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ABSTRACT. Let g be a nonnegative real number, and a and T be positive constants. This article

studies the following degenerate parabolic problem:
2y — Uz = G(u) in (0,a) x (0,77,

where G is a nonnegative function in the form of either f(u , OT fo (u(zx,t))dx for some
positive, bounded and continuous function h with f > 0, f’ > 0, "> O, and hmualf flu) =o0c0. Tt
is subject to the initial condition,

u(z,0) =0 on [0, a],

and the boundary conditions,
u(0,1) = / M(z) Ju(z,£) P dz, u (a,t) = / N (@) [u (. t)] da,t > 0,
0 0

where p and r are constants greater than or equal to 1, and M and N are given nonnegative functions.

Existence, uniqueness and criteria for quenching and non-quenching are studied.

AMS (MOS) Subject Classification. 35K65, 35K57, 35K60, 35K20, 35K55

1. INTRODUCTION

Let a, p, r and T be positive constants with p > 1 and r > 1, D = (0,a),
D = [0,a], Q = D x (0,T], Q = D x [0,7], and Lu = 2%y — Uy,, where ¢ is a
nonnegative real number. Let us consider the following initial nonlocal boundary-

value problem:

(1.1) Lu = G(u) in Q,
(1.2) u(z,0) =0 on D,
(1.3) w(0,t) = [ M(z)|u(z, t)|Pdz,
u(a, t) = [N ( Orde, 0<t<T,
where M(z) >0, [} ( dq:<1 N()ZO andf0 z)dr < 1. Here, G (u) is in

the form of either f(u ), or [ h( u(z,t))dz, Where f>0,f>0,f">0,
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lim, .- f(u) = oo, and h is positive, bounded and continuous. The solution w is said
to quench if lim,_p- maxp u(z,t) = 1. If [M(z)dz = 0 and [ N(z)dz = 0, then
M(x) = 0 = N(z) a.e. on D, and we have the first boundary conditions u(0,t) =
0 = u(a,t). These boundary conditions with G (u) = f (u) was studied by Chan and
Kong in [1] for the case folf(s) ds < oo, and in [2] for the case folf(s) ds = oc.
In the sequel, we assume that ['M(z)dz and [N (x)dx are positive. We note that
a quenching problem involving a homogeneous heat equation subject to a nonlocal

Neumann boundary condition was studied by Roberts and Olmstead [8].

In section 2, we show that the problem (1.1)—(1.3) has a unique classical solution.
In section 3, we give a criterion for quenching to occur, and conditions for global

existence.

2. UNIQUENESS AND EXISTENCE

Since M (z) and N(z) are nonnegative, if u is a solution of the problem (1.1)-
(1.3), then u(0,t) and wu(a,t) are nonnegative. Because Lu > 0 in €, it follows from

the strong maximum principle (cf. Friedman [4, p. 39]) that u > 0 in €.
We now prove a comparison result. Let B(v(z,t)) denote K(z,t)v(z,t) or

Jy K (z,t)v(z, t)dz for some bounded nonnegative function K (z,t). Also, let K;(z,t)

and Ks(x,t) be some nontrivial, nonnegative, bounded and continuous functions.
Lemma 2.1. If Lv(z,t) > B(v(x,t)) in Q, v(x,0) > 0 on D,
v(0,t) > /a Ki(z, t)v(x, t)dz, v(a,t) > /a Ky(z, t)v(x, t)dr, 0 <t <T,
0 0
then v(x,t) > 0 on Q.

Proof. Suppose that v(z,t) < 0 somewhere on €. Since v(x,0) > 0, there are t; > 0
and z; € D such that v(zy,t;) = 0 and v(z,t) > 0 for (x,t) € D x [0,¢). If 2, € D,
then v(x1,t1) < 0 and v, (zq,¢;) > 0. This implies Lv(zy,t) < 0. Since it is
given that Lv(zy,t;) — Bu(z1,t1) > 0, we have a contradiction. Therefore either
1 = 0 or x;y = a. But in either case, we have 0 > foa Ky (x,ty)v(z, t1)dz > 0, or
0> [ Ka(z, t1)v(x, t1)dz > 0. Thus, v > 0 on Q. O

Theorem 2.2. [If
Lv > B (v) in Q,

v(z,0) >0 on D,
0(0,) > / Ky, )o(z, )dz, v(a,t) > / Ko(z, )o(x, t)dz, 0 < t < T,
0 0

then v > 0 on €.
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Proof. Let M = maxp{Ki(z,t), K»(z,t)}. Let us choose a natural number &k such

that -~
a
b <2k+1) (5) >0,

and a positive real number A such that

(2.1) A (g)Zk {1 . 2;]:{1 (g)] > %\‘@5/2 oy (Ma—1),

where v is an arbitrarily fixed positive constant.

