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ABSTRACT. In this paper, the Schauder fixed point theorem is used to investigate the existence

of solutions of the boundary value problems (BVP) for second-order nonlinear differential equations
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1. INTRODUCTION

We consider the second order nonlinear differential equation

(1.1) −[p(x)y′]′ + q(x)y = f(x, y, Ty), 0 ≤ x <∞,

where y = y(x) is a desired solution, and

(Ty)(x) =

∫ ∞

0

K(x, s)y(s)ds,

K ∈ C[R+ ×R+,R+] and R+ is the set of all nonnegative numbers.

For convenience, let us list some conditions.

(C1) The coefficients p(x) and q(x) are real-valued measurable functions on [0,∞)

such that

∫ b

0

dx

|p(x)|
<∞,

∫ b

0

|q(x)|dx <∞

for each finite positive number b. Moreover, the functions p(x) and q(x) are such

that all solutions of the second order linear differential equation

(1.2) −[p(x)y′]′ + q(x)y = 0, 0 ≤ x <∞,

belong to L2(0,∞), that is Weyl limit circle case holds for the differential

expression Ly = −[p(x)y′]′ + q(x)y (see [2],[14]).

(C2) The function f(x, y, z) is real-valued and continuous in (x, y, z) ∈ [0,∞) × R ×R,

and

(1.3) |f(x, y, z)| ≤ a|y|+ b|z| + g(x)
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for all (x, y, z) ∈ [0,∞) ×R × R, where g(x) ≥ 0, g ∈ L2(0,∞) and, a and b are

positive constants.

(C3)
∫ ∞
0

∫ ∞
0

|K (x, s)|2 dxds <∞.

Let D be the linear manifold of all elements y ∈ L2(0,∞) such that Ly is defined

and Ly ∈ L2(0,∞). Let y[1](x) = p(x)y′(x) denote the quasi-derivative of y(x). For

two given differentiable functions y = y(x) and z = z(x) we define the Wronskian of

y and z by

Wx(y, z) = y(x)z[1](x) − y[1](x)z(x), x ∈ [0,∞).

Using the Green’s formula

(1.4)

∫ b

0

[(Ly)z − y(Lz)](x)dx = Wb(y, z) −W0(y, z),

for all y, z ∈ D, we have the limit

W∞(y, z) = lim
b→∞

Wb(y, z)

exists and is finite.

Let u = u(x) and v = v(x) be solutions of (1.2) satisfying the initial conditions

(1.5) u(0) = 0, u[1](0) = 1; v(0) = −1, v[1](0) = 0

From these conditions and the constancy of the Wronskian it follows that Wx(u, v) =

1. Hence, u and v are linearly independent and they form a fundamental system of

solutions of (1.2). It follows from the condition (C1) that u, v ∈ L2(0,∞); moreover

u, v ∈ D . Consequently for each y ∈ D, the values W∞(y, u) and W∞(y, v) exist and

are finite.

We deal with the equation (1.1) whose boundary conditions are

(1.6) αy(0) + βy[1](0) = d1, γW∞(y, u) + δW∞(y, v) = d2

where α, β, γ, and δ are given real numbers satisfying the condition

(C4) ω := αδ − βγ 6= 0,

and d1, d2 are arbitrary given real numbers.

We define the set D = {y ∈ L2(0,∞) : y′ is continuous and py′ is differentiable

on [0,∞) and (py′)′ is continuous on [0,∞) and αy(0) + βy[1](0) = d1, γW∞(y, u) +

δW∞(y, v) = d2}.

A function y is called a solution of the problem (1.1), (1.6) if y ∈ D and the

equation −[p(x)y′]′ + q(x)y = f(x, y, Ty) holds for all x ∈ [0,∞).

In the recent paper [8], the existence and uniqueness of solutions of the BVP

−[p(x)y′]′ + q(x)y = f(x, y), 0 ≤ x <∞,

αy(0) + βy[1](0) = d1, γW∞(y, u) + δW∞(y, v) = d2,
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has been discussed. These boundary conditions at infinity are used in [3−8], and [10].

