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ABSTRACT. This paper deals with initial problems for fractional differential equations with

deviating arguments. Sufficient conditions are formulated under which such problems have unique

or extremal solutions. Corresponding inequalities for such problems are also discussed.
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1. INTRODUCTION

Recently, the differential equations involving Riemann–Liouville differential op-

erators of fractional order q ∈ (0, 1) are discussed, see for example [1]–[8]. Existence

of solutions for initial problems was investigated in papers [1],[3]–[8]. As far as I

know only paper [2] deals with the initial problem for delayed fractional differential

equations. In this paper we discuss an initial value problem

(1.1)

{

Dqx(t) = f(t, x(t), x(α(t))) ≡ Fx(t), t ∈ J = [0, T ], T > 0,

[x(t)t1−q] |t=0 = x0,

where

H1 : f ∈ C(J × R × R, R), α ∈ C(J, J), α(t) ≤ t, t ∈ J and 0 < q < 1.

Since f is continuous, problem (1.1) is equivalent to the following Volterra fractional

integral

(1.2) x(t) = x0t
q−1 +

1

Γ(q)

∫ t

0

(t − s)q−1f(s, x(s), x(α(s)))ds, t ∈ J,

where Γ denotes the Gamma function. In this paper, we formulate sufficient con-

ditions under which problem (1.1) has a unique solution or extremal solutions. To

obtain extremal solutions we use the monotone iterative method. The problem of

inequalities is also discussed. It is important to add that in paper [3] this technique

was also used for initial fractional differential equations without delays.
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2. EXISTENCE SOLUTIONS OF PROBLEM (1.1)

By Cp(J, R), p > 0, we denote the space of all functions x ∈ C(J, R) such that

tpx ∈ C(J, R) with the norm ‖x‖p = max
t∈J

tp|x(t)|. A function x ∈ Cp(J, R) is a

solution of problem (1.1) when x0 6= 0 if Dqx exists, is continuous and satisfies (1.1).

If x0 = 0, then Cp(J, R) is replaced by C(J, R).

Our first existence result for problem (1.1) is based on the Banach contraction

principle.

Theorem 2.1. Let assumption H1 hold and x0 = 0. In addition, we assume that

H2 : there exist nonnegative constants K, L such that

(2.1) |f(t, u1, u2)−f(t, v1, v2)| ≤ K|v1−u1|+L|v2−u2| if t ∈ J, ui, vi ∈ R, i = 1, 2,

H3 :
(K + L)T q

Γ(q + 1)
< 1 if 0 < q ≤ 1

2
.

Then problem (1.1) has a unique solution x ∈ C(J, R).

Proof. Consider the problem x = Nx, where N denotes the operator defined by the

right–hand–side of problem (1.2). Now we need to show that operator N has a fixed

point. To do it we shall show that N : C(J, R) → C(J, R) is a contraction map. Put

‖x‖ = max
t∈J

|x(t)|. We consider two cases.

Case 1. Let 0 < q ≤ 1
2
. Then in view of assumption H2, for x, y ∈ C(J, R) we

have

‖x − y‖ ≤
1

Γ(q)
max
t∈J

∫ t

0

(t − s)q−1|f(s, x(s), x(α(s))) − f(s, y(s), y(α(s)))|ds

≤
K + L

Γ(q)
‖x − y‖max

t∈J

∫ t

0

(t − s)q−1ds

=
(K + L)T q

Γ(q + 1)
‖x − y‖

because
∫ t

0

(t − s)q−1ds = tq
∫ 1

0

(1 − σ)q−1dσ =
Γ(q)

Γ(q + 1)
tq.

This and assumption H3 prove that operator N is a contraction. Therefore, N has a

unique fixed point by a Banach fixed point theorem.

Case 2. Assume that 1
2

< q < 1. Let

‖x‖∗ = max
t∈J

e−λt|x(t)| with λ >

(

K + L)

Γ(q)

)2

T 2q−1Γ(2q − 1)

2Γ(2q)
.

