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ABSTRACT. Let q be a nonnegative real number, and a and T be positive constants. This article
studies the following degenerate parabolic problem:

xqut − uxx = G(u) in (0, a)× (0, T ],

where G is a nonnegative function in the form of either f(u(x, t)), or
∫ a

0
h(x, t) f(u(x, t))dx for some

positive, bounded and continuous function h with f > 0, f ′ > 0, f ′′ ≥ 0, and limu→1− f(u) = ∞. It
is subject to the initial condition,

u(x, 0) = 0 on [0, a],

and the boundary conditions,

u(0, t) =
∫ a

0

M(x) |u (x, t)|p dx, u (a, t) =
∫ a

0

N (x) |u (x, t)|r dx, t > 0,

where p and r are constants greater than or equal to 1, and M and N are given nonnegative functions.
Existence, uniqueness and criteria for quenching and non-quenching are studied.

AMS (MOS) Subject Classification. 35K65, 35K57, 35K60, 35K20, 35K55

1. INTRODUCTION

Let a, p, r and T be positive constants with p ≥ 1 and r ≥ 1, D = (0, a),

D̄ = [0, a], Ω = D × (0, T ], Ω̄ = D̄ × [0, T ], and Lu = xqut − uxx, where q is a

nonnegative real number. Let us consider the following initial nonlocal boundary-

value problem:

(1.1) Lu = G(u) in Ω,

(1.2) u(x, 0) = 0 on D̄,

(1.3)

u(0, t) =
∫ a

0
M(x)|u(x, t)|pdx,

u(a, t) =
∫ a

0
N(x)|u(x, t)|rdx, 0 < t ≤ T ,

where M(x) ≥ 0,
∫ a

0
M(x)dx ≤ 1, N(x) ≥ 0, and

∫ a

0
N(x)dx ≤ 1. Here, G (u) is in

the form of either f(u(x, t)), or
∫ a

0
h(x, t)f(u(x, t))dx, where f > 0, f ′ > 0, f ′′ ≥ 0,
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limu→1− f(u) = ∞, and h is positive, bounded and continuous. The solution u is said

to quench if limt→T− maxD̄ u(x, t) = 1. If
∫ a

0
M(x)dx = 0 and

∫ a

0
N(x)dx = 0, then

M(x) = 0 = N(x) a.e. on D̄, and we have the first boundary conditions u(0, t) =

0 = u(a, t). These boundary conditions with G (u) = f (u) was studied by Chan and

Kong in [1] for the case
∫ 1

0
f (s) ds < ∞, and in [2] for the case

∫ 1

0
f (s) ds = ∞.

In the sequel, we assume that
∫ a

0
M(x)dx and

∫ a

0
N(x)dx are positive. We note that

a quenching problem involving a homogeneous heat equation subject to a nonlocal

Neumann boundary condition was studied by Roberts and Olmstead [8].

In section 2, we show that the problem (1.1)–(1.3) has a unique classical solution.

In section 3, we give a criterion for quenching to occur, and conditions for global

existence.

2. UNIQUENESS AND EXISTENCE

Since M(x) and N(x) are nonnegative, if u is a solution of the problem (1.1)-

(1.3), then u(0, t) and u(a, t) are nonnegative. Because Lu > 0 in Ω, it follows from

the strong maximum principle (cf. Friedman [4, p. 39]) that u > 0 in Ω.

We now prove a comparison result. Let B(v(x, t)) denote K(x, t)v(x, t) or∫ a

0
K(x, t)v(x, t)dx for some bounded nonnegative function K(x, t). Also, let K1(x, t)

and K2(x, t) be some nontrivial, nonnegative, bounded and continuous functions.

Lemma 2.1. If Lv(x, t) > B(v(x, t)) in Ω, v(x, 0) > 0 on D̄,

v(0, t) >

∫ a

0

K1(x, t)v(x, t)dx, v(a, t) >

∫ a

0

K2(x, t)v(x, t)dx, 0 < t ≤ T,

then v(x, t) > 0 on Ω̄.