The problem to find solutions of a second order dynamics with assigned conditions at

infinity also arises in other contexts and recent contributions dealing with different

situations. We refer, in particular to [1,11-13] and the references there contained.

By using Green’s formula (1.4) and the initial conditions (1.5), the formulas

W∞(y, u) = y(0) +

∫ ∞

0

u(x)Ly(x)dx,

W∞(y, v) = y[1](0) +

∫ ∞

0

v(x)Ly(x)dx

are obtained. For the BVP (1.1), (1.6), we have

W∞(y, u) = y(0) +

∫ ∞

0

u(x)f(x, y(x), T y(x))dx,

W∞(y, v) = y[1](0) +

∫ ∞

0

v(x)f(x, y(x), T y(x))dx.

Put ϕ(x) = αu(x) + βv(x) and ψ(x) = γu(x) + δv(x). Since Wx(ϕ, ψ) = ω 6= 0,

the functions ϕ and ψ are linearly independent solutions of (1.2). So we obtain

ϕ(0) = Wx(ϕ, u) = −β, ϕ[1](0) = Wx(ϕ, v) = α;

ψ(0) = Wx(ψ, u) = −δ, ψ[1](0) = Wx(ψ, v) = γ.

For the boundary conditions

αy(0) + βy[1](0) = 0, γW∞(y, u) + δW∞(y, v) = 0,

ϕ satisfies the boundary condition at zero, and ψ satisfies the boundary condition at

infinity. Let

G (x, s) = −
1

ω

{

ϕ(x)ψ(s) 0 ≤ x ≤ s <∞,

ϕ(s)ψ(x) 0 ≤ s ≤ x <∞.

Since ϕ, ψ ∈ L2(0,∞), we get

(1.7)

∫ ∞

0

∫ ∞

0

|G(x, s)|2dxds <∞.

From [8, Corollary 1], the nonlinear BVP (1.1), (1.6) is equivalent to the nonlinear

integral equation

y(x) = w(x) +

∫ ∞

0

G(x, s)f(s, y(s), T y(s))ds, 0 ≤ x <∞,

where w(x) = d2

ω
ϕ(x) − d1

ω
ψ(x). Then investigating the existence of solutions of the

nonlinear BVP (1.1), (1.6) is equivalent to investigating fixed points of the operator

A : L2(0,∞) → L2(0,∞) by the formula

(1.8) Ay(x) = w(x) +

∫ ∞

0

G(x, s)f(s, y(s), T y(s))ds, 0 ≤ x <∞,

where y ∈ L2(0,∞).



656 I. YASLAN

In Section 2, we will investigate the existence of solutions of the BVP (1.1), (1.6)

by using the Schauder Fixed Point Theorem.

Finally, in Section 3, we will study BVPs on the whole axis.

2. EXISTENCE OF SOLUTIONS ON THE SEMI-AXIS

In this section to show the existence of solutions of the BVP (1.1), (1.6), we

will use the following Schauder Fixed Point Theorem: Let B be a Banach space and

S a nonempty bounded, convex, and closed subset of B. Assume A : B → B is a

completely continuous operator. If the operator A leaves the set S invariant then A

has at least one fixed point in S.

Theorem 2.1. A set S ⊂ L2(0,∞) is relatively compact iff S is bounded and for

every ε > 0 (i) there exists a δ > 0 such that
∫ ∞
0

|y(x + h) − y(x)|2dx < ε for all

y ∈ S and all h ≥ 0 with h < δ , (ii) there exists a number N > 0 such that
∫ ∞

N
|y(x)|2dx < ε for all y ∈ S.

