ON THE STABILITY FOR CUBIC FUNCTIONAL EQUATION OF MIXED TYPE

HARK-MAHN KIM, SHEON-YOUNG KANG, AND ICK-SOON CHANG*

Department of Mathematics, Chungnam National University, 220 Gung-dong Yuseong-gu, Taejon 305-764, Republic of Korea hmkim@math.cnu.ac.kr National Institute for Mathematical Sciences, 385-16 Doryong-dong Yuseong-gu, Taejon 305-340, Republic of Korea skang@nims.re.kr *Department of Mathematics, Mokwon University, 800 Doan-dong Seo-gu, Taejon 302-729, Republic of Korea ischang@mokwon.ac.kr

ABSTRACT. In this paper, we consider the general solution for a mixed type cubic functional equation

$$lf(\sum_{i=1}^{m-1} x_i + lx_m) + lf(\sum_{i=1}^{m-1} x_i - lx_m) + 2\sum_{i=1}^{m-1} f(lx_i) = 2lf(\sum_{i=1}^{m-1} x_i) + l^3 \sum_{i=1}^{m-1} [f(x_i + x_m) + f(x_i - x_m)],$$

where $l \ge 2$ and $m \ge 3$ are any integers and investigate the Hyers-Ulam-Rassias stability of this equation.

Key words: Stability; Cubic function; Fixed point alternative

AMS (MOS) Subject Classification: 39B72, 39B52

1. INTRODUCTION

The stability problem of functional equations has originally been formulated by S.M. Ulam [23] in 1940: Under what condition does there exists a homomorphism near an approximate homomorphism? In following year, D.H. Hyers [7] answered the problem of Ulam under the assumption that the groups are Banach spaces. A generalized version of the theorem of Hyers for approximately linear mappings was given by Th.M. Rassias [18]. Since then, a great deal of work has been done by a number of authors and the problems concerned with the generalizations and the applications of the stability to a number of functional equations have been developed as well.

In particular, one of the important functional equations studied is the following functional equation:

(1.1) f(2x+y) + f(2x-y) = 2f(x+y) + 2f(x-y) + 12f(x).

It is easy to see that the cubic function $f(x) = cx^3$ is a solution of the functional equation (1.1). In this case the equation (1.1) said to be a *cubic functional equation* and every solution of the equation (1.1) is called a *cubic function*. The cubic functional equation (1.1) was solved by K.-W. Jun and H.-M. Kim [11]. In fact, they proved that a function $f: X \to Y$ between real vector spaces is a solution of the functional equation (1.1) if and only if there exists a function $H: X^3 \to Y$ such that f(x) = H(x, x, x) for all $x \in X$, and H is symmetric for each fixed one argument and additive for fixed two arguments. The function H is given by

$$H(x, y, z) = \frac{1}{24} \left[f(x + y + z) + f(x - y - z) - f(x + y - z) - f(x - y + z) \right]$$

for all $x, y, z \in X$. In addition, they investigated the Hyers-Ulam-Rassias stability for the cubic functional equation. After then, Y.-S. Jung and I.-S. Chang [14] introduced different type of cubic functional equation,

(1.2)
$$f(x+y+2z) + f(x+y-2z) + f(2x) + f(2y)$$
$$= 2f(x+y) + 4[f(x+z) + f(x-z) + f(y+z) + f(y-z)],$$

which is equivalent to (1.1) and they have established the Hyers-Ulam-Rassias stability of this functional equation. Recently, H.-Y. Chu and D.-S. Kang [5] extended the functional equation (1.2) to the *n*-dimensional cubic functional equation

(1.3)
$$f(\sum_{i=1}^{m-1} x_i + 2x_m) + f(\sum_{i=1}^{m-1} x_i - 2x_m) + \sum_{i=1}^{m-1} f(2x_i)$$
$$= 2f(\sum_{i=1}^{m-1} x_i) + 4\sum_{i=1}^{m-1} [f(x_i + x_m) + f(x_i - x_m)]$$

and they dealt with stability of the above functional equation.