For a fixed positive real number 7, let
w(a,t) = v(z,t) +ng(x)e™,

where o
glx)=A (:1: - g) +a*? — 23 1 4,
and k is some positive constant to be determined. We have
R 2k—2 3
g"(x) =2k(2k — 1)A <x — g) — Zx_l/Q,
(L — Byw = (L — B)v + akng(x)e™" —ng"(x)e™ — B(ng(x)e™).

1/2 is unbounded at z = 0, there exists some real number § € D

Since in ¢"(z), x~
such that —ng”(x)e"™ — B(ng(x)e™) > 0 for 0 < z < 4. For § < x < a, let us choose
x such that
0%kng(x)e™ —ng"(x)e™ — Bng(x)e™) > 0.
Then,
Lw > B (w) in Q.

Also, w(x,0) = v(x,0) +ng(x) >0 on D. At x =0, we have

g(0)=A (g)Qk +a®? 4+,

24 <a>2k+1+35/2+
2% +1\2 R

/ Ky (x,t)ng(x)e™dx < nMe™ [ i
0

These give

a an 2k
w(0,t) > / Ki(z, t)v(x, t)dr +n [A <§> +a®? + 7} et
0

From (2.1),

a\ 2k _ [ 24 a2+t 3

(B o[ (]

2) T [2k+1 2)  TEeoToe

Therefore,
w(O,t)>/ Ky (z,t)w(z,t)d.
0

Similarly,

w(a,t) > /Oa Ky(z, t)w(z, t)dz.

By Lemma 2.1, w(z,t) > 0 on . As n — 0, we obtain v(x,t) > 0. O
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We now prove a uniqueness result.

Theorem 2.3. The problem (1.1)—(1.3) has at most one solution u.

Proof. Let u and v be two solutions of the problem (1.1)-(1.3), and w = u — v. By

the mean value theorem,
Lw = G,(é)(u - 1}),

where £ is a function between v and v. We have w(z,0) = 0. Using the mean value

theorem, we have for some functions (; and (s,

w(0,t) = /Oa M (z)p (x, )yw(z, t)dr,

w(a,t) :/ N(z)r¢y  (z, )w(z, t)dr.
0
By Theorem 2.2, w(z,t) = 0. This contradiction proves the theorem. O

Theorem 2.4. The solution u is nondecreasing with respect to t.

Proof. Let 0 < h < T, and w(z,t) = u(x,t + h) — u(z,t). Then,
Lw(z,t) = G(u(z,t + h)) — G(u(z,t)) = G'(w(x,t),

where ¢ lies between u(z,t + h) and u(z,t). Since u(z,0) = 0 and u(x,t) > 0 in Q,
we have w(z,0) > 0. Using the mean value theorem, we have for some functions &
and &, w(0,t) = [ M(z)p&) 'w(z, t)dx and w(a,t) = [3 N(z)ré " w(z, t)de. By

Theorem 2.2, w > 0 on Q. Hence u(x,t) is nondecreasing with respect to . O]

Let k be a positive integer such that

(5) () <

Let ¢; and ¢y be positive real numbers such that

<1 1< <a>2k<1
- —<c|z =.
274 2\ 2

N

2 1
max M (z) (§a3> o < 1g> Q10

Then, c;a'/? + ¢3(a/2)** < 1. We consider the function,

%]
o(z,t) = {0131:é + ¢ <x — g) } Rt

where K is a positive constant to be determined. Since

- _|_a -3 _ NPT R
vm—[ 72 + (2k)(2k 1)02<x 2) ]e
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is unbounded at x = 0, there exists some real number § € D such that v, +G(0) <0

for 0 < & < §. This can be achieved by choosing ¢ satisfying

{—lei +(2k)(2k — 1)e (x - g)%_j K-l

L 2% -
+G ({0152 + ¢y (g) } eKt_l) <0

for 0 <z < 4. For & < x < a, let us choose K such that 2910 (2,0) > Vpp(x,0) +
G((z,0)). This can be accomplished by choosing K satisfying

Ko ((;15%> N {—%53 4 (2k)(2k — 1)es (2)% 2} o1

+6([adtra(5)"] ).