Proof. Suppose that v(x, t) ≤ 0 somewhere on Ω̄. Since v(x, 0) > 0, there are t1 > 0

and x1 ∈ D̄ such that v(x1, t1) = 0 and v(x, t) > 0 for (x, t) ∈ D̄ × [0, t1). If x1 ∈ D,

then vt(x1, t1) ≤ 0 and vxx(x1, t1) ≥ 0. This implies Lv(x1, t1) ≤ 0. Since it is

given that Lv(x1, t1) − Bv(x1, t1) > 0, we have a contradiction. Therefore either

x1 = 0 or x1 = a. But in either case, we have 0 >
∫ a

0
K1(x, t1)v(x, t1)dx ≥ 0, or

0 >
∫ a

0
K2(x, t1)v(x, t1)dx ≥ 0. Thus, v > 0 on Ω̄.

Theorem 2.2. If

Lv ≥ B (v) in Ω,

v(x, 0) ≥ 0 on D̄,

v(0, t) ≥
∫ a

0

K1(x, t)v(x, t)dx, v(a, t) ≥
∫ a

0

K2(x, t)v(x, t)dx, 0 < t ≤ T,

then v ≥ 0 on Ω̄.
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Proof. Let M̄ = maxD̄{K1(x, t), K2(x, t)}. Let us choose a natural number k̄ such

that

1−
(

2M̄

2k̄ + 1

) (a
2

)
> 0,

and a positive real number A such that

(2.1) A
(a

2

)2k̄
[
1− 2M̄

2k̄ + 1

(a
2

)]
>

3

5
M̄a5/2 + γ(M̄a− 1),

where γ is an arbitrarily fixed positive constant.

For a fixed positive real number η, let

w(x, t) = v(x, t) + ηg(x)eκt,

where

g(x) = A
(
x− a

2

)2k̄

+ a3/2 − x3/2 + γ,

and κ is some positive constant to be determined. We have

g′′(x) = 2k̄(2k̄ − 1)A
(
x− a

2

)2k̄−2

− 3

4
x−1/2,

(L−B)w = (L−B)v + xqκηg(x)eκt − ηg′′(x)eκt −B(ηg(x)eκt).

Since in g′′(x), x−1/2 is unbounded at x = 0, there exists some real number δ ∈ D

such that −ηg′′(x)eκt − B(ηg(x)eκt) > 0 for 0 < x ≤ δ. For δ < x < a, let us choose

κ such that

δqκηg(x)eκt − ηg′′(x)eκt −B(ηg(x)eκt) > 0.

Then,

Lw > B (w) in Ω.

Also, w(x, 0) = v(x, 0) + ηg(x) > 0 on D̄. At x = 0, we have

g(0) = A
(a

2

)2k̄

+ a3/2 + γ,∫ a

0

K1(x, t)ηg(x)e
κtdx ≤ ηM̄eκt

[
2A

2k̄ + 1

(a
2

)2k̄+1

+
3

5
a5/2 + γa

]
.

These give

w(0, t) ≥
∫ a

0

K1(x, t)v(x, t)dx+ η

[
A

(a
2

)2k̄

+ a3/2 + γ

]
eκt.

From (2.1),

A
(a

2

)2k̄

+ γ > M̄

[
2A

2k̄ + 1

(a
2

)2k̄+1

+
3

5
a5/2 + γa

]
.

Therefore,

w(0, t) >

∫ a

0

K1(x, t)w(x, t)dx.

Similarly,

w(a, t) >

∫ a

0

K2(x, t)w(x, t)dx.

By Lemma 2.1, w(x, t) > 0 on Ω̄. As η → 0, we obtain v(x, t) ≥ 0.
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We now prove a uniqueness result.

Theorem 2.3. The problem (1.1)–(1.3) has at most one solution u.

Proof. Let u and v be two solutions of the problem (1.1)-(1.3), and w = u − v. By

the mean value theorem,

Lw = G′(ξ)(u− v),

where ξ is a function between u and v. We have w(x, 0) = 0. Using the mean value

theorem, we have for some functions ζ1 and ζ2,

w(0, t) =

∫ a

0

M(x)pζp−1
1 (x, t)w(x, t)dx,

w(a, t) =

∫ a

0

N(x)rζr−1
2 (x, t)w(x, t)dx.