Theorem 2.2. Assume conditions (C1), (C2), (C3), and (C4) are satisfied. In addi-

tion, let there exist a number R > 0 such that

(2.1) {

∫ ∞

0

|w(x)|2dx}1/2 +M1/2{sup
y∈S

∫ ∞

0

|f(s, y(s), T y(s))|2ds}1/2 ≤ R

where M =
∫ ∞
0

∫ ∞
0

|G(x, s)|2dxds and S = {y ∈ L2(0,∞) : ‖y‖ ≤ R}. Then the

BVP (1.1), (1.6) has at least one solution y ∈ L2(0,∞) with
∫ ∞

0

|y(x)|2dx ≤ R2.

Proof. To show that the operator A defined in (1.8) is completely continuous, we must

prove the operator A is continuous, and A(Y ) is a relatively compact set in L2(0,∞)

where Y ⊂ L2(0,∞) is a bounded set. First, we want to show that when ε > 0 and

y0 ∈ L2(0,∞), there exists δ > 0 such that

(2.2) y ∈ L2(0,∞) and ‖y − y0‖ < δ implies ‖Ay − Ay0‖ < ε.

It can be easily seen that the inequality

|Ay(x) − Ay0(x)|
2 ≤

∫ ∞

0

|G(x, s)|2ds

∫ ∞

0

|f(s, y(s), T y(s))− f(s, y0(s), T y0(s))|
2ds

holds. Hence we get

‖Ay − Ay0‖
2 ≤ M

∫ ∞
0

|f(s, y(s), T y(s))− f(s, y0(s), T y0(s))|
2ds

= M
∫ N

0
|f(s, y(s), T y(s))− f(s, y0(s), T y0(s))|

2ds

+M
∫ ∞

N
|f(s, y(s), T y(s))− f(s, y0(s), T y0(s))|

2ds,
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where

M =

∫ ∞

0

∫ ∞

0

|G(x, s)|2dxds

and N is an arbitrary positive number. By the condition (1.3) and the inequalities

(x+ y)2 ≤ 2(x2 + y2), (x+ y + z + t+ u)2 ≤ 5(x2 + y2 + z2 + t2 + u2),

we have
∫ ∞

N

|f(s, y(s), T y(s))− f(s, y0(s), T y0(s))|
2ds

≤

∫ ∞

N

[|f(s, y(s), T y(s))|+ |f(s, y0(s), T y0(s))|]
2ds

≤

∫ ∞

N

[2g(s) + a|y(s)| + b|Ty(s)|+ a|y0(s)| + b|Ty0(s)|]
2ds

≤

∫ ∞

N

[20g2(s) + 5a2|y(s)|2 + 5b2|Ty(s)|2 + 5a2|y0(s)|
2 + 5b2|Ty0(s)|

2]ds

≤ 20

∫ ∞

N

g2(s)ds+ 10a2

∫ ∞

0

|y(s) − y0(s)|
2ds+ 15a2

∫ ∞

N

|y0(s)|
2ds

+ 10b2

∫ ∞

0

|Ty(s) − Ty0(s)|
2ds+ 15b2

∫ ∞

N

|Ty0(s)|
2ds.

Choose N such that
∫ ∞

N

g2(s)ds <
ε2

120M
,

∫ ∞

N

|y0(s)|
2ds <

ε2

90a2M
,

∫ ∞

N

|Ty0(s)|
2ds <

ε2

90b2M
.

Since T is continuous, we can find a δ0 > 0 such that

‖y − y0‖ < δ0 implies ‖Ty − Ty0‖
2 <

ε2

60b2M
.

Then we get
∫ ∞

N

|f(s, y(s), T y(s))− f(s, y0(s), T y0(s))|
2ds <

ε2

6M
+ 10a2δ2 +

ε2

6M
+

ε2

6M
+

ε2

6M
.

It is known (see [9]) that under the condition (C2) the operator F defined by Fy(x) =

f(x, y(x), T y(x)) is continuous in L2(0,∞). So we can find a δ1 > 0 such that

‖y − y0‖ < δ1 implies

∫ N

0

|f(s, y(s), T y(s))− f(s, y0(s), T y0(s))|
2ds <

ε2

6M
.