There exists some ¢ (> 0) such that Lo(z,t) > G(9(z,t)) for 6 <z < a, 0 <t <,

and 0(z,t) < 1. We now have
Lo > G(0) and © < 1 in D x (0,1),
o(x,0) > 0 on D,

2% 1, 1
(0,1) = ¢ (g) R ( +3

. 2k+1 M)\ &
> maXM(x) ( ag) CleKt_l ( max ) oK1
2

Kt—1

2
3 2k +1

B 2 241 et
—maxM(:r:)[ 50 )Cl"’CQ (2) (2]{:—1—1)]6
a . 2]
= max M (z )/ [claﬂ + ¢y (:c - g) } Ry
/M xtdx>/M VoP(x, t)dx,

2k
ﬁ(a,t): |:Cla,2 +C2(2> ] Kt- 1>/ N $td$>/ N

An argument similar to that in the proof of Theorem 2.4 shows that ¥ > u on D x [0, ﬂ

We now show existence of the solution. Let Q; = D x (0, ], and €); be its closure.

Theorem 2.5. The problem (1.1)-(1.3) has a unique solution u € C(Q;) N C%1(€Y;).

Proof. Let ug(x,t) = 0. For n > 1, let u,, be the solution of the problem,
Lu, = G(up—1) in Q,
u,(2,0) =0 on D,
2 (0,7) /M ub _(x,t)dx, uy(a,t) = /N u'(z,t)dx, 0 <t <t
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Since v > 0, we have ¥ > wg in §2;. Suppose that v > u,, in ;. Then,

L(0 = tupt1) > G(0) — G(u,) > 0 in
(0 — Upy1)(z,0) >0 on D,

(5 — 1,1)(0, ) > /OaM(x)(ﬁp(x,t) — P (z,t))dr > 0,0 < t <1,

(5 — wn1)(a, 1) > /Oazv(x)(w(x,t) (2, t))dz > 0,0 <t < i

By Theorem 2.2, v — u,,1 > 0 in ;. It follows from the principle of mathematical
induction that for any nonnegative integer n, 0(x,t) > u,(x,t) for (x,t) in Q;. By
using an argument similar to the proof of Theorem 2.4 and the principle of mathe-
matical induction, we have u,(x,t) > u,_1(z,t) in Q;, and wu,(z,t) is nondecreasing
with respect to t.

We now prove that u,(x,t) exists.

For n = 1, we consider the problem

Luy = G(0) in €,

(2.2) ! )
uy(z,0) =0on D, u1(0,t) =0=mwuy(a,t) for0<t<t.

To show that the problem (2.2) has a solution, we let ws = (,a) x (0,%], where

d € (0,a), and ws be its closure. We consider the problem,

Luys = G(0) in wy,

u15(2,0) = 0 on D, uys(0,t) = 0= uis(a,t) for 0 <t <<

By Theorem 4.2.1 of Ladde, Lakshmikantham and Vatsala [5, pp. 139-142], the prob-
lem has a solution w5 € C?r1+e/2(g5) for some a € (0,1). By Theorem 2.2,
Uy, < Ups, I ws if 8 > d9. Since v(z,t) > wuys(x,t), it follows that lims .o us
exists. Let lims_uis(z,t) be denoted by uy(x,t).