By Theorem 2.2, w(x, t) = 0. This contradiction proves the theorem.

Theorem 2.4. The solution u is nondecreasing with respect to t.

Proof. Let 0 < h < T , and w(x, t) = u(x, t+ h)− u(x, t). Then,

Lw(x, t) = G(u(x, t+ h))−G(u(x, t)) = G′(ξ)w(x, t),

where ξ lies between u(x, t + h) and u(x, t). Since u(x, 0) = 0 and u(x, t) > 0 in Ω,

we have w(x, 0) > 0. Using the mean value theorem, we have for some functions ξ1

and ξ2, w(0, t) =
∫ a

0
M(x)pξp−1

1 w(x, t)dx and w(a, t) =
∫ a

0
N(x)rξr−1

2 w(x, t)dx. By

Theorem 2.2, w ≥ 0 on Ω̄. Hence u(x, t) is nondecreasing with respect to t.

Let k be a positive integer such that(a
2

) (
2 maxM(x)

2k + 1

)
<

1

8
.

Let c1 and c2 be positive real numbers such that

maxM(x)

(
2

3
a

3
2

)
c1 <

1

16
, c1a

1
2 <

1

2
,

1

4
< c2

(a
2

)2k

<
1

2
.

Then, c1a
1/2 + c2(a/2)2k < 1. We consider the function,

ṽ(x, t) =

[
c1x

1
2 + c2

(
x− a

2

)2k
]
eK̃t−1,

where K̃ is a positive constant to be determined. Since

ṽxx =

[
−c1

4
x−

3
2 + (2k)(2k − 1)c2

(
x− a

2

)2k−2
]
eK̃t−1
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is unbounded at x = 0, there exists some real number δ ∈ D such that ṽxx +G(ṽ) ≤ 0

for 0 < x ≤ δ. This can be achieved by choosing δ satisfying[
−c1

4
x−

3
2 + (2k)(2k − 1)c2

(
x− a

2

)2k−2
]
eK̃t−1

+G

([
c1δ

1
2 + c2

(a
2

)2k
]
eK̃t−1

)
≤ 0

for 0 < x ≤ δ. For δ < x < a, let us choose K̃ such that xqṽt(x, 0) > ṽxx(x, 0) +

G(ṽ(x, 0)). This can be accomplished by choosing K̃ satisfying

K̃δq
(
c1δ

1
2

)
e−1 >

[
−c1

4
δ−

3
2 + (2k)(2k − 1)c2

(a
2

)2k−2
]
e−1

+G

([
c1a

1
2 + c2

(a
2

)2k
]
e−1

)
.

There exists some t̂ (> 0) such that Lṽ(x, t) ≥ G(ṽ(x, t)) for δ < x < a, 0 < t < t̂,

and ṽ(x, t) < 1. We now have

Lṽ ≥ G(ṽ) and ṽ < 1 in D × (0, t̂),

ṽ(x, 0) > 0 on D̄,

ṽ(0, t) = c2

(a
2

)2k

eK̃t−1 >
1

4
eK̃t−1 >

(
1

16
+

1

2
· 1

8

)
eK̃t−1

> maxM(x)

(
2

3
a

3
2

)
c1e

K̃t−1 + c2

(a
2

)2k+1
(

2 maxM(x)

2k + 1

)
eK̃t−1

= maxM(x)

[(
2

3
a

3
2

)
c1 + c2

(a
2

)2k+1
(

2

2k + 1

)]
eK̃t−1

= maxM(x)

∫ a

0

[
c1x

1
2 + c2

(
x− a

2

)2k
]
eK̃t−1dx

≥
∫ a

0

M(x)ṽ(x, t)dx ≥
∫ a

0

M(x)ṽp(x, t)dx,

ṽ(a, t) =

[
c1a

1
2 + c2

(a
2

)2k
]
eK̃t−1 ≥

∫ a

0

N(x)ṽ(x, t)dx ≥
∫ a

0

N(x)ṽr(x, t)dx.

An argument similar to that in the proof of Theorem 2.4 shows that ṽ ≥ u on D̄×[0, t̂].

We now show existence of the solution. Let Ωt̂ = D× (0, t̂], and Ω̄t̂ be its closure.