In this paper, we now consider the mixed type cubic functional equation

(1.4)
$$lf(\sum_{i=1}^{m-1} x_i + lx_m) + lf(\sum_{i=1}^{m-1} x_i - lx_m) + 2\sum_{i=1}^{m-1} f(lx_i)$$
$$= 2lf(\sum_{i=1}^{m-1} x_i) + l^3 \sum_{i=1}^{m-1} [f(x_i + x_m) + f(x_i - x_m)],$$

where $l \ge 2$ and $m \ge 3$ are any integers, that is to say, we obtain the general solution of this equation. Furthermore, we adopt the idea of Cădariu and Radu [3] and offer the Hyers-Ulam-Rassias stability for this equation. In 1996, G. Isac and Th.M. Rassias [10] were the first to provide applications of the generalized Hyers-Ulam stability theory of functional equations for the proof of new fixed point theorems.

2. THE REQUIRED RESULTS

We now recall the fundamental results of fixed point theory.

Theorem 2.1 ([2]). Let (X, d) be a complete metric space. Suppose that $T : X \to X$ be a strictly contractive mapping, that is,

$$d(Tx, Ty) \le Ld(x, y)$$

for all $x, y \in X$ and for some the Lipschitz constant L < 1. Then

- (1) the mapping T has a unique fixed point $x^* = Tx^*$;
- (2) the fixed point x^* is globally attractive, that is,

$$\lim_{n \to \infty} T^n x = x^*$$

for any starting point $x \in X$;

(3) one has the following estimation inequalities:

$$d(T^{n}x, x^{*}) \leq L^{n}d(x, x^{*}),$$

$$d(T^{n}x, x^{*}) \leq \frac{1}{1-L}d(T^{n}x, T^{n+1}x)$$

$$d(x, x^{*}) \leq \frac{1}{1-L}d(x, Tx)$$

for all $x \in X$ and all nonnegative integer n.

The following theorem play an important role in proving the stability problem.

Theorem 2.2 (The alternative of fixed point [15]). Suppose that we are given a complete generalized metric space (Ω, d) , i.e., one for which d may assume infinite values, and a strictly contractive mapping $T : \Omega \to \Omega$ with Lipschitz constant L < 1. Then, for each given $x \in \Omega$, either

(1) $d(T^n x, T^{n+1} x) = \infty$ for all $n \ge 0$,

or

(2) there exists a nonnegative integer n_0 such that $d(T^n x, T^{n+1} x) < \infty$ for all $n \ge n_0$.

Actually, if (2) holds, then the followings are true:

- the sequence $(T^n x)$ is convergent to a fixed point y^* of T;
- y^* is the unique fixed point of T in the set $\Delta = \{y \in \Omega | d(T^{n_0}x, y) < \infty\};$
- $d(y, y^*) \leq \frac{1}{1-L}d(y, Ty)$ for all $y \in \Delta$.

The reader is referred to the book of D.H. Hyers, G. Isac and Th.M. Rassias [9] for an extensive theory of fixed points with a large variety of applications.

First of all, we will find out the general solutions of functional equation (1.4). Now we will start with m = 3. **Lemma 2.3.** Let X and Y be real vector spaces. A function $f : X \to Y$ satisfies the functional equation

(2.1)
$$lf(x+y+lz) + lf(x+y-lz) + 2f(lx) + 2f(ly) = 2lf(x+y) + l^3[f(x+z) + f(x-z) + f(y+z) + f(y-z)]$$

for all $x, y, z \in X$, where $l \ge 2$ is any integers if and only if f is cubic.

Proof. Let a function $f: X \to Y$ satisfy the equation (2.1) for l = 2. Then f is cubic. We also see that

$$f(x+2z) + f(x-2z) + 6f(x) = 4f(x+z) + 4f(x-z),$$

which, by the proof of [12, Theorem 2.1], gives the equation

$$f(x+y+z) + f(x+y-z) + 2f(x) + 2f(y)$$

= 2f(x+y) + f(x+z) + f(x-z) + f(y+z) + f(y-z).