We are now going to show that u; € C(Q;) N C*1(Q;). For any (#1,1) € Q,
there is a set Qy = [by, by] X [f2, 3] C Q;, where by, by, £, and 5 are positive numbers
such that b; < #; < by < a and &y < #; < 3. Since 1 > 0(x,t) > uys(z,t), there is
some constant p > 1 and some positive constants ki, ks such that

(@) llwsllzo@uy < Nolleou) < K,

(it) 279G O0)[| L@y <bi* IG(@D) Lo <ka-

By Ladyzenskaja, Solonnikov and Ural’ceva [6, pp. 341-342], uys5 € Wg’l(Ql). By the
embedding theorems there [6, pp. 61 and 80], Wg’l(Ql) — H*%/2(Q,) by choosing
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p>2/(1—a) with & € (0,1). Then, ||uis||ga.arzg,) < ks for some constant ks. Now,

< b 'G(0) + sup [2"G(0) — 7"G(0)

(z1,H)€Q1 |T1 — 2]
(22,t)€Q1

< b 1G(0) + gb; (a+1) G(0)sup |z, — 2o

J277G(0 HHa ar2(Qr) =

< k, for some constant k,.

By Theorem 4.10.1 of Ladyzenskaja, Solonnikov and Ural'ceva [6, pp. 351-352], we

have
Hul(S”H?*-Oz 1+a/2( ) < K

for some constant K which is independent of 6. This implies that w5, (u1s)s, (U1s)e

and (u15)., are equicontinuous in Q1. By the Ascoli-Arzela theorem,

||UIHH2+a,1+a/2(Q ) < K

and the partial derivatives of u; are the limits of the corresponding partial derivatives
of uys. Thus, u; € C(Q;) N C*L(Y).

Next, we assume that u, € C(Q;) N C*(Q;) and show that u,,; € C(Q;) N
C*1(€;). For 0 < 6 < a, let Lsu = (x + §)%u; — Uy, and we consider the problem,

LgU(n_H)(; = G(Un([)?, t)) in QtA,

Uns1)s(2,0) = 0 on D, and for 0 < t < {,

u(n+1)5(0,t):/0 M (z)ub (x,t)dx, wmi)s(a, t) :/0 N(z)u] (x,t)dx.

Since Ls is an uniformly parabolic operator in €2;, it follows from Theorem 4.2.1 of
Ladde, Lakshmikantham and Vatsala [5, pp. 139-142] that the problem has a solution
Ugninys € C*1(Q;). An argument similar to that in the proof of Theorem 2.4 shows

that u(,41)s > 0, and w(,41)5 is nondecreasing with respect to t.

Now,
L(0 — ums1ys) = LU — Lsuanys + [(x 4+ 0)? — 29 (umi1)s)e > 0,
U = U(ni1)5)(x,0) > 0 on D,

(
(0 = Unt1)5)(0,1) = /a M (z) (2P (z,t) — ub (x,t))dr > 0,0 < t <1,

(0 — Unt1)5)(a, t) / N(2)(0"(x,t) — (2, t))dz > 0,0 < t <.
By Theorem 2.2, 0 — t(n41)s = 0 in §; for any § > 0.
Furthermore, for any 0 < §; < d5, we have
Ls, (Unt1)5, — U(n+1)82) = Lsy U(ns1)s, — LsyUnt1)s, + [(2 4 02)T — (2 + 61) 1] (U(nr1)s, )¢
= [(z + 02)* = (z + 01)"J(uns1), )t 2 0,
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(U(ns1)5, = Uni1)s,)(2,0) = 0 on D,
(U(ns1)sr — Unt1)5,) (0,8) = 0 = (Ugns1)s, — Ugnays) (@, 1), 0 <t <L

By the strong maximum principle (cf. Friedman [4, p. 39]), ©m+1)s, = Um+1)s,- Since
0(z,t) > Umgnys(x,t), it follows that lims .o u(m41)s exists. Let lims_o u(m41)5(, t) be
denoted by wu,11(z,t).

We are now going to show that u,; € C(Q;) N C*Y(€Y). For any (71,1,) €
there is a set Qy = [51, 52] X [ta,t3] C Q;, where by, by, 15 and 3 are positive numbers
such that l~)1 <I < BQ < a and ty < t; < t3. Since Uny1)s <0 < 1, and u, <0 <1,
there is some constant p > 1 and some positive constants /;;1, ko such that

() NumsnsllLrign < 118llor@s < ki,

(i) [|(z + 0)~9G (un)|| Lo(qa) <bL IG@)I| Lo(qy) <ho.