Note that

(2.2)

∫ t

0

e2λtdt ≤
1

2λ
e2λt,

∫ t

0

(t − s)2(q−1)ds = t2q−1 Γ(2q − 1)

Γ(2q)
.
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We will use the Schwarz inequality for integrals

∫ t

0

|a(s)||b(s)|ds ≤

√

∫ t

0

a2(s)ds

√

∫ t

0

b2(s)ds.

Let x, y ∈ C(J, R). Using assumption H2, the Schwarz inequality and (2.2), we have

‖x − y‖∗ ≤
1

Γ(q)
max
t∈J

e−λt

∫ t

0

(t − s)q−1|f(s, x(s), x(α(s)))− f(s, y(s), y(α(s)))|ds

≤
1

Γ(q)
‖x − y‖∗ max

t∈J
e−λt

∫ t

0

(t − s)q−1[Keλs + Leλα(s)]ds

≤
(K + L)

Γ(q)
‖x − y‖∗ max

t∈J
e−λt

∫ t

0

(t − s)q−1eλsds

≤
(K + L)

Γ(q)
‖x − y‖∗ max

t∈J
e−λt

√

∫ t

0

(t − s)2(q−1)ds

√

∫ t

0

e2λsds

=
(K + L)

Γ(q)

√

T 2q−1Γ(2q − 1)

2λΓ(2q)
‖x − y‖∗ ≡ ρ(λ)‖x − y‖.

Note that ρ = ρ(λ) < 1, so operator N is a contraction, so operator N has a unique

fixed point, by the Banach fixed point theorem. It ends the proof.

Theorem 2.2 (see [6]). Let assumption H1 hold and x0 6= 0. In addition, we assume

that f does not depend on the third argument and

H ′

2 : there exists a nonnegative constant K such that

|f(t, u1) − f(t, v1)| ≤ K|v1 − u1|, t ∈ J, u1, v1 ∈ R,

H ′

3 :
KT qΓ(q)

Γ(2q)
< 1.

Then problem (1.1) has a unique solution x ∈ Cp(J, R) with p = 1 − q.

3. EXISTENCE OF EXTREMAL SOLUTIONS OF PROBLEM (1.1)

First we need to investigate some problems connected with inequalities.

Theorem 3.1. Let assumption H1 hold. Let v, w : J → R be continuous and satisfy

(3.1)



















v(t) ≤ v(0) +
1

Γ(q)

∫ t

0

(t − s)q−1f(s, v(s), v(α(s)))ds,

w(t) ≥ w(0) +
1

Γ(q)

∫ t

0

(t − s)q−1f(s, w(s), w(α(s)))ds,

t ∈ J,

and one of the inequalities being strict. Let f be nondecreasing with respect to the

last two arguments for each the first argument of f . Then v(0) < w(0) implies

v(t) < w(t), t ∈ J .
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Proof. Suppose that the assertion is not true and let the first inequality of (3.1) be

strict. Because of the condition v(0) < w(0) and continuity of v, w, there exists a

point t1 ∈ (0, T ] such that v(t1) = w(t1), v(t) < w(t), t ∈ [0, t1). In view of the fact

that 0 ≤ α(t) ≤ t, we have v(α(t)) < w(α(t)) for t ∈ [0, t1).

Using the monotone character of f , we see that

v(t1) < v(0) +
1

Γ(q)

∫ t1

0

(t1 − s)q−1f(s, v(s), v(α(s)))ds,

< w(0) +
1

Γ(q)

∫ t1

0

(t1 − s)q−1f(s, w(s), w(α(s)))ds ≤ w(t1).

It is a contradiction. It shows that the assertion of Theorem 3.1 holds and this ends

the proof.

Theorem 3.2. Assume that assumption H1 holds. Let v, w : J → R be continuous

and such that (3.1) hold. In addition, we assume that there exist nonnegative constants

K and L such that

(3.2) Γ(q + 1) > K(1 + T q) + L(1 + Sq) with S = max
t∈J

α(t)

and

(3.3) f(t, x1, y1) − f(t, x2, y2) ≤ K(x1 − x2) + L(y1 − y2) if x1 ≥ x2, y1 ≥ y2.

Then v(0) ≤ w(0) implies v(t) ≤ w(t) on J .