Theorem 2.5. The problem (1.1)-(1.3) has a unique solution u ∈ C(Ω̄t̂) ∩ C2,1(Ωt̂).

Proof. Let u0(x, t) ≡ 0. For n ≥ 1, let un be the solution of the problem,

Lun = G(un−1) in Ωt̂,

un(x, 0) = 0 on D̄,

un(0, t) =

∫ a

0

M(x)up
n−1(x, t)dx, un(a, t) =

∫ a

0

N(x)ur
n−1(x, t)dx, 0 < t ≤ t̂.
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Since ṽ > 0, we have ṽ > u0 in Ωt̂. Suppose that ṽ ≥ un in Ωt̂. Then,

L(ṽ − un+1) ≥ G(ṽ)−G(un) ≥ 0 in Ωt̂,

(ṽ − un+1)(x, 0) > 0 on D̄,

(ṽ − un+1)(0, t) ≥
∫ a

0

M(x)(ṽp(x, t)− up
n(x, t))dx ≥ 0, 0 < t ≤ t̂,

(ṽ − un+1)(a, t) ≥
∫ a

0

N(x)(ṽr(x, t)− ur
n(x, t))dx ≥ 0, 0 < t ≤ t̂.

By Theorem 2.2, ṽ − un+1 ≥ 0 in Ωt̂. It follows from the principle of mathematical

induction that for any nonnegative integer n, ṽ(x, t) ≥ un(x, t) for (x, t) in Ωt̂. By

using an argument similar to the proof of Theorem 2.4 and the principle of mathe-

matical induction, we have un(x, t) ≥ un−1(x, t) in Ωt̂, and un(x, t) is nondecreasing

with respect to t.

We now prove that un(x, t) exists.

For n = 1, we consider the problem

(2.2)

Lu1 = G(0) in Ωt̂,

u1(x, 0) = 0 on D̄, u1(0, t) = 0 = u1(a, t) for 0 < t ≤ t̂.

To show that the problem (2.2) has a solution, we let ωδ = (δ, a) × (0, t̂], where

δ ∈ (0, a), and ω̄δ be its closure. We consider the problem,

Lu1δ = G(0) in ωδ,

u1δ(x, 0) = 0 on D̄, u1δ(δ, t) = 0 = u1δ(a, t) for 0 < t ≤ t̂.

By Theorem 4.2.1 of Ladde, Lakshmikantham and Vatsala [5, pp. 139–142], the prob-

lem has a solution u1δ ∈ C2+α,1+α/2(ω̄δ) for some α ∈ (0, 1). By Theorem 2.2,

u1δ1 < u1δ2 in ωδ1 if δ1 > δ2. Since ṽ(x, t) ≥ u1δ(x, t), it follows that limδ→0 u1δ

exists. Let limδ→0 u1δ(x, t) be denoted by u1(x, t).

We are now going to show that u1 ∈ C(Ω̄t̂) ∩ C2,1(Ωt̂). For any (x̌1, ť1) ∈ Ωt̂,

there is a set Q1 = [b̌1, b̌2]× [ť2, ť3] ⊂ Ω̄t̂, where b̌1, b̌2, ť2 and ť3 are positive numbers

such that b̌1 < x̌1 < b̌2 < a and ť2 < ť1 ≤ ť3. Since 1 > ṽ(x, t) ≥ u1δ(x, t), there is

some constant p̌ > 1 and some positive constants ǩ1, ǩ2 such that

(i) ||u1δ||Lp̌(Q1) ≤ ||ṽ||Lp̌(Q1) ≤ ǩ1,

(ii) ‖x−qG(0)‖ Lp̌(Q1) ≤b̌−q
1 ‖G(ṽ)‖ Lp̌(Q1) ≤ǩ2.