By Ladyzenskaja, Solonnikov and Ural’ceva [6, pp. 341-342], u(n11)5 € W; 1(Q,). By
the embedding theorems there [6, pp. 61 and 80], W2 (Q2) — H%%/2(Q,) by choosing
p>2/(1 —a) with & € (0,1). Then for some constant ks, ||u@i1)s]|gasrzg,) < ks

Now,
H(QE‘ + 5)_qG<Un(l’, t))HHd’&/2(Q2) < E;q ”G(@)Hoo

|(z1 + 0)79G (up (21, 1)) — (22 4+ 0)7IG (up(x2,1))|

+ sup

(z1,t)€Q2 |21 — 2o|®
(z2,t)€Q2
8)=|Gun (1)) — Glup(z,t
b osp (OGN 0) ~ Glun(ata)]
(x,t1)EQ2 |t1 - t2|
(z,t2)€Q2

the first term of which is bounded while the second term satisfies

|(21 + 0) "G (un (21, 1)) = (22 + 0) G (un (2, 1))|

sup

(:El,t)GQQ |'T1 - m2|d
(22,1)€Q2
bl |G (D (s, 1)) (uy, (21,1) — uy, (29, t
< sup U |G'( (s, 1)) (u (:Uhd) Uy (T2,1))| for some < € (1, 1)
(21,6)€Q2 |71 — 2o
(22,1)€Q2
7 n ;t - Un 7t
<Hoe@)l, sup [eEnd @)
(z1,£)€Q2 |21 — 2]
(z2,t)€Q2

< ky for some constant ky,
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and the last term
(201G 1) = Glun(a. 1)

(Ith)eQQ

|un (2, t1) — up(z, ta)|
|t1 _ tQ‘d/2

< b [|G'(0(,0))|l., sup for some 6 € (t1,15)

(ﬂf,tl)GQg
(z,t2)€Q2

oo

< ks for some constant ks.

Hence, ||(z 4 0)™9G (un(2, 1)) ga.arzig,) < k¢ for some constant kg which is indepen-
dent of §. By Theorem 4.10.1 of Ladyzenskaja, Solonnikov and Ural'ceva [6, pp.
351-352], we have

Hu(”+1)5HHQ‘*'&J‘*'&/?(QQ) <K
for some constant K which is independent of 6. This implies that w(,41)5, (Umt1)s)es

(U(n+1)5)z and (U(n11)5)zz are equicontinuous in Q. By the Ascoli-Arzela theorem,

||un+1||H2+a,1+a/2(Q2) < f(,

and the partial derivatives of u,; are the limits of the corresponding partial deriva-
tives of u(n1)s. Thus, u,41 € C(Q) N C%H(8Y).

Since the sequence {u,(z,t)} is nondecreasing, lim, o u,(x,t) exists in ;. Let
lim,, o0 u, (2, t) be denoted by u(x,t).

For any (z1,t1) € Q;, there is a set Q = [by, by] X [11, 2] C Q;, where by, by, 71 and
Ty are positive numbers such that b; < 11 < by < a and 74 < t; < 7. Since u,, < v in
() and v < 1, we have for some constant p; > 1, and some positive constants ki, ko,
() Hunllzer@) < [10]lLr @) < ki,
(i) 277G (un (2, ) 1 (@) <br* G (O)|] Lr1 (@) <k
By Ladyzenskaja, Solonnikov and Ural’ceva [6, pp. 341-342|, u, € szl’l(Q). By the
embedding theorems there [6, pp. 61 and 80], W2H(Q) — H**/%(Q) by choosing
p1 > 2/(1 —«a) with o € (0,1). Then, [[un||gaarg) < ks for some constant k3. An
argument as before gives

”Un||H2+aa1+a/2(Q) <K

for some constant K which is independent of n. This implies that w,, (u,)e, (tn)s

and (u, )., are equicontinuous in ). By the Ascoli-Arzela theorem,

HUHH2+a,1+a/2(Q) <K,

and the partial derivatives of u are the limits of the corresponding partial derivatives
of u,. Thus, u € C(Q;) N C*L(Q). O

Theorem 2.5 gives a local existence of the solution of the problem (1.1)—(1.3). Let
T = sup{t : such that the problem (1.1)-(1.3) has a solution on D x [0,¢]}. Similar

to Theorem 3 of Chan and Liu [3], we obtain lim; .7 maxpu(x,t) =1 if T < oco.
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3. QUENCHING AND NON-QUENCHING

Let us consider the eigenvalue problem:

() = =Aztp(x), ¢(0) = 0 = ¢(a).