Now make the induction assumption that (2.1) is true for any integer a with $2 < a \leq l$. Then we can rewrite the equation (2.1) as

(2.2)
$$f(x+y+az) + f(x+y-az) + 2a^{2}[f(x) + f(y)]$$
$$= 2f(x+y) + a^{2}[f(x+z) + f(x-z) + f(y+z) + f(y-z)].$$

Taking x = 0, y = z and replacing x by x + z in (2.2) equipped with a = l, separately, it yields $f((l+1)z) = (l+1)^3 f(z)$ and

(2.3)
$$f(x+y+(l+1)z) + f(x+y-(l-1)z) + 2l^{2}[f(x+z)+f(y)] = 2f(x+y+z) + l^{2}[f(x+2z)+f(x)+f(y+z)+f(y-z)].$$

Combining the equation (2.3) and the equation with x = -z in (2.3), we figure out

$$\begin{aligned} f(x+y+(l+1)z) + f(x+y-(l+1)z) + 2(l+1)^2[f(x)+f(y)] \\ &= 2f(x+y) + (l+1)^2[f(x+z)+f(x-z)+f(y+z)+f(y-z)]. \end{aligned}$$

By multiplying by l + 1 in this equation, then we see that (2.1) is fulfilled for l + 1, which prove the validity of (2.1) for l + 1. Therefore the equation (2.1) implies that f is cubic.

Conversely, if there exists a function $H : X^3 \to Y$ such that f(x) = H(x, x, x) for all $x \in X$, and H is symmetric for each fixed one argument and additive for fixed two arguments, we may easily show that f satisfies the equation (2.1).

Using the Lemma 2.3, we can verify the following no difficulty.

Lemma 2.4. Let X and Y be real vector spaces. A function $f : X \to Y$ satisfies the functional equation (1.4) if and only if f is cubic.

3. THE STABILITY OF FUNCTIONAL EQUATION (1.4)

In recent years, L. Cădariu and V. Radu [3] applied the fixed point method to the investigation of the Cauchy additive functional equation. Using such an elegant idea, they could present a short and simple proof for the stability of that equation [2, 16].

From now on, let X be a real vector space and Y be a real Banach space, respectively, unless we give any specific reference. As a matter of convenience, for a given mapping $f: X \to Y$, we set

$$Df(x_1, x_2, \dots, x_m) := lf(\sum_{i=1}^{m-1} x_i + lx_m) + lf(\sum_{i=1}^{m-1} x_i - lx_m) + 2\sum_{i=1}^{m-1} f(lx_i)$$
$$-2lf(\sum_{i=1}^{m-1} x_i) - l^3 \sum_{i=1}^{m-1} [f(x_i + x_m) + f(x_i - x_m)],$$

for all $x_1, x_2, \ldots, x_m \in X$, where $l \ge 2$ and $m \ge 3$ are any integers.

Based on the idea of Cădariu and Radu, we now construct a stability of the functional equation (1.4) as follow.

Theorem 3.1. Suppose that a function $f : X \to Y$ satisfies the condition f(0) = 0and the inequality

(3.1)
$$||Df(x_1, x_2, \dots, x_m)|| \le \varphi(x_1, x_2, \dots, x_m)$$

for all $x_1, x_2, \ldots, x_m \in X$, where $\varphi : X^m \to [0, \infty)$ is a given function. If there exists L < 1 such that the function

$$x \mapsto \psi(x) = \varphi\left(0, \underbrace{\frac{x}{l}, \dots, \frac{x}{l}}_{m-2}, 0\right)$$

has the property

(3.2)
$$\psi(x) \le L \cdot \lambda_j^3 \cdot \psi\left(\frac{x}{\lambda_j}\right)$$

for all $x \in X$, and if φ has the function with

(3.3)
$$\lim_{n \to \infty} \frac{\varphi(\lambda_j^n x_1, \lambda_j^n x_2, \dots, \lambda_j^n x_m)}{\lambda_j^{3n}} = 0$$

for all $x_1, x_2, \ldots, x_m \in X$, where $\lambda_j = l$ if j = 0 and $\lambda_j = \frac{1}{l}$ if j = 1, then there exists a unique cubic function $C: X \to Y$ satisfying the inequality

(3.4)
$$||f(x) - C(x)|| \le \frac{L^{1-j}}{2(m-2)(1-L)}\psi(x)$$

for all $x \in X$.