Proof. For ǫ > 0, we put wǫ(t) = w(t) + ǫ(1 + tq), t ∈ J . Then, in view of (3.3), we

have

Q(t, q, wǫ) ≡
1

Γ(q)

∫ t

0

(t − s)q−1[f(s, w(s), w(α(s)))− f(s, wǫ(s), wǫ(α(s)))]ds+ǫtq

≥
−1

Γ(q)

∫ t

0

(t − s)q−1{K[wǫ(s) − w(s)] + L[wǫ(α(s)) − w(α(s))]}ds+ǫtq

= −
ǫ

Γ(q)

∫ t

0

(t − s)q−1{K[1 + sq] + L[1 + αq(s)]}ds + ǫtq

≥
−ǫ

Γ(q)
[K(1 + T q) + L(1 + Sq)]

∫ t

0

(t − s)q−1ds + ǫtq

= ǫtq
[

1 −
K(1 + T q) + L(1 + Sq)

Γ(q + 1)

]

> 0,

by condition (3.2). This and the definition of wǫ yield

wǫ(t) = w(t) + ǫ(1 + tq)

≥ wǫ(0) +
1

Γ(q)

∫ t

0

(t − s)q−1f(s, wǫ(s), wǫ(α(s)))ds + Q(t, w, wǫ)

> wǫ(0) +
1

Γ(q)

∫ t

0

(t − s)q−1f(s, wǫ(s), wǫ(α(s)))ds.
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Now, in view of Theorem 3.1, we get v(t) < wǫ(t) on J . Hence, if ǫ → 0, then we

have the assertion. This ends the proof.

Now we shall discuss the problem of the existence of extremal solutions for prob-

lems of type (1.1). To do it we apply the monotone iterative technique.

Theorem 3.3. Assume that assumption H1 holds and x0 = 0. Let v0, w0 : J → R be

continuous such that

(3.4)



















v0(t) ≤
1

Γ(q)

∫ t

0

(t − s)q−1f(s, v0(s), v0(α(s)))ds,

w0(t) ≥
1

Γ(q)

∫ t

0

(t − s)q−1f(s, w0(s), w0(α(s)))ds,

t ∈ J,

and v0(t) ≤ w0(t) on J . In addition, we assume that there exist nonnegative constants

K and L such that both condition (3.2), assumption H3 and the following condition

(3.5) f(t, x1, y1) − f(t, x2, y2) ≤ K(x2 − x1) + L(y2 − y1) if x1 ≤ x2, y1 ≤ y2

are satisfied.

Then there exist the extremal solutions v, w of problem (1.1) in the sector

[v0, w0]
∗ = {y : v0(t) ≤ w(t) ≤ w0(t), t ∈ J}.

Proof. Let us define two sequences {vn, wn} by formulas

(3.6)



















vn+1(t) =
1

Γ(q)

∫ t

0

(t − s)q−1F(vn+1, vn)(s)ds,

wn+1(t) =
1

Γ(q)

∫ t

0

(t − s)q−1F(wn+1, wn)(s)ds,

t ∈ J,

where

F(x, y)(s) = Fy(s) − K[x(s) − y(s)] − L[x(α(s)) − y(α(s))].

We need to show that vn → v, wn → w as n → ∞ uniformly and monotonically on

J . First we see that elements v1, w1 are well defined by Theorem 2.1.

Put p = v0 − v1. Then, by conditions (3.4) and (3.6), we have

p(t) ≤
1

Γ(q)

∫ t

0

(t − s)q−1[Fv0(s) − F(v1, v0)(s)]ds

= −
1

Γ(q)

∫ t

0

(t − s)q−1[Kp(s) + Lp(α(s))]ds.

Indeed, the problem

z(t) = −
1

Γ(q)

∫ t

0

(t − s)q−1[Kz(s) + Lz(α(s))]ds, t ∈ J

has a unique solution, by Theorem 2.1. We see that z(t) = 0, t ∈ J . This and

Theorem 3.1 yield p(t) ≤ z(t) = 0, t ∈ J proving that v0(t) ≤ v1(t), t ∈ J . Similarly,

we can show that w1(t) ≤ w0(t), t ∈ J .
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To show that v1 ≤ w1 we put p = v1 − w1. By (3.6) and (3.5), we obtain

p(t) =
1

Γ(q)

∫ t

0

(t − s)q−1[F(v1, v0)(s) − F(w1, w0)(s)]ds

≤
1

Γ(q)

∫ t

0

(t − s)q−1{K[w0(s) − v0(s)] + L[w0(α(s)) − v0(α(s))]

−K[v1(s) − v0(s) − w1(s) + w0(s)]

−L[v1(α(s)) − v0(α(s)) − w1(α(s)) + w0(α(s))]}ds

= −
1

Γ(q)

∫ t

0

(t − s)q−1[Kp(s) + Lp(α(s))]ds.

