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ABSTRACT. In this paper, we consider the general solution for a mixed type cubic functional

equation

lf(

m−1∑

i=1

xi + lxm)+ lf(

m−1∑

i=1

xi − lxm)+ 2

m−1∑

i=1

f(lxi) = 2lf(

m−1∑

i=1

xi)+ l3
m−1∑

i=1

[f(xi + xm)+ f(xi − xm)],

where l ≥ 2 and m ≥ 3 are any integers and investigate the Hyers-Ulam-Rassias stability of this

equation.
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1. INTRODUCTION

The stability problem of functional equations has originally been formulated by

S.M. Ulam [23] in 1940: Under what condition does there exists a homomorphism

near an approximate homomorphism? In following year, D.H. Hyers [7] answered

the problem of Ulam under the assumption that the groups are Banach spaces. A

generalized version of the theorem of Hyers for approximately linear mappings was

given by Th.M. Rassias [18]. Since then, a great deal of work has been done by

a number of authors and the problems concerned with the generalizations and the

applications of the stability to a number of functional equations have been developed

as well.

In particular, one of the important functional equations studied is the following

functional equation:

f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x).(1.1)
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It is easy to see that the cubic function f(x) = cx3 is a solution of the functional

equation (1.1). In this case the equation (1.1) said to be a cubic functional equation

and every solution of the equation (1.1) is called a cubic function. The cubic functional

equation (1.1) was solved by K.-W. Jun and H.-M. Kim [11]. In fact, they proved

that a function f : X → Y between real vector spaces is a solution of the functional

equation (1.1) if and only if there exists a function H : X3 → Y such that f(x) =

H(x, x, x) for all x ∈ X, and H is symmetric for each fixed one argument and additive

for fixed two arguments. The function H is given by

H(x, y, z) =
1

24

[
f(x+ y + z) + f(x− y − z) − f(x+ y − z) − f(x− y + z)

]

for all x, y, z ∈ X. In addition, they investigated the Hyers-Ulam-Rassias stability for

the cubic functional equation. After then, Y.-S. Jung and I.-S. Chang [14] introduced

different type of cubic functional equation,

f(x+ y + 2z) + f(x+ y − 2z) + f(2x) + f(2y)(1.2)

= 2f(x+ y) + 4[f(x+ z) + f(x− z) + f(y + z) + f(y − z)],

which is equivalent to (1.1) and they have established the Hyers-Ulam-Rassias stabil-

ity of this functional equation. Recently, H.-Y. Chu and D.-S. Kang [5] extended the

functional equation (1.2) to the n-dimensional cubic functional equation

f(

m−1∑

i=1

xi + 2xm) + f(

m−1∑

i=1

xi − 2xm) +

m−1∑

i=1

f(2xi)(1.3)

= 2f(

m−1∑

i=1

xi) + 4

m−1∑

i=1

[f(xi + xm) + f(xi − xm)]

and they dealt with stability of the above functional equation.

In this paper, we now consider the mixed type cubic functional equation

lf(
m−1∑

i=1

xi + lxm) + lf(
m−1∑

i=1

xi − lxm) + 2
m−1∑

i=1

f(lxi)(1.4)

= 2lf(
m−1∑

i=1

xi) + l3
m−1∑

i=1

[f(xi + xm) + f(xi − xm)],

where l ≥ 2 and m ≥ 3 are any integers, that is to say, we obtain the general solution

of this equation. Furthermore, we adopt the idea of Cădariu and Radu [3] and offer the

Hyers-Ulam-Rassias stability for this equation. In 1996, G. Isac and Th.M. Rassias

[10] were the first to provide applications of the generalized Hyers-Ulam stability

theory of functional equations for the proof of new fixed point theorems.

2. THE REQUIRED RESULTS

We now recall the fundamental results of fixed point theory.
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Theorem 2.1 ([2]). Let (X, d) be a complete metric space. Suppose that T : X → X

be a strictly contractive mapping, that is,

d(Tx, Ty) ≤ Ld(x, y)

for all x, y ∈ X and for some the Lipschitz constant L < 1. Then

(1) the mapping T has a unique fixed point x∗ = Tx∗;

(2) the fixed point x∗ is globally attractive, that is,

lim
n→∞

T nx = x∗

for any starting point x ∈ X;

(3) one has the following estimation inequalities:

d(T nx, x∗) ≤ Lnd(x, x∗),

d(T nx, x∗) ≤
1

1 − L
d(T nx, T n+1x),

d(x, x∗) ≤
1

1 − L
d(x, Tx)

for all x ∈ X and all nonnegative integer n.

