SBa(Ξ∗)}, t ∈ I, x ∈ E.

The system (6) is now replaced by the following model,

ẋ + Ax ∈ F (t, x) + ARf(G(x)), x(0) = x0, t ∈ I.(39)

We need the following assumptions for H:

(H1): H is Borel measurable (in the uniform operator topology) and there exists an

h ∈ L+
p (I) such that

‖ H(t, ξ) ‖L(Ξ∗,E)≤ h(t)
(

1 + |ξ|E
)

, ∀ ξ ∈ E.

(H2): For every r > 0, there exists a nonnegative number Kr such that

‖ H(t, ξ) − H(t, η) ‖L(Ξ∗,E)≤ Kr|ξ − η|E , ∀ ξ, η ∈ Br(E), t ∈ I,
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where Br(E) denotes the ball of radius r around the origin in E.

Theorem 5.1 Suppose the assumptions (A1),(A2),(A4) and those for G and f of theorem

3.1 hold and let H satisfy the hypotheses (H1) and (H2). Then, for each x0 ∈ E, and

f ∈ Fad, system (39) has a nonempty set of mild solutions X ≡ {x} ⊂ C(I,E).

Proof. The proof is similar to that of Theorem 3.2. Let x0 ∈ E and f ∈ Fad be given. Since

SBa(Ξ∗) 6= ∅, we can choose any w ∈ SBa(Ξ∗) and consider the following integral equation,

x(t) = S(t)x0 +

∫ t

0
S(t − s)H(s, x(s))w(s)ds

+

∫ t

0
AS(t − s)Rf(G(x(s)))ds, t ∈ I.(40)

By our assumptions, the operators {H, f,G} have at most linear growth and they are locally

Lipschitz. Hence this equation has a unique solution x(w) ∈ C(I,E). The proof is based on

the technique given in [2, Theorem 3.1,p64; Theorem 3.2,p69] dealing with the singularity

of the third integrand and Banach fixed point theorem. Thus for each selection w, the

corresponding evolution equation,

ẋ + Ax = H(t, x)w + ARf(G(x)), x(0) = x0, t ∈ I,

has a unique mild solution x(w) ∈ C(I,E). Hence the differential inclusion (39) has a

nonempty set of mild solutions X ≡ {x(w), w ∈ SBa(Ξ∗)} ⊂ C(I,E). This completes the

outline of the proof. •

Using the above theorem, we can prove similar continuity results of Lemma 4.1 and

4.2 for this system. On the basis of these results we obtain the following result for state

dependent uncertainty.

Theorem 5.2 Consider the system (39) with the objective functional given by (10) and

suppose the assumptions of Theorem 5.1 and those of Lemma 4.1 and 4.2 hold and that

Fad satisfies the associated assumption in Theorem 4.3. Then J has a saddle point.

Proof. The proof being similar, we present a brief outline. Since Ξ∗ is a dual space and

Ba(Ξ
∗) is a closed bounded convex set, by Alaoglu theorem it is weak star compact and

hence SBa(Ξ∗) is a weak star compact convex subset of L∞(I,Ξ∗). In fact, SBa(Ξ∗) is a

subset of B(I,Ξ∗) which is a subset of L∞(I,Ξ∗). By using the hypothesis (H1) one can

verify that, for any x ∈ C(I,E),

H(·, x(·))wn(·)
w

−→ H(·, x(·))wo(·)

in Lp(I,E) for any sequence {wn} ⊂ SBa(Ξ∗) that converges in the weak star topology to

wo. Now, in the present case, the term En
1 of equation (14) takes the form,

En
1 (t) ≡

∫ t

0
S(t − s)H(s, xo(s))

(

wn(s) − wo(s)
)

ds

+

∫ t

0
S(t − s)

(

H(s, xn(s)) − H(s, xo(s))

)

wn(s)ds

≡ En
1,1(t) + En

1,2(t), t ∈ I,(41)

while the rest of the terms remain unchanged. By virtue of compactness of the semigroup

S(t), t > 0, and the weak convergence mentioned above, En
1,1(t)

s
−→ 0 in E for every t ∈ I.

The term En
1,2 can be added to the last term of equation (14) without affecting the singularity

of the integral operator and so treated equally. Replacing the weak topology τw by the weak

star topology τw∗

, this information is sufficient to follow similar arguments as in Lemma

4.1 to prove the continuity. From this result also follows the continuity result of Lemma 4.2
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with SF replaced by SBa(Ξ∗) and the product topology τw × τpcw replaced by τw∗

× τpcw.