Proof. We consider the set

$$\Omega := \{g : X \to Y | g(0) = 0\}$$

and the generalized metric on Ω ,

$$d(g,h) = d_{\psi}(g,h) = \inf\{K \in (0,\infty) | \|g(x) - h(x)\| \le K\psi(x), \text{ for all } x \in X\}.$$

One can easily check that (Ω, d) is complete.

Next, let $T: \Omega \to \Omega$ be a function defined by

$$Tg(x) := \frac{1}{\lambda_j^3} g(\lambda_j x)$$

for all $x \in X$ with $\lambda_j = l^{1-2j}$.

We first prove that T is a strictly contractive on Ω : Note that for all $g, h \in \Omega$,

$$d(g,h) < K \implies \|g(x) - h(x)\| \le K\psi(x), \ x \in X$$
$$\implies \left\|\frac{1}{\lambda_j^3} \ g(\lambda_j x) - \frac{1}{\lambda_j^3} \ h(\lambda_j x)\right\| \le \frac{1}{\lambda_j^3} \ K\psi(\lambda_j x), \ x \in X$$
$$\implies \|Tg(x) - Th(x)\| \le LK\psi(x), \ x \in X$$
$$\implies d(Tg, Th) \le LK.$$

Hence we see that for all $g, h \in \Omega$,

$$d(Tg, Th) \le Ld(g, h).$$

We now want to show that $d(f,Tf) < \infty$: If we put $x_1 = 0, x_i = x$ (i = 2, ..., m-1) and $x_m = 0$ in (3.1) and use (3.2) with the case j = 0, then we arrive at

(3.5)
$$||f(lx) - l^3 f(x)|| \le \frac{1}{2(m-2)}\varphi(0, \underbrace{x, \dots, x}_{m-2}, 0),$$

which is reduced to

$$\left\|f(x) - \frac{1}{l^3}f(lx)\right\| \le \frac{1}{2(m-2)l^3}\psi(lx) \le \frac{L}{2(m-2)}\psi(x)$$

for all $x \in X$, viz.,

$$d(f, Tf) \le \frac{L}{2(m-2)} = \frac{L^1}{2(m-2)} < \infty.$$

If we substitute $x := \frac{x}{l}$ in (3.5) and use (3.2) with the case j = 1, then we find that

$$\left\| f(x) - l^3 f\left(\frac{x}{l}\right) \right\| \le \frac{1}{2(m-2)} \psi(x)$$

for all $x \in X$, viz.,

$$d(f, Tf) \le \frac{1}{2(m-2)} = \frac{L^0}{2(m-2)} < \infty.$$

Thus we conclude that

$$d(f,Tf) \le \frac{L^{1-j}}{2(m-2)} < \infty.$$

Therefore, by the fixed point alternative, we can prove that there is a unique cubic function $C: X \to Y$ such that the inequality (3.4): Now, from the fixed point alternative in both cases, it follows that there exists a fixed point C of T in Ω such that

(3.6)
$$C(x) = \lim_{n \to \infty} \frac{1}{\lambda_j^{3n}} f(\lambda_j^n x)$$

for all $x \in X$, since $\lim_{n \to \infty} d(T^n f, C) = 0$.

Again, using the fixed point alternative, we can get

$$d(f,C) \le \frac{1}{1-L}d(f,Tf) \le \frac{L^{1-j}}{2(m-2)(1-L)}$$

which yields the inequality (3.4).

In order to show that the function $C: X \to Y$ is cubic, let us replace $\lambda_j^n x_i$ instead of x_i in (3.1) and divide by λ_j^{3n} . Then we have by (3.3) and (3.6)

$$\|DC(x_1, x_2, \dots, x_m)\| = \lim_{n \to \infty} \frac{1}{\lambda_j^{3n}} \|Df(\lambda_j^n x_1, \lambda_i^n x_2, \dots, \lambda_j^n x_m)\|$$
$$\leq \lim_{n \to \infty} \frac{\varphi(\lambda_j^n x_1, \lambda_i^n x_2, \dots, \lambda_j^n x_m)}{\lambda_j^{3n}} = 0$$

for all $x_1, x_2, \ldots, x_m \in X$, viz., C satisfies the functional equation (1.4). Thus Lemma 2.4 guarantees that C is cubic.