The following theorem play an important role in proving the stability problem.

Theorem 2.2 (The alternative of fixed point [15]). Suppose that we are given a

complete generalized metric space (Ω, d), i.e., one for which d may assume infinite

values, and a strictly contractive mapping T : Ω → Ω with Lipschitz constant L < 1.

Then, for each given x ∈ Ω, either

(1) d(T nx, T n+1x) = ∞ for all n ≥ 0,

or

(2) there exists a nonnegative integer n0 such that d(T nx, T n+1x) <∞ for all n ≥ n0.

Actually, if (2) holds, then the followings are true:

• the sequence (T nx) is convergent to a fixed point y∗ of T ;

• y∗ is the unique fixed point of T in the set ∆ = {y ∈ Ω| d(T n0x, y) <∞};

• d(y, y∗) ≤ 1
1−L

d(y, Ty) for all y ∈ ∆.

The reader is referred to the book of D.H. Hyers, G. Isac and Th.M. Rassias [9]

for an extensive theory of fixed points with a large variety of applications.

First of all, we will find out the general solutions of functional equation (1.4).

Now we will start with m = 3.
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Lemma 2.3. Let X and Y be real vector spaces. A function f : X → Y satisfies the

functional equation

lf(x+ y + lz) + lf(x+ y − lz) + 2f(lx) + 2f(ly)(2.1)

= 2lf(x+ y) + l3[f(x+ z) + f(x− z) + f(y + z) + f(y − z)]

for all x, y, z ∈ X, where l ≥ 2 is any integers if and only if f is cubic.

Proof. Let a function f : X → Y satisfy the equation (2.1) for l = 2. Then f is cubic.

We also see that

f(x+ 2z) + f(x− 2z) + 6f(x) = 4f(x+ z) + 4f(x− z),

which, by the proof of [12, Theorem 2.1], gives the equation

f(x+ y + z) + f(x+ y − z) + 2f(x) + 2f(y)

= 2f(x+ y) + f(x+ z) + f(x− z) + f(y + z) + f(y − z).

Now make the induction assumption that (2.1) is true for any integer a with

2 < a ≤ l. Then we can rewrite the equation (2.1) as

f(x+ y + az) + f(x+ y − az) + 2a2[f(x) + f(y)](2.2)

= 2f(x+ y) + a2[f(x+ z) + f(x− z) + f(y + z) + f(y − z)].

Taking x = 0, y = z and replacing x by x+ z in (2.2) equipped with a = l, separately,

it yields f((l + 1)z) = (l + 1)3f(z) and

f(x+ y + (l + 1)z) + f(x+ y − (l − 1)z) + 2l2[f(x+ z) + f(y)](2.3)

= 2f(x+ y + z) + l2[f(x+ 2z) + f(x) + f(y + z) + f(y − z)].

Combining the equation (2.3) and the equation with x = −z in (2.3), we figure out

f(x+ y + (l + 1)z) + f(x+ y − (l + 1)z) + 2(l + 1)2[f(x) + f(y)]

= 2f(x+ y) + (l + 1)2[f(x+ z) + f(x− z) + f(y + z) + f(y − z)].

By multiplying by l + 1 in this equation, then we see that (2.1) is fulfilled for l + 1,

which prove the validity of (2.1) for l + 1. Therefore the equation (2.1) implies that

f is cubic.

Conversely, if there exists a function H : X3 → Y such that f(x) = H(x, x, x)

for all x ∈ X, and H is symmetric for each fixed one argument and additive for fixed

two arguments, we may easily show that f satisfies the equation (2.1).

Using the Lemma 2.3, we can verify the following no difficulty.

Lemma 2.4. Let X and Y be real vector spaces. A function f : X → Y satisfies the

functional equation (1.4) if and only if f is cubic.
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3. THE STABILITY OF FUNCTIONAL EQUATION (1.4)

In recent years, L. Cădariu and V. Radu [3] applied the fixed point method to

the investigation of the Cauchy additive functional equation. Using such an elegant

idea, they could present a short and simple proof for the stability of that equation

[2, 16].