The rest of the proof is identical to that of Theorem 4.3 once the statement: (SF ⊂ Lp(I,E)

is compact in the weak topology): is replaced by the statement :(SBa(Ξ∗) ⊂ L∞(I,Ξ∗) is

compact in the weak star topology). This completes our brief outline of the proof. •

Remark 5.3. Note that the above result also holds for any w∗ measurable multifunction Γ,

in place of Ba(Ξ
∗), with values Γ(t), t ∈ I, which are nonempty w∗ compact convex subsets

of Ξ∗.

Remark 5.4 In case of distributed control and boundary uncertainty, the abstract model

takes the form

ẋ + Ax ∈ Bu + ARF, x(0) = x0, t ∈ I,

where B is a bounded linear operator from a suitable Banach space U to E, and F is a

mutifunction F : I −→ 2Y \ ∅. Such problems can be treated in similar manner.

An Open Problem. In a recent paper [1], we proved also the necessary conditions of

optimality [1, Theorem 4.1, p 70] under the assumption that the set of admissible feedback

operators is a subset of the space of linear operators Ls(Z, Y ) furnished with the strong

operator topology. Here we have not attempted to present necessary conditions of optimal-

ity. This will require additional regularity on the admissible set Fad ⊂ (C(Z, Y ), τpcw). We

leave this as an open problem.

Future Directions: (D1): We have used a special class of state dependent perturbations

in the system model (39). It would be interesting to consider more general multi functions

F (t, x), t ∈ I.

(D2): Let Σ ≡ σ(I) denote the sigma algebra of subsets of the interval I. Replace the

multifunction t ∋ I −→ F (t) of equation (6) by a multimeasure Σ ∋ σ −→ M(σ). An

E-valued countably additive bounded vector measure ν is said to be a selection of the

multimeasure M if for every σ ∈ Σ, ν(σ) ∈ M(σ). Again, let SM ⊂ Mcabv(Σ, E) denote

the set of all such selections of the multimeasure M where Mcabv(Σ, E) denotes the space

of countably additive E-valued bounded vector measures having bounded variation. In this

case the system (6)–(7) takes the form

dx + Axdt ∈ M(dt) + ARu dt, x(0) = x0,(42)

u ≡ f(G(x)), f ∈ Fad, t ∈ I.(43)

This model includes impulsive as well as smooth perturbations (uncertainties). Again, for

any selection ν ∈ SM , the mild solution is given by the solution of the integral equation,

x(t) = S(t)x0 +

∫ t

0
S(t − s)ν(ds) +

∫ t

0
AS(t − s)Rf(G(x(s))ds, t ∈ I,(44)

which is perturbed by the E-valued vector measure ν. For each ν ∈ Mcabv(Σ, E), we can

prove that this equation has a unique solution x ∈ B(I,E) ⊃ C(I,E). The solution is

in C(I,E) only if the measure ν is nonatomic. If the set of perturbing measures SM is

nonatomic and weakly compact, our results hold also for this class of systems. However, if

they are atomic, compactness of the semigroup may not be sufficient to prove the necessary

continuity results stated in Lemma 4.1.

An alternative model is given by

dx + Axdt = B(t)ν(dt) + ARudt, x(0) = x0,(45)

ν ∈ Md, u ≡ f(G(x)), f ∈ Fad, t ∈ I,(46)

where B ∈ C(I,L(Q,E)) with Q being a Banach space and ν ∈ Md ⊂ Mcabv(Σ, Q).

The uncertainty is generated by the family of vector measures Md. Assuming that Q
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is a reflexive Banach space, one can exploit the Bartle-Dunford-Schwartz relative weak

compactness criterion [12, Theorem 5, p 105] to derive similar results as presented in this

paper. In general, for the system (45)–(46), our results apply for measures with or without

atoms and also for noncompact semigroup S(t), t ≥ 0, provided the operator valued function

B and the set Md satisfy the following properties. The set Md is weakly compact and the

operator valued function B is such that, for every σ ∈ Σ and every weakly convergent

sequence {νn} with weak limit ν, we have

µn(σ) ≡

∫

σ

B(s)νn(ds)
s

−→

∫

σ

B(s)ν(ds) ≡ µ(σ)

in E.
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