Taking

δ2 = min{
ε2

60a2M
, δ2

0, δ
2
1},

we obtain desired result (2.2). Hence, the operator A is continuous.

Now, we must show that A(Y ) is a relatively compact set in L2(0,∞) where

‖y‖ ≤ c1 for all y ∈ Y . For this purpose, we will use Theorem 2.1.
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For all y ∈ Y , we have

‖Ay‖ = ‖w(x) +

∫ ∞

0

G(x, s)f(s, y(s), T y(s))ds‖

≤ ‖w‖ + ‖

∫ ∞

0

G(x, s)f(s, y(s), T y(s))ds‖.

Then, we obtain

(2.3) ‖Ay‖ ≤ ‖w‖ + {

∫ ∞

0

∫ ∞

0

|G(x, s)|2dxds}1/2{

∫ ∞

0

|f(s, y(s), T y(s))|2ds}1/2.

At the same time, using (1.3) and the inequality (x+ y + z)2 ≤ 3(x2 + y2 + z2),

the following inequality holds;
∫ ∞

0

|f(s, y(s), T y(s))|2ds ≤

∫ ∞

0

[a|y(s)| + b|Ty(s)|+ g(s)]2ds

≤ 3

∫ ∞

0

[a2|y(s)|2 + b2|Ty(s)|2 + g2(s)]ds

= 3(a2‖y‖2 + b2‖Ty‖2 + ‖g‖2).

By virtue of the condition (C3) and ‖y‖ ≤ c1 for all y ∈ Y , we have ‖Ty‖ ≤ c2

for all y ∈ Y. Then
∫ ∞

0

|f(s, y(s), T y(s))|2ds ≤ 3(a2c21 + b2c22 + ‖g‖2).

Hence ‖Ay‖ ≤ ‖w‖ + {3M(a2c21 + b2c22 + ‖g‖2)}1/2 for all y ∈ Y , that is, A(Y ) is a

bounded set in L2(0,∞).

Besides, for all y ∈ Y , we have
∫ ∞

0

|Ay(x+ h)−Ay(x)|2dx =

∫ ∞

0

|

∫ ∞

0

[G(x+ h, s)−G(x, s)]f(s, y(s), T y(s))ds|2dx

≤

∫ ∞

0

{

∫ ∞

0

|G(x+ h, s) −G(x, s)|2ds

∫ ∞

0

|f(s, y(s), T y(s))|2ds}dx

≤ 3(a2c21 + b2c22 + ‖g‖2)

∫ ∞

0

∫ ∞

0

|G(x+ h, s) −G(x, s)|2dxds.

Thus we get by (1.7) that for a given ε > 0 there exists a δ > 0, depending only on

ε, such that
∫ ∞

0

|Ay(x+ h) − Ay(x)|2dx < ε2

for all y ∈ Y and all h ≥ 0 with h < δ.

Also for all y ∈ Y , we have
∫ ∞

N

|Ay(x)|2dx ≤ 3(a2c21 + b2c22 + ‖g‖2)

∫ ∞

N

∫ ∞

0

|G(x, s)|2dsdx.

Hence we get again by (1.7) that for given ε > 0 there exists a positive number N ,

depending only on ε, such that
∫ ∞

N
|Ay(x)|2dx < ε2 for all y ∈ Y .
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Thus, A(Y ) is a relatively compact set in L2(0,∞). Then, the operator A is

completely continuous. Further, it is obvious that the set S is bounded, convex,

and closed. By (2.3) and (2.1), A maps the set S into itself, and thus the proof is

completed.

Example 2.1. We consider the following problem

(2.4)

{

−(e3xy′)′ − 2e3xy =
∫ ∞
0
e−xy(s)ds,

y(0) + y[1](0) = 1, W∞(y, u) −W∞(y, v) = 0.