By Ladyženskaja, Solonnikov and Ural′ceva [6, pp. 341–342], u1δ ∈ W 2,1
p̌ (Q1). By the

embedding theorems there [6, pp. 61 and 80], W 2,1
p̌ (Q1) ↪→ H α̌,α̌/2(Q1) by choosing
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p̌ > 2/(1− α̌) with α̌ ∈ (0, 1). Then, ||u1δ||Hα̌,α̌/2(Q1) ≤ ǩ3 for some constant ǩ3. Now,∥∥x−qG(0)
∥∥

Hα̌,α̌/2(Q1)
≤ b̌−q

1 G(0) + sup
(x1,t)∈Q1

(x2,t)∈Q1

∣∣x−q
1 G(0)− x−q

2 G(0)
∣∣

|x1 − x2|α̌

≤ b̌−q
1 G(0) + qb̌

−(q+1)
1 G(0) sup |x1 − x2|1−α̌

≤ ǩ4 for some constant ǩ4.

By Theorem 4.10.1 of Ladyženskaja, Solonnikov and Ural′ceva [6, pp. 351–352], we

have

‖u1δ‖H2+α̌,1+α̌/2(Q1) ≤ Ǩ

for some constant Ǩ which is independent of δ. This implies that u1δ, (u1δ)t, (u1δ)x

and (u1δ)xx are equicontinuous in Q1. By the Ascoli-Arzela theorem,

‖u1‖H2+α̌,1+α̌/2(Q1) ≤ Ǩ,

and the partial derivatives of u1 are the limits of the corresponding partial derivatives

of u1δ. Thus, u1 ∈ C(Ω̄t̂) ∩ C2,1(Ωt̂).

Next, we assume that un ∈ C(Ω̄t̂) ∩ C2,1(Ωt̂) and show that un+1 ∈ C(Ω̄t̂) ∩
C2,1(Ωt̂). For 0 < δ < a, let Lδu = (x+ δ)qut − uxx, and we consider the problem,

Lδu(n+1)δ = G(un(x, t)) in Ωt̂,

u(n+1)δ(x, 0) = 0 on D̄, and for 0 < t ≤ t̂,

u(n+1)δ(0, t) =

∫ a

0

M(x)up
n(x, t)dx, u(n+1)δ(a, t) =

∫ a

0

N(x)ur
n(x, t)dx.

Since Lδ is an uniformly parabolic operator in Ωt̂, it follows from Theorem 4.2.1 of

Ladde, Lakshmikantham and Vatsala [5, pp. 139–142] that the problem has a solution

u(n+1)δ ∈ C2,1(Ω̄t̂). An argument similar to that in the proof of Theorem 2.4 shows

that u(n+1)δ ≥ 0, and u(n+1)δ is nondecreasing with respect to t.

Now,

L(ṽ − u(n+1)δ) = Lṽ − Lδu(n+1)δ + [(x+ δ)q − xq](u(n+1)δ)t ≥ 0,

(ṽ − u(n+1)δ)(x, 0) > 0 on D̄,

(ṽ − u(n+1)δ)(0, t) =

∫ a

0

M(x)(ṽp(x, t)− up
n(x, t))dx ≥ 0, 0 < t ≤ t̂,

(ṽ − u(n+1)δ)(a, t) =

∫ a

0

N(x)(ṽr(x, t)− ur
n(x, t))dx ≥ 0, 0 < t ≤ t̂.

By Theorem 2.2, ṽ − u(n+1)δ ≥ 0 in Ωt̂ for any δ > 0.

Furthermore, for any 0 < δ1 < δ2, we have

Lδ2(u(n+1)δ1 − u(n+1)δ2) = Lδ1u(n+1)δ1 − Lδ2u(n+1)δ2 + [(x+ δ2)
q − (x+ δ1)

q](u(n+1)δ1)t

= [(x+ δ2)
q − (x+ δ1)

q](u(n+1)δ1)t ≥ 0,
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(u(n+1)δ1 − u(n+1)δ2)(x, 0) = 0 on D̄,

(u(n+1)δ1 − u(n+1)δ2)(0, t) = 0 = (u(n+1)δ1 − u(n+1)δ2)(a, t), 0 < t ≤ t̂.

By the strong maximum principle (cf. Friedman [4, p. 39]), u(n+1)δ1 ≥ u(n+1)δ2 . Since

ṽ(x, t) ≥ u(n+1)δ(x, t), it follows that limδ→0 u(n+1)δ exists. Let limδ→0 u(n+1)δ(x, t) be

denoted by un+1(x, t).