From now on, let X be a real vector space and Y be a real Banach space, respec-

tively, unless we give any specific reference. As a matter of convenience, for a given

mapping f : X → Y , we set

Df(x1, x2, . . . , xm) := lf(

m−1∑

i=1

xi + lxm) + lf(

m−1∑

i=1

xi − lxm) + 2

m−1∑

i=1

f(lxi)

−2lf(

m−1∑

i=1

xi) − l3
m−1∑

i=1

[f(xi + xm) + f(xi − xm)],

for all x1, x2, . . . , xm ∈ X, where l ≥ 2 and m ≥ 3 are any integers.

Based on the idea of Cădariu and Radu, we now construct a stability of the

functional equation (1.4) as follow.

Theorem 3.1. Suppose that a function f : X → Y satisfies the condition f(0) = 0

and the inequality

‖Df(x1, x2, . . . , xm)‖ ≤ ϕ(x1, x2, . . . , xm)(3.1)

for all x1, x2, . . . , xm ∈ X, where ϕ : Xm → [0,∞) is a given function. If there exists

L < 1 such that the function

x 7→ ψ(x) = ϕ
(
0,
x

l
, . . . ,

x

l︸ ︷︷ ︸
m−2

, 0
)

has the property

(3.2) ψ(x) ≤ L · λ3
j · ψ

( x
λj

)

for all x ∈ X, and if ϕ has the function with

lim
n→∞

ϕ(λnj x1, λ
n
j x2, . . . , λ

n
j xm)

λ3n
j

= 0(3.3)

for all x1, x2, . . . , xm ∈ X, where λj = l if j = 0 and λj = 1
l
if j = 1, then there exists

a unique cubic function C : X → Y satisfying the inequality

‖f(x) − C(x)‖ ≤
L1−j

2(m− 2)(1 − L)
ψ(x)(3.4)

for all x ∈ X.
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Proof. We consider the set

Ω := {g : X → Y | g(0) = 0}

and the generalized metric on Ω,

d(g, h) = dψ(g, h) = inf{K ∈ (0,∞)| ‖g(x) − h(x)‖ ≤ Kψ(x), for all x ∈ X}.

One can easily check that (Ω, d) is complete.

Next, let T : Ω → Ω be a function defined by

Tg(x) :=
1

λ3
j

g(λjx)

for all x ∈ X with λj = l1−2j .

We first prove that T is a strictly contractive on Ω: Note that for all g, h ∈ Ω,

d(g, h) < K =⇒ ‖g(x) − h(x)‖ ≤ Kψ(x), x ∈ X

=⇒
∥∥ 1

λ3
j

g(λjx) −
1

λ3
j

h(λjx)
∥∥ ≤

1

λ3
j

Kψ(λjx), x ∈ X

=⇒
∥∥Tg(x) − Th(x)

∥∥ ≤ LKψ(x), x ∈ X

=⇒ d(Tg, Th) ≤ LK.

Hence we see that for all g, h ∈ Ω,

d(Tg, Th) ≤ Ld(g, h).

We now want to show that d(f, Tf) < ∞: If we put x1 = 0, xi = x (i =

2, . . . , m−1) and xm = 0 in (3.1) and use (3.2) with the case j = 0, then we arrive at

(3.5) ‖f(lx) − l3f(x)‖ ≤
1

2(m− 2)
ϕ(0, x, . . . , x︸ ︷︷ ︸

m−2

, 0),

which is reduced to

∥∥f(x) −
1

l3
f(lx)

∥∥ ≤
1

2(m− 2)l3
ψ(lx) ≤

L

2(m− 2)
ψ(x)

for all x ∈ X, viz.,

d(f, Tf) ≤
L

2(m− 2)
=

L1

2(m− 2)
<∞.

If we substitute x := x
l

in (3.5) and use (3.2) with the case j = 1, then we find

that
∥∥f(x) − l3f

(x
l

)∥∥ ≤
1

2(m− 2)
ψ(x)

for all x ∈ X, viz.,

d(f, Tf) ≤
1

2(m− 2)
=

L0

2(m− 2)
<∞.
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Thus we conclude that

d(f, Tf) ≤
L1−j

2(m− 2)
<∞.

Therefore, by the fixed point alternative, we can prove that there is a unique

cubic function C : X → Y such that the inequality (3.4): Now, from the fixed point

alternative in both cases, it follows that there exists a fixed point C of T in Ω such

that

(3.6) C(x) = lim
n→∞

1

λ3n
j

f(λnj x)

for all x ∈ X, since limn→∞ d(T nf, C) = 0.