When taking p(x) = e3x, q(x) = −2e3x, α = β = γ = 1, δ = −1, d1 = 1, d2 = 0,

f(x, y, Ty) = Ty and Ty(x) =
∫ ∞
0
e−xy(s)ds, the conditions (C1), (C2), (C3), and

(C4) hold. It is clear that u(x) = e−x−e−2x and v(x) = 2e−x +e−2x. Then, we obtain

ϕ(x) = −e−x, ψ(x) = 3e−x − 2e−2x and ω(x) = 1
2
(3e−x − 2e−2x). For the Green’s

function

G (x, s) = −
1

2

{

−e−x(3e−s − 2e−2s) 0 ≤ x ≤ s <∞,

−e−s(3e−x − 2e−2x) 0 ≤ s ≤ x <∞,

M =
∫ ∞
0

∫ ∞
0

|G(x, s)|2dxds = 59
240

and
∫ ∞
0

|w(x)|2dx = 3
8
. If we take R = 2, then (2.1)

is satisfied. Finally, the BVP (2.4) has at least one solution y ∈ L2(0,∞) with
∫ ∞

0

|y(x)|2dx ≤ 4.

3. EXISTENCE OF SOLUTIONS ON THE WHOLE-AXIS

We consider the equation

(3.1) −[p(x)y′]′ + q(x)y = f(x, y, Iy), −∞ < x <∞

where y = y(x) is a desired solution, and

(Iy)(x) =

∫ ∞

−∞
K(x, s)y(s)ds,

K ∈ C[R ×R,R+].

Assume that the following conditions are satisfied.

(H1) The coefficients p(x) and q(x) are real-valued measurable functions on

R = (−∞,∞) such that
∫ b

a

dx

|p(x)|
<∞,

∫ b

a

|q(x)|dx <∞

for all finite real numbers a and b with a < b. Moreover, the functions p(x) and

q(x) are such that all solutions of the second order linear differential equation

(3.2) −[p(x)y′]′ + q(x)y = 0, −∞ < x <∞,
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belong to L2(−∞,∞).

(H2) The function f(x, y, z) is real-valued and continuous in (x, y, z) ∈ R ×R × R,

and

|f(x, y, z)| ≤ a|y| + b|z| + g(x)

for all (x, y, z) in R ×R × R, where g(x) ≥ 0, g ∈ L2(−∞,∞) and, a and b are

positive constants.

(H3)
∫ ∞
−∞

∫ ∞
−∞ |K(x, s)|2dxds <∞.

Denote by D the linear manifold of all elements y ∈ L2(−∞,∞) such that Ly =

−[p(x)y′]′ + q(x)y is defined and Ly ∈ L2(−∞,∞). It follows from the Green’s

formula

(3.3)

∫ b

a

[(Ly)z − y(Lz)](x)dx = Wb(y, z) −Wa(y, z)

that, for all y, z ∈ D the limits

W−∞(y, z) = lim
a→−∞

Wa(y, z), W∞(y, z) = lim
b→∞

Wb(y, z)

exist as finite numbers.

Let u = u(x) and v = v(x) be solutions of (3.2) satisfying the initial conditions

(3.4) u(0) = 0, u[1](0) = 1; v(0) = −1, v[1](0) = 0.

By condition (H1) the solutions u and v belong to L2(−∞,∞). Moreover, they belong

to D. Therefore for each y ∈ D the values W±∞(y, u) and W±∞(y, v) exist and are

finite. By using (3.3) and (3.4), we get the formulas

W−∞(y, u) = y(0) −
∫ 0

−∞ u(x)Ly(x)dx, W−∞(y, v) = y[1](0) −
∫ 0

−∞ v(x)Ly(x)dx,

W∞(y, u) = y(0) +
∫ ∞
0
u(x)Ly(x)dx, W∞(y, v) = y[1](0) +

∫ ∞
0
v(x)Ly(x)dx.