We are now going to show that un+1 ∈ C(Ω̄t̂) ∩ C2,1(Ωt̂). For any (x̃1, t̃1) ∈ Ωt̂,

there is a set Q2 = [b̃1, b̃2]× [t̃2, t̃3] ⊂ Ω̄t̂, where b̃1, b̃2, t̃2 and t̃3 are positive numbers

such that b̃1 < x̃1 < b̃2 < a and t̃2 < t̃1 ≤ t̃3. Since u(n+1)δ ≤ ṽ < 1, and un ≤ ṽ < 1,

there is some constant p̃ > 1 and some positive constants k̃1, k̃2 such that

(i) ||u(n+1)δ||Lp̃(Q2) ≤ ||ṽ||Lp̃(Q2) ≤ k̃1,

(ii) ‖(x+ δ)−qG(un)‖ Lp̃(Q2) ≤b̃−q
1 ‖G(ṽ)‖ Lp̃(Q2) ≤k̃2.

By Ladyženskaja, Solonnikov and Ural′ceva [6, pp. 341–342], u(n+1)δ ∈ W 2,1
p̃ (Q2). By

the embedding theorems there [6, pp. 61 and 80], W 2,1
p̃ (Q2) ↪→ H α̃,α̃/2(Q2) by choosing

p̃ > 2/(1 − α̃) with α̃ ∈ (0, 1). Then for some constant k̃3, ||u(n+1)δ||Hα̃,α̃/2(Q2) ≤ k̃3.

Now, ∥∥(x+ δ)−qG(un(x, t))
∥∥

Hα̃,α̃/2(Q2)
≤ b̃−q

1 ‖G(ṽ)‖∞

+ sup
(x1,t)∈Q2

(x2,t)∈Q2

|(x1 + δ)−qG(un(x1, t))− (x2 + δ)−qG(un(x2, t))|
|x1 − x2|α̃

+ sup
(x,t1)∈Q2

(x,t2)∈Q2

(x+ δ)−q |G(un(x, t1))−G(un(x, t2))|
|t1 − t2|α̃/2

,

the first term of which is bounded while the second term satisfies

sup
(x1,t)∈Q2

(x2,t)∈Q2

|(x1 + δ)−qG(un(x1, t))− (x2 + δ)−qG(un(x2, t))|
|x1 − x2|α̃

≤ sup
(x1,t)∈Q2

(x2,t)∈Q2

b̃−q
1 |G′(ṽ (ς, t))(un (x1, t)− un (x2, t))|

|x1 − x2|α̃
for some ς ∈ (x1, x2)

≤ b̃−q
1 ||G′(ṽ)||∞ sup

(x1,t)∈Q2

(x2,t)∈Q2

|un (x1, t)− un (x2, t)|
|x1 − x2|α̃

≤ k̃4 for some constant k̃4,
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and the last term

sup
(x,t1)∈Q2

(x,t2)∈Q2

(x+ δ)−q |G(un(x, t1))−G(un(x, t2))|
|t1 − t2|α̃/2

≤ b̃−q
1 ||G′(ṽ(x, θ))||∞ sup

(x,t1)∈Q2

(x,t2)∈Q2

|un(x, t1)− un(x, t2)|
|t1 − t2|α̃/2

for some θ ∈ (t1, t2)

≤ k̃5 for some constant k̃5.

Hence, ‖(x+ δ)−qG(un(x, t))‖Hα̃,α̃/2(Q2) ≤ k̃6 for some constant k̃6 which is indepen-

dent of δ. By Theorem 4.10.1 of Ladyženskaja, Solonnikov and Ural′ceva [6, pp.

351-352], we have ∥∥u(n+1)δ

∥∥
H2+α̃,1+α̃/2(Q2)

≤ K̃

for some constant K̃ which is independent of δ. This implies that u(n+1)δ, (u(n+1)δ)t,

(u(n+1)δ)x and (u(n+1)δ)xx are equicontinuous in Q2. By the Ascoli-Arzela theorem,

‖un+1‖H2+α̃,1+α̃/2(Q2) ≤ K̃,

and the partial derivatives of un+1 are the limits of the corresponding partial deriva-

tives of u(n+1)δ. Thus, un+1 ∈ C(Ω̄t̂) ∩ C2,1(Ωt̂).