Again, using the fixed point alternative, we can get

d(f, C) ≤
1

1 − L
d(f, Tf) ≤

L1−j

2(m− 2)(1 − L)
,

which yields the inequality (3.4).

In order to show that the function C : X → Y is cubic, let us replace λnj xi instead

of xi in (3.1) and divide by λ3n
j . Then we have by (3.3) and (3.6)

‖DC(x1, x2, . . . , xm)‖ = lim
n→∞

1

λ3n
j

‖Df(λnj x1, λ
n
i x2, . . . , λ

n
j xm)‖

≤ lim
n→∞

ϕ(λnj x1, λ
n
i x2, . . . , λ

n
j xm)

λ3n
j

= 0

for all x1, x2, . . . , xm ∈ X, viz., C satisfies the functional equation (1.4). Thus

Lemma 2.4 guarantees that C is cubic.

To prove the uniqueness of the such cubic function, let us assume that there

exists another cubic function C1 : A → A satisfying the inequality (3.4). Since C1 is

a cubic,

C1(x) =
1

λ3
j

C1(λjx) = (TC1)(x)

and so C1 is a fixed point of T . In view of (3.4) and the definition of d, we deduce

that

d(f, C1) ≤
L1−j

2(1 − L)
<∞,

viz., C1 ∈ ∆ = {g ∈ X| d(f, g) < ∞}. By the fixed point alternative, we find that

C = C1, which proves that C is unique. This ends the proof of the theorem.

Here and now, we will use the direct method to prove the stability for the func-

tional equation (1.4).
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Theorem 3.2. Suppose that f : X → Y is a mapping with f(0) = 0 for which there

exists a function φ : Xm → [0,∞) such that

∞∑

i=0

1

l3i
φ(lix1, l

ix2, . . . , l
ixm)

converges and

‖Df(x1, x2, . . . , xm)‖ ≤ φ(x1, x2, . . . , xm)(3.7)

for all x1, x2, . . . , xm ∈ X. Then there exists a unique cubic function C : X → Y

satisfying the inequality

‖f(x) − C(x)‖ ≤
1

2(m− 2)l3

∞∑

i=0

1

l3i
φ̃(lix)(3.8)

for all x ∈ X, where φ̃ is given by φ̃(x) = φ(0, x, . . . , x︸ ︷︷ ︸
m−2

, 0) for all x ∈ X.

Proof. Putting x1 = xm = 0, x2 = · · · = xm−1 = x in (3.7) and dividing by l3, we

have
∥∥∥f(x) −

1

l3
f(lx)

∥∥∥ ≤
1

2(m− 2)l3
φ̃(x)(3.9)

for all x ∈ X. By replacing x by lx in (3.9) and dividing by l3 and then summing the

resulting inequality with (3.9), we get

(3.10)
∥∥∥f(x) −

( 1

l3

)2

f(l2x)
∥∥∥ ≤

1

2(m− 2)l3
φ̃(x) +

1

2(m− 2)

( 1

l3

)2

φ̃(lx).

An induction implies that

∥∥∥f(x) −
1

l3s
f(lsx)

∥∥∥ ≤
1

2(m− 2)l3

s−1∑

i=0

1

l3i
φ̃(lix).(3.11)

To prove convergence of the sequence { f(lsx)
l3s

}, we divide inequality (3.11) by l3n

and also replace x by lnx to find that for s > n > 0,
∥∥∥

1

l3n
f(lnx) −

1

l3(s+n)
f(lslnx)

∥∥∥ =
1

l3n

∥∥∥f(lnx) −
1

l3s
f(lslnx)

∥∥∥(3.12)

≤
1

2(m− 2)l3(n+1)

s−1∑

i=0

1

l3i
φ̃(ln+ix).

Since the right-hand side of the inequality goes to 0 as n→ ∞, a sequence { f(lsx)
l3s } is

Cauchy. Therefore, we may define a function C : X → Y by

C(x) := lim
s→∞

f(lsx)

l3s

for all x ∈ X. By letting s→ ∞ in (3.11), we arrive at the formula (3.8).
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We now show that C satisfies the functional equation (1.4): Let us replace xi by

lsxi (i = 1, 2, . . . , m) in (3.7) and divide by l3s. Then it follows that

DC(x1, x2, . . . , xm) = lim
s→∞

1

l3s
‖Df(lsx1, l

sx2, . . . , l
sxm)‖

≤ lim
s→∞

1

l3s
φ(lsx1, l

sx2, . . . , l
sxm) = 0.