Now we study the equation (3.1) together with the boundary conditions

(3.5) αW−∞(y, u) + βW−∞(y, v) = d1, γW∞(y, u) + δW∞(y, v) = d2,

where α, β, γ, and δ are given real numbers satisfying the condition

(H4) ω := αδ − βγ 6= 0,

and d1, d2 are given arbitrary real numbers.

We define the set D = {y ∈ L2(−∞,∞) : y′ is continuous and py′ is differentiable

on R and (py′)′ is continuous on R and αW−∞(y, u)+βW−∞(y, v) = d1, γW∞(y, u)+

δW∞(y, v) = d2}. If y ∈ D and the equation −[p(x)y′]′ + q(x)y = f(x, y, Iy) holds for

all x ∈ R, then y is called a solution of the problem (3.1), (3.5).

Let us set

ϕ(x) = αu(x) + βv(x), ψ(x) = γu(x) + δv(x)
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and define the function

G(x, s) = −
1

ω

{

ϕ(x)ψ(s) −∞ < x ≤ s <∞,

ϕ(s)ψ(x) −∞ < s ≤ x <∞,

and

w(x) =
d2

ω
ϕ(x) −

d1

ω
ψ(x).

Thus we have
∫ ∞

−∞

∫ ∞

−∞
|G(x, s)|2dxds <∞,

∫ ∞

−∞
|w(x)|2dx <∞.

The BVP (3.1), (3.5) is equivalent to the integral equation

y(x) = w(x) +

∫ ∞

−∞
G(x, s)f(s, y(s), Iy(s))ds, −∞ < x <∞.

Reasoning as in the previous section we can prove the following theorem.

Theorem 3.1. Assume conditions (H1), (H2), (H3), and (H4) are satisfied. In ad-

dition, let there exist a number R > 0 such that

(3.6) {

∫ ∞

−∞
|w(x)|2dx}1/2 +M1/2{sup

y∈S

∫ ∞

−∞
|f(s, y(s), Iy(s))|2ds}1/2 ≤ R,

where M =
∫ ∞
−∞

∫ ∞
−∞ |G(x, s)|2dxds and S = {y ∈ L2(−∞,∞) : ‖y‖ ≤ R}. Then the

BVP (3.1), (3.5) has at least one solution y ∈ L2(−∞,∞) with ‖y‖ ≤ R.

Example 3.1. We consider the following problem

(3.7)

{

−(e2x2

y′)′ + (4x2 + 2)e2x2

y =
∫ ∞
−∞ e−x2

y(s)ds,

W−∞(y, u)−W−∞(y, v) = 0, W∞(y, u) +W∞(y, v) = 1.

When taking p(x) = e2x2

, q(x) = (4x2 + 2)e2x2

, α = γ = δ = 1, β = −1, d1 = 0,

d2 = 1, f(x, y, Iy) = Iy and Iy(x) =
∫ ∞
−∞ e−x2

y(s)ds, the conditions (H1), (H2),

(H3), and (H4) are satisfied. It is clear that u(x) = xe−x2

and v(x) = −e−x2

. Then,

we have ϕ(x) = (x + 1)e−x2

, ψ(x) = (x − 1)e−x2

and ω(x) = 1
2
(x + 1)e−x2

. For the

Green’s function

G (x, s) = −
1

2

{

(x+ 1)(s− 1)e−(x2+s2) −∞ < x ≤ s <∞,

(s+ 1)(x− 1)e−(x2+s2) −∞ < s ≤ x <∞,

M =
∫ ∞
−∞

∫ ∞
−∞ |G(x, s)|2dxds = 25π

32
− 9

√
π

8
and

∫ ∞
−∞ |w(x)|2dx = 5

√
2π

32
. If we get R = 3,

then (3.6) holds. Finally, the BVP (3.7) has at least one solution y ∈ L2(−∞,∞)

with
∫ ∞

−∞
|y(x)|2dx ≤ 9.
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