Since the sequence {un(x, t)} is nondecreasing, limn→∞ un(x, t) exists in Ωt̂. Let

limn→∞ un(x, t) be denoted by u(x, t).

For any (x1, t1) ∈ Ωt̂, there is a set Q = [b1, b2]× [τ1, τ2] ⊂ Ω̄t̂, where b1, b2, τ1 and

τ2 are positive numbers such that b1 < x1 < b2 < a and τ1 < t1 ≤ τ2. Since un ≤ ṽ in

Q and ṽ < 1, we have for some constant p1 > 1, and some positive constants k1, k2,

(i) ||un||Lp1 (Q) ≤ ||ṽ||Lp1 (Q) ≤ k1,

(ii) ‖x−qG(un(x, t))‖ Lp1 (Q) ≤b−q
1 ‖G(ṽ)‖ Lp1 (Q) ≤k2.

By Ladyženskaja, Solonnikov and Ural′ceva [6, pp. 341-342], un ∈ W 2,1
p1

(Q). By the

embedding theorems there [6, pp. 61 and 80], W 2,1
p1

(Q) ↪→ Hα,α/2(Q) by choosing

p1 > 2/(1 − α) with α ∈ (0, 1). Then, ||un||Hα,α/2(Q) ≤ k3 for some constant k3. An

argument as before gives

‖un‖H2+α,1+α/2(Q) ≤ K

for some constant K which is independent of n. This implies that un, (un)t, (un)x

and (un)xx are equicontinuous in Q. By the Ascoli-Arzela theorem,

‖u‖H2+α,1+α/2(Q) ≤ K,

and the partial derivatives of u are the limits of the corresponding partial derivatives

of un. Thus, u ∈ C(Ω̄t̂) ∩ C2,1(Ωt̂).

Theorem 2.5 gives a local existence of the solution of the problem (1.1)–(1.3). Let

T = sup{t̂ : such that the problem (1.1)–(1.3) has a solution on D̄ × [0, t̂]}. Similar

to Theorem 3 of Chan and Liu [3], we obtain limt→T maxD̄ u(x, t) = 1 if T <∞.
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3. QUENCHING AND NON-QUENCHING

Let us consider the eigenvalue problem:

ϕ′′(x) = −λxqϕ(x), ϕ(0) = 0 = ϕ(a).

By the transformation ϕ(x) = x1/2y(x), the above differential equation gives

x2y′′ + xy′ +

(
−1

4
+ λxq+2

)
y = 0.

Let x = z2/(q+2). We have

z2y′′ + zy′ +

[
− 1

(q + 2)2
+

4λ

(q + 2)2
z2

]
y = 0,

whose general solution is given by

y(z) = AJ1/(q+2)(2
√
λz/(q + 2)) +BJ−1/(q+2)(2

√
λz/(q + 2)),

where J1/(q+2) and J−1/(q+2) denote Bessel functions of the first kind of order 1/(q+2)

and −1/(q + 2) respectively. Let µ be the first zero of J1/(q+2)(2
√
λa(q+2)/2/(q + 2)).

By McLachlan [7, pp. 29, 75], it is positive. From the eigenvalue problem, the

(fundamental) eigenfunction corresponding to µ is given by

ψ(x) = x1/2J1/(q+2)

(
2
√
µ

q + 2
x(q+2)/2

)
,

which is positive for x ∈ D. From ψ(a) = 0, we see that µaq decreases when

a increases. Let ϕ denotes the (normalized) fundamental eigenfunction such that∫ a

0
xqϕ(x)dx = 1.

We now give a criterion for quenching in a finite time.

Theorem 3.1. If G(u(x, t)) = f(u(x, t)), and µaq < f ′(0), then u quenches in a

finite time. If G(u(x, t)) =
∫ a

0
h(x, t)f(u(x, t))dx, and µaq−1 < hf(0), where h =

inf h(x, t) > 0, then u quenches in a finite time.