To prove the uniqueness of the such cubic function, let us assume that there exists another cubic function $C_1 : A \to A$ satisfying the inequality (3.4). Since C_1 is a cubic,

$$C_1(x) = \frac{1}{\lambda_j^3} C_1(\lambda_j x) = (TC_1)(x)$$

and so C_1 is a fixed point of T. In view of (3.4) and the definition of d, we deduce that

$$d(f, C_1) \le \frac{L^{1-j}}{2(1-L)} < \infty,$$

viz., $C_1 \in \Delta = \{g \in X | d(f,g) < \infty\}$. By the fixed point alternative, we find that $C = C_1$, which proves that C is unique. This ends the proof of the theorem.

Here and now, we will use the direct method to prove the stability for the functional equation (1.4).

Theorem 3.2. Suppose that $f: X \to Y$ is a mapping with f(0) = 0 for which there exists a function $\phi: X^m \to [0, \infty)$ such that

$$\sum_{i=0}^{\infty} \frac{1}{l^{3i}} \phi(l^i x_1, l^i x_2, \dots, l^i x_m)$$

converges and

(3.7)
$$||Df(x_1, x_2, \dots, x_m)|| \le \phi(x_1, x_2, \dots, x_m)$$

for all $x_1, x_2, \ldots, x_m \in X$. Then there exists a unique cubic function $C : X \to Y$ satisfying the inequality

(3.8)
$$||f(x) - C(x)|| \le \frac{1}{2(m-2)l^3} \sum_{i=0}^{\infty} \frac{1}{l^{3i}} \widetilde{\phi}(l^i x)$$

for all $x \in X$, where $\tilde{\phi}$ is given by $\tilde{\phi}(x) = \phi(0, \underbrace{x, \dots, x}_{m-2}, 0)$ for all $x \in X$.

Proof. Putting $x_1 = x_m = 0$, $x_2 = \cdots = x_{m-1} = x$ in (3.7) and dividing by l^3 , we have

(3.9)
$$\left\| f(x) - \frac{1}{l^3} f(lx) \right\| \le \frac{1}{2(m-2)l^3} \widetilde{\phi}(x)$$

for all $x \in X$. By replacing x by lx in (3.9) and dividing by l^3 and then summing the resulting inequality with (3.9), we get

(3.10)
$$\left\| f(x) - \left(\frac{1}{l^3}\right)^2 f(l^2 x) \right\| \le \frac{1}{2(m-2)l^3} \widetilde{\phi}(x) + \frac{1}{2(m-2)} \left(\frac{1}{l^3}\right)^2 \widetilde{\phi}(lx)$$

An induction implies that

(3.11)
$$\left\| f(x) - \frac{1}{l^{3s}} f(l^s x) \right\| \le \frac{1}{2(m-2)l^3} \sum_{i=0}^{s-1} \frac{1}{l^{3i}} \widetilde{\phi}(l^i x).$$

To prove convergence of the sequence $\{\frac{f(l^s x)}{l^{3s}}\}$, we divide inequality (3.11) by l^{3n} and also replace x by $l^n x$ to find that for s > n > 0,

(3.12)
$$\left\| \frac{1}{l^{3n}} f(l^n x) - \frac{1}{l^{3(s+n)}} f(l^s l^n x) \right\| = \frac{1}{l^{3n}} \left\| f(l^n x) - \frac{1}{l^{3s}} f(l^s l^n x) \right\|$$
$$\leq \frac{1}{2(m-2)l^{3(n+1)}} \sum_{i=0}^{s-1} \frac{1}{l^{3i}} \widetilde{\phi}(l^{n+i} x).$$

Since the right-hand side of the inequality goes to 0 as $n \to \infty$, a sequence $\{\frac{f(l^s x)}{l^{3s}}\}$ is Cauchy. Therefore, we may define a function $C: X \to Y$ by

$$C(x) := \lim_{s \to \infty} \frac{f(l^s x)}{l^{3s}}$$

for all $x \in X$. By letting $s \to \infty$ in (3.11), we arrive at the formula (3.8).