Hence we obtain the desired result. Thus the Lemma 2.3 implies that C is cubic.

It only remains to prove the claim that C is unique: Let us assume that there

exists a cubic function C1 which satisfies (1.4) and the inequality (3.8). It is clear

that C(lsx) = l3sC(x) and C1(l
sx) = l3sC1(x) for all x ∈ X and s ∈ N. Hence it

follows from (3.8) that

‖C(x) − C1(x)‖ =
1

l3s
‖C(lsx) − C1(l

sx)‖

≤
1

l3s

[
‖C(lsx) − f(lsx)‖ + ‖f(lsx) − C1(l

sx)‖
]

≤
1

(m− 2)l3(s+1)

∞∑

i=0

φ̃(ls+ix).

By letting s→ ∞, we have C(x) = C1(x), which ends the proof of the theorem.

Using the crucial inequality (3.9) and following the same approach as in Theorem

3.2, we obtain the next theorem.

Theorem 3.3. Suppose that f : X → Y is a mapping with f(0) = 0 for which there

exists a function φ : Xm → [0,∞) such that

∞∑

i=1

l3(i−1)φ(
x1

li
,
x2

li
, . . . ,

xm

li
)

converges and satisfies the inequality (3.7) for all x1, x2, . . . , xm ∈ X. Then there

exists a unique cubic function C : X → Y satisfying the inequality

‖f(x) − C(x)‖ ≤
1

2(m− 2)

∞∑

i=1

l3(i−1)φ̃(
x

li
)

for all x ∈ X, where φ̃ is given as in Theorem 3.2.

4. THE APPLICATIONS

From Theorem 3.1, we obtain the following corollary concerning the Hyers-Ulam-

Rassias stability [18] of the functional equation (1.4). Of course, by using Theorem 3.2

and Theorem 3.3, we also prove the following corollary, but we remark that Theo-

rem 3.1 is more simpler.
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Corollary 4.1. Let X and Y be a normed space and a Banach space, respectively.

Let p ≥ 0 be given with p 6= 3. Assume that ε ≥ 0 are fixed. Suppose that a function

f : X → Y satisfies the condition f(0) = 0 and the inequality

‖Df(x1, x2, . . . , xm)‖ ≤ ε(‖x1‖
p + ‖x2‖

p + · · ·+ ‖xm‖
p)

for all x1, x2, . . . , xm ∈ X. Then there exists a unique cubic function C : X → Y

such that the inequality

‖f(x) − C(x)‖ ≤
ε

2| lp − l3|
‖x‖p(4.1)

for all x ∈ X.

Proof. Consider a mapping ϕ defined by

ϕ(x1, x2, . . . , xm) := ε(‖x1‖
p + ‖x2‖

p + · · · + ‖xm‖
p)

for all x1, x2, . . . , xm ∈ X. Then it follows that

ϕ(λnj x1, λ
n
j x2, . . . , λ

n
j xm)

λ3n
j

= (λnj )
p−3ε(‖x1‖

p + ‖x2‖
p + · · · + ‖xm‖

p) → 0

as n→ ∞, where p < 3 if j = 0 and p > 3 if j = 1, viz., (3.3) is seen to be true.

Since the inequality

1

λ3
j

ψ(λjx) = (m− 2)
λ
p−3
j

lp
ε‖x‖p ≤ λ

p−3
j ψ(x),

where p < 3 if j = 0 and p > 3 if j = 1, we see that the inequality (3.2) holds with

either L = lp−3 or L = 1
lp−3 . Now the inequality (3.4) yields the property (4.1), which

complete the proof of the corollary.

The following corollary is the Hyers-Ulam stability [7] of the functional equation

(1.4).

Corollary 4.2. Let X and Y be a normed space and a Banach space, respectively.

Assume that θ ≥ 0 is fixed. Suppose that a function f : X → Y satisfies the conditon

f(0) = 0 and the inequality

‖Df(x1, x2, . . . , xm)‖ ≤ θ

for all x1, x2, . . . , xm ∈ X. Then there exists a unique cubic function C : X → Y

such that the inequality

‖f(x) − C(x)‖ ≤
1

2m(l3 − 1)
θ

for all x ∈ X

Proof. Putting p := 0 and ε := θ
m

in the corollary 4.1, we arrive at the assertion of

the corollary.
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