Proof. Let w(t) =
∫ a

0
xqu (x, t)ϕ(x)dx. Then,

wt =

∫ a

0

xqutϕdx

=

∫ a

0

uxxϕdx+

∫ a

0

G (u)ϕdx

≥ −u (a, t)ϕ′ (a) + u (0, t)ϕ′ (0)− µw + a−q

∫ a

0

G (u)xqϕdx.

If G(u(x, t)) = f(u(x, t)), then it follows from the Jensen inequality that wt ≥ −µw+

a−qf(w). Since f ′′ ≥ 0, we have f(w) ≥ f(0) + f ′(0)w. Hence

wt ≥ a−qf(0) + (a−qf ′(0)− µ)w.
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A direct calculation gives

w ≥ f(0)

f ′(0)− µaq

[
e(a

−qf ′(0)−µ)t − 1
]
.

Since w(t) ≤ 1, and f ′(0) − µaq > 0, there exists some t0 such that u reaches 1

somewhere in a finite time.

If G(u(x, t)) =
∫ a

0
h(x, t)f(u(x, t))dx, then∫ a

0

G(u(x, t))xqϕ(x)dx ≥ ahf(0).

Hence, wt ≥ −µw + a−q+1hf(0). By a direct calculation,

w ≥ hf(0)

µaq−1

(
1− e−µt

)
.

Since hf(0) > µaq−1, u reaches 1 somewhere in a finite time.

Since µaq decreases when a increases, the theorem implies that the solution

quenches in a finite time if a is sufficiently large.

Theorem 3.2. For a sufficiently small, the solution u exists globally.

Proof. Let ρ(x) = x1/2 + 1, and ξ(t) = ε(e−t + 1), where ε is a positive number such

that 2ε(a1/2 + 1) ≤ σ for some fixed σ < 1. Then, 0 < ρ (x) ξ(t) ≤ σ < 1 for x ∈ D̄

and t > 0. Let c = max{maxD̄ M(x), maxD̄ N(x)}, and a be chosen to satisfy further

ε > camax {σp, σr} .

Then,

ρ (0) ξ (t) = ε
(
e−t + 1

)
≥ ca

(
a1/2 + 1

)p
εp

(
e−t + 1

)p

≥
[
ε
(
e−t + 1

)]p
∫ a

0

M (x) ρp (x) dx

=

∫ a

0

M (x) (ρ (x) ξ (t))p dx,

ρ (a) ξ (t) =
(
a1/2 + 1

)
ε
(
e−t + 1

)
≥ ca

(
a1/2 + 1

)r
εr

(
e−t + 1

)r

≥
[
ε
(
e−t + 1

)]r
∫ a

0

N (x) ρr (x) dx

=

∫ a

0

N (x) (ρ (x) ξ (t))r dx.
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On the other hand,

L(ρ(x)ξ(t))−G(ρ(x)ξ(t)) = −xqρ(x)εe−t +
1

4
x−3/2ξ(t)−G(ρ(x)ξ(t))

≥ −εaq(a1/2 + 1) +
1

4
εa−3/2 −G(2ε(a1/2 + 1)).

Let us choose a to further satisfy

1

4
a−3/2ε ≥ εaq(a1/2 + 1) +G(2ε(a1/2 + 1)).

Then, L(ρ(x)ξ(t)) ≥ G(ρ(x)ξ(t)) in Ω. An argument similar to the proof of Theo-

rem 2.4 shows that ρ(x)ξ(t) ≥ u(x, t) for x ∈ D̄ and any t > 0. Hence, the solution

u is bounded above by σ < 1. This proves the theorem.

REFERENCES

[1] C. Y. Chan and P. C. Kong, Quenching for degenerate semilinear parabolic equations, Appl.
Anal., 54:17–25, 1994.

[2] C. Y. Chan and P. C. Kong, Channel flow of a viscous fluid in the boundary layer, Quart. Appl.
Math., 55:51–56, 1997.

[3] C. Y. Chan and H. T. Liu, Global existence of solutions for degenerate semilinear parabolic
problems, Nonlinear Anal., 34:617–628, 1998.

[4] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs,
NJ, 1964.

[5] G. S. Ladde, V. Lakshmikantham and A. S. Vatsala, Monotone Iteravtive Techniques for Non-
linear Differential Equations, Pitman Press, Boston, 1985.
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