We now show that C satisfies the functional equation (1.4): Let us replace x_i by $l^s x_i$ (i = 1, 2, ..., m) in (3.7) and divide by l^{3s} . Then it follows that

$$DC(x_1, x_2, \dots, x_m) = \lim_{s \to \infty} \frac{1}{l^{3s}} \|Df(l^s x_1, l^s x_2, \dots, l^s x_m)\|$$

$$\leq \lim_{s \to \infty} \frac{1}{l^{3s}} \phi(l^s x_1, l^s x_2, \dots, l^s x_m) = 0.$$

Hence we obtain the desired result. Thus the Lemma 2.3 implies that C is cubic.

It only remains to prove the claim that C is unique: Let us assume that there exists a cubic function C_1 which satisfies (1.4) and the inequality (3.8). It is clear that $C(l^s x) = l^{3s}C(x)$ and $C_1(l^s x) = l^{3s}C_1(x)$ for all $x \in X$ and $s \in \mathbb{N}$. Hence it follows from (3.8) that

$$\begin{aligned} \|C(x) - C_1(x)\| &= \frac{1}{l^{3s}} \|C(l^s x) - C_1(l^s x)\| \\ &\leq \frac{1}{l^{3s}} \Big[\|C(l^s x) - f(l^s x)\| + \|f(l^s x) - C_1(l^s x)\| \Big] \\ &\leq \frac{1}{(m-2)l^{3(s+1)}} \sum_{i=0}^{\infty} \widetilde{\phi}(l^{s+i} x). \end{aligned}$$

By letting $s \to \infty$, we have $C(x) = C_1(x)$, which ends the proof of the theorem. \Box

Using the crucial inequality (3.9) and following the same approach as in Theorem 3.2, we obtain the next theorem.

Theorem 3.3. Suppose that $f: X \to Y$ is a mapping with f(0) = 0 for which there exists a function $\phi: X^m \to [0, \infty)$ such that

$$\sum_{i=1}^{\infty} l^{3(i-1)} \phi(\frac{x_1}{l^i}, \frac{x_2}{l^i}, \dots, \frac{x_m}{l^i})$$

converges and satisfies the inequality (3.7) for all $x_1, x_2, \ldots, x_m \in X$. Then there exists a unique cubic function $C: X \to Y$ satisfying the inequality

$$||f(x) - C(x)|| \le \frac{1}{2(m-2)} \sum_{i=1}^{\infty} l^{3(i-1)} \widetilde{\phi}(\frac{x}{l^i})$$

for all $x \in X$, where ϕ is given as in Theorem 3.2.

4. THE APPLICATIONS

From Theorem 3.1, we obtain the following corollary concerning the Hyers-Ulam-Rassias stability [18] of the functional equation (1.4). Of course, by using Theorem 3.2 and Theorem 3.3, we also prove the following corollary, but we remark that Theorem 3.1 is more simpler. **Corollary 4.1.** Let X and Y be a normed space and a Banach space, respectively. Let $p \ge 0$ be given with $p \ne 3$. Assume that $\varepsilon \ge 0$ are fixed. Suppose that a function $f: X \to Y$ satisfies the condition f(0) = 0 and the inequality

$$||Df(x_1, x_2, \dots, x_m)|| \le \varepsilon(||x_1||^p + ||x_2||^p + \dots + ||x_m||^p)$$

for all $x_1, x_2, \ldots, x_m \in X$. Then there exists a unique cubic function $C : X \to Y$ such that the inequality

(4.1)
$$||f(x) - C(x)|| \le \frac{\varepsilon}{2|l^p - l^3|} ||x||^p$$

for all $x \in X$.

Proof. Consider a mapping φ defined by

$$\varphi(x_1, x_2, \dots, x_m) := \varepsilon(\|x_1\|^p + \|x_2\|^p + \dots + \|x_m\|^p)$$

for all $x_1, x_2, \ldots, x_m \in X$. Then it follows that

$$\frac{\varphi(\lambda_j^n x_1, \lambda_j^n x_2, \dots, \lambda_j^n x_m)}{\lambda_j^{3n}} = (\lambda_j^n)^{p-3} \varepsilon(\|x_1\|^p + \|x_2\|^p + \dots + \|x_m\|^p) \to 0$$

as $n \to \infty$, where p < 3 if j = 0 and p > 3 if j = 1, viz., (3.3) is seen to be true.