By the transformation ¢(z) = x/?y(x), the above differential equation gives
1
?y" + xy + <_Z + )\xq+2) y = 0.

Let x = 22/(¢t2) We have

1 4\
2.1 2
+ —I— + = 0,

whose general solution is given by

y(z) = AJl/(q+2)(2\/XZ/(q +2)) + BJ—l/(q+2)(2\/XZ/(C] +2)),

where Jj(g+2) and J_j /412y denote Bessel functions of the first kind of order 1/(¢+2)
and —1/(q + 2) respectively. Let u be the first zero of Jy (412)(2vAal472/2/(q + 2)).
By McLachlan [7, pp. 29, 75], it is positive. From the eigenvalue problem, the
(fundamental) eigenfunction corresponding to p is given by

2
() = $1/2J1/(q+2) (ﬂx(qﬁ)/?) 7

q+2

which is positive for z € D. From ¢(a) = 0, we see that pa? decreases when

a increases. Let ¢ denotes the (normalized) fundamental eigenfunction such that
Jy w9o(x)dr = 1.

We now give a criterion for quenching in a finite time.

Theorem 3.1. If G( ( t) = f( ( )), and pa? < f'(0), then u quenches in a
finite time. If G(u = [ w(x,t))dz, and pa®' < hf(0), where h =
inf h(z,t) > 0, then u quenches in a ﬁmte time.

Proof. Let w(t) = [ 2% (x,t) p(2)dz. Then,

wy = | xluppdx

v

—u(a,t) ¢ (a) +u(0,t) ¢ (0) — pw + a_q/oaG (u) 29pd.

If G(u(z,t)) = f(u(zx,t)), then it follows from the Jensen inequality that w; > —pw +
a”9f(w). Since f” >0, we have f(w) > f(0) 4+ f'(0)w. Hence

we 2 a”*f(0) + (a™f'(0) — pw
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A direct calculation gives
w > & [e(a‘qf’(o)*u)t _ 1] _
f'(0) = pas
Since w(t) < 1, and f'(0) — pa? > 0, there exists some ¢, such that u reaches 1

somewhere in a finite time.

If Gu(x,t)) = [ h(x,t) f(u(x,t))dz, then

/O " Glule ) a9 (x)dz > ahf(0).

Hence, w; > —pw + a~9" A f(0). By a direct calculation,

w> WO ey

= ,LLCLq_l

Since hf(0) > pa?!, u reaches 1 somewhere in a finite time. O

Since pa? decreases when a increases, the theorem implies that the solution

quenches in a finite time if a is sufficiently large.

Theorem 3.2. For a sufficiently small, the solution u exists globally.

Proof. Let p(x) = 2'/2 + 1, and &(t) = e(e™* + 1), where ¢ is a positive number such
that 2¢(a'/? + 1) < o for some fixed 0 < 1. Then, 0 < p(2)&(t) <o < 1forx € D

and t > 0. Let ¢ = max{maxp M (z), maxp N(z)}, and a be chosen to satisfy further
€ > camax {o?, 0"} .

Then,
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On the other hand,

Lp(x)&(t)) — G(p(x)E(t)) = —aip(z)ee™ + ix—?’/?g(t) — G(p(x)&(t))
> —eal(a'? +1) + iea_i”ﬂ — G(2¢(al’? +1)).

Let us choose a to further satisfy
1
Za_g/ze > eal(a'? + 1) + G(2¢(a'? +1)).

Then, L(p(z)é(t)) > G(p(z)€(t)) in Q. An argument similar to the proof of Theo-
rem 2.4 shows that p(z)¢(t) > u(x,t) for x € D and any t > 0. Hence, the solution
u is bounded above by o < 1. This proves the theorem. [
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