As before, this and Theorem 3.1 yield v1(t) ≤ w1(t), t ∈ J . In this way we proved

that v0(t) ≤ v1(t) ≤ w1(t) ≤ w0(t), t ∈ J .

By induction in n, we can prove that

(3.7)

v0(t) ≤ v1(t) ≤ · · · ≤ vn(t) ≤ vn+1(t) ≤ wn+1(t) ≤ wn(t) ≤ · · · ≤ w1(t) ≤ w0(t)

for n = 0, 1, . . . and t ∈ J .

Now we will prove that the sequences {vn, wn} converge to their limit func-

tions v, w, respectively. First, we need to show that the sequences are bounded

and equicontinuous on J . Indeed, v, w are uniformly bounded by M in view of (3.7).

Let 0 ≤ t1 < t2 ≤ T . Note that

(3.8)

∫ t2

t1

(t2 − s)q−1ds =

∫ t2−t1

0

(t2 − t1 − s)q−1ds = (t2 − t1)
q Γ(q)

Γ(q + 1)
.

Then, in view of (3.8), we have

|vn(t1) − vn(t2)| =
1

Γ(q)

∣

∣

∣

∣

∫ t1

0

[(t1 − s)q−1 − (t2 − s)q−1]F(vn, vn−1)(s)ds

−

∫ t2

t1

(t2 − s)q−1F(vn, vn−1)(s)ds

∣

∣

∣

∣

≤
M

Γ(q)

(
∫ t1

0

[(t1 − s)q−1 − (t2 − s)q−1]ds +

∫ t2

t1

(t2 − s)q−1ds

)

=
M

Γ(q)

(
∫ t1

0

(t1 − s)q−1ds −

∫ t2

0

(t2 − s)q−1ds + 2

∫ t2

t1

(t2 − s)q−1ds

)

=
M

Γ(q + 1)
(tq1 − t

q
2 + 2(t2 − t1)

q) ≤
2M

Γ(q + 1)
(t2 − t1)

q < ǫ

provided that |t2−t1| <
[

ǫΓ(q+1)
2M

]
1

q

with ǫ > 0. The Arzela–Ascoli Theorem guarantees

the existence of subsequences {vnk
, wnk

} of {vn, wn} , respectively, and continuous

functions v, w with vnk
, wnk

converging uniformly on J to v and w, respectively. If

nk → ∞, then we see that v, w are continuous solutions of (1.1).
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Now we need to prove that v is the minimal solution of (1.1) and w is a maximal

solution of (1.1) in the sector [v0, w0]
∗. Assume that u is any solution of problem (1.1)

such that v0(t) ≤ u(t) ≤ w0(t), t ∈ J . Put p1 = v1 − u, p2 = u − w1. Then

p1(t) =
1

Γ(q)

∫ t

0

(t − s)q−1[F(v1, v0)(s) − Fu(s)]ds

≤ −
1

Γ(q)

∫ t

0

(t − s)q−1[Kp1(s) + Lp1(α(s))]ds,

p2(t) =
1

Γ(q)

∫ t

0

(t − s)q−1[Fu(s) − F(w1, w0)(s)]ds

≤ −
1

Γ(q)

∫ t

0

(t − s)q−1[Kp2(s) + Lp2(α(s))]ds,

by condition (3.5). This and Theorem 3.1 yield v1(t) ≤ u(t) ≤ w1(t), t ∈ J . By

induction in n, we can show that vn(t) ≤ u(t) ≤ wn(t), t ∈ J, n = 1, 2, . . . . Now if

n → ∞, then we have the assertion. This ends the proof.
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