Since the inequality

$$\frac{1}{\lambda_j^3}\psi(\lambda_j x) = (m-2)\frac{\lambda_j^{p-3}}{l^p}\varepsilon \|x\|^p \le \lambda_j^{p-3}\psi(x),$$

where p < 3 if j = 0 and p > 3 if j = 1, we see that the inequality (3.2) holds with either $L = l^{p-3}$ or $L = \frac{1}{l^{p-3}}$. Now the inequality (3.4) yields the property (4.1), which complete the proof of the corollary.

The following corollary is the Hyers-Ulam stability [7] of the functional equation (1.4).

Corollary 4.2. Let X and Y be a normed space and a Banach space, respectively. Assume that $\theta \ge 0$ is fixed. Suppose that a function $f: X \to Y$ satisfies the conditon f(0) = 0 and the inequality

$$\|Df(x_1, x_2, \dots, x_m)\| \le \theta$$

for all $x_1, x_2, \ldots, x_m \in X$. Then there exists a unique cubic function $C : X \to Y$ such that the inequality

$$||f(x) - C(x)|| \le \frac{1}{2m(l^3 - 1)}\theta$$

for all $x \in X$

Proof. Putting p := 0 and $\varepsilon := \frac{\theta}{m}$ in the corollary 4.1, we arrive at the assertion of the corollary.

Acknowledgement. The authors would like to thank referees for their valuable comments. The *corresponding author dedicates this paper to his late father.

REFERENCES

- J. Aczél and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ. Press, (1989).
- [2] L. Cădariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure and Appl. Math. 4(1) (2003), Art. 4.
- [3] L. Cădariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber. 346 (2004), 43–52.
- [4] I.-S. Chang and Y.-S. Jung, Stability of a functional equation deriving from cubic and quadratic functions, J. Math. Anal. Appl. 283(2) (2003), 491–500.
- [5] H.-Y. Chu and D.-S. Kang, the stability of an n-dimension cubic functional equations, J. Math. Anal. Appl., 325 (1) (2007), 595–607.
- [6] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431–436.
- [7] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci., 27 (1941), 222–224.
- [8] D.H. Hyers, G. Isac and Th. M. Rassias, "Stability of Functional Equations in Several Variables", Birkhäuser, Basel, 1998.
- [9] D.H. Hyers, G. Isac and Th. M. Rassias, *Topics in Nonlinear Analysis and Applications*, World Scientific Publ., Co., Singapore, New Jersey, London, 1997.
- [10] G. Isac and Th.M. Rassias, Stability of φ-additive mapping: Applications to nonlinear analysis, Internat. J. Math. and Math. Sci., 19 (1996), 219–228.
- [11] K.-W. Jun and H.-M. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl., 274(2) (2002), 867–878.
- [12] K.-W. Jun and H.-M. Kim, On the Hyers-Ulam-Rassias stability of a general cubic functional equation, Math. Ineq. Appl., 6(2) (2003), 289–302.
- [13] S.-M. Jung, Hyers-Ulam-Rassias stability of functional equations, Dynam. Systems. Appl., 6(4) (1997), 541–565.
- [14] Y.-S. Jung and I.-S. Chang, The stability of a cubic type functional equation with the fixed point alternative, J. Math. Anal. Appl., 306(2) (2005), 752–760.
- [15] B. Margolis and J.B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 126, 74 (1968), 305–309.
- [16] V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory 4, (2003), 91–96.
- [17] J.M. Rassias, Solution of the Ulam stability problem for cubic mappings, Glas. Mat., 36(1) (2001), 63–72.
- [18] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300.
- [19] Th.M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl., 251 (2000), 264–284.
- [20] Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Math. Appl., 62 (2000), 23–130.

- [21] Th.M. Rassias(Ed.), "Functional Equations and inequalities", Kluwer Academic, Dordrecht/ Boston/ London, 2000.
- [22] Th.M. Rassias and J. Tabor, What is left of Hyers-Ulam stability?, Journal of Natural Geometry, 1 (1992), 65–69.
- [23] S.M. Ulam, Problems in Modern Mathematics, (1960) Chap. VI, Science ed., Wiley, New York.