QUENCHING FOR DEGENERATE PARABOLIC PROBLEMS WITH NONLOCAL BOUNDARY CONDITIONS

C. Y. CHAN AND H. T. LIU

Department of Mathematics, University of Louisiana at Lafayette Lafayette, LA 70504-1010, USA Department of Applied Mathematics, Tatung University, Taipei, Taiwan 104 Republic of China

ABSTRACT. Let q be a nonnegative real number, and a and T be positive constants. This article studies the following degenerate parabolic problem:

$$x^{q}u_{t} - u_{xx} = G(u)$$
 in $(0, a) \times (0, T]$,

where G is a nonnegative function in the form of either f(u(x,t)), or $\int_0^a h(x,t) f(u(x,t))dx$ for some positive, bounded and continuous function h with f > 0, f' > 0, $f'' \ge 0$, and $\lim_{u \to 1^-} f(u) = \infty$. It is subject to the initial condition,

$$u(x,0) = 0$$
 on $[0,a],$

and the boundary conditions,

$$u(0,t) = \int_{0}^{a} M(x) \left| u(x,t) \right|^{p} dx, \ u(a,t) = \int_{0}^{a} N(x) \left| u(x,t) \right|^{r} dx, t > 0,$$

where p and r are constants greater than or equal to 1, and M and N are given nonnegative functions. Existence, uniqueness and criteria for quenching and non-quenching are studied.

AMS (MOS) Subject Classification. 35K65, 35K57, 35K60, 35K20, 35K55

1. INTRODUCTION

Let a, p, r and T be positive constants with $p \ge 1$ and $r \ge 1$, D = (0, a), $\overline{D} = [0, a], \Omega = D \times (0, T], \overline{\Omega} = \overline{D} \times [0, T]$, and $Lu = x^q u_t - u_{xx}$, where q is a nonnegative real number. Let us consider the following initial nonlocal boundaryvalue problem:

(1.1)
$$Lu = G(u) \text{ in } \Omega,$$

(1.2)
$$u(x,0) = 0 \text{ on } \bar{D},$$

(1.3)
$$\begin{cases} u(0,t) = \int_0^a M(x) |u(x,t)|^p dx, \\ u(a,t) = \int_0^a N(x) |u(x,t)|^r dx, \quad 0 < t \le T \end{cases}$$

where $M(x) \ge 0$, $\int_0^a M(x)dx \le 1$, $N(x) \ge 0$, and $\int_0^a N(x)dx \le 1$. Here, G(u) is in the form of either f(u(x,t)), or $\int_0^a h(x,t)f(u(x,t))dx$, where f > 0, f' > 0, $f'' \ge 0$,

 $\lim_{u\to 1^-} f(u) = \infty$, and *h* is positive, bounded and continuous. The solution *u* is said to quench if $\lim_{t\to T^-} \max_{\bar{D}} u(x,t) = 1$. If $\int_0^a M(x)dx = 0$ and $\int_0^a N(x)dx = 0$, then M(x) = 0 = N(x) a.e. on \bar{D} , and we have the first boundary conditions u(0,t) =0 = u(a,t). These boundary conditions with G(u) = f(u) was studied by Chan and Kong in [1] for the case $\int_0^1 f(s) ds < \infty$, and in [2] for the case $\int_0^1 f(s) ds = \infty$. In the sequel, we assume that $\int_0^a M(x)dx$ and $\int_0^a N(x)dx$ are positive. We note that a quenching problem involving a homogeneous heat equation subject to a nonlocal Neumann boundary condition was studied by Roberts and Olmstead [8].

In section 2, we show that the problem (1.1)-(1.3) has a unique classical solution. In section 3, we give a criterion for quenching to occur, and conditions for global existence.

2. UNIQUENESS AND EXISTENCE

Since M(x) and N(x) are nonnegative, if u is a solution of the problem (1.1)-(1.3), then u(0,t) and u(a,t) are nonnegative. Because Lu > 0 in Ω , it follows from the strong maximum principle (cf. Friedman [4, p. 39]) that u > 0 in Ω .

We now prove a comparison result. Let B(v(x,t)) denote K(x,t)v(x,t) or $\int_0^a K(x,t)v(x,t)dx$ for some bounded nonnegative function K(x,t). Also, let $K_1(x,t)$ and $K_2(x,t)$ be some nontrivial, nonnegative, bounded and continuous functions.

Lemma 2.1. If Lv(x,t) > B(v(x,t)) in Ω , v(x,0) > 0 on \overline{D} ,

$$v(0,t) > \int_0^a K_1(x,t)v(x,t)dx, \ v(a,t) > \int_0^a K_2(x,t)v(x,t)dx, \ 0 < t \le T,$$

then v(x,t) > 0 on $\overline{\Omega}$.

Proof. Suppose that $v(x,t) \leq 0$ somewhere on $\overline{\Omega}$. Since v(x,0) > 0, there are $t_1 > 0$ and $x_1 \in \overline{D}$ such that $v(x_1,t_1) = 0$ and v(x,t) > 0 for $(x,t) \in \overline{D} \times [0,t_1)$. If $x_1 \in D$, then $v_t(x_1,t_1) \leq 0$ and $v_{xx}(x_1,t_1) \geq 0$. This implies $Lv(x_1,t_1) \leq 0$. Since it is given that $Lv(x_1,t_1) - Bv(x_1,t_1) > 0$, we have a contradiction. Therefore either $x_1 = 0$ or $x_1 = a$. But in either case, we have $0 > \int_0^a K_1(x,t_1)v(x,t_1)dx \geq 0$, or $0 > \int_0^a K_2(x,t_1)v(x,t_1)dx \geq 0$. Thus, v > 0 on $\overline{\Omega}$.

Theorem 2.2. If

$$Lv \ge B(v) \text{ in } \Omega,$$
$$v(x,0) \ge 0 \text{ on } \overline{D},$$
$$v(0,t) \ge \int_0^a K_1(x,t)v(x,t)dx, \ v(a,t) \ge \int_0^a K_2(x,t)v(x,t)dx, \ 0 < t \le T,$$
$$v \ge 0 \text{ or } \overline{\Omega}$$

then $v \geq 0$ on Ω .

Proof. Let $\overline{M} = \max_{\overline{D}} \{K_1(x,t), K_2(x,t)\}$. Let us choose a natural number \overline{k} such that

$$1 - \left(\frac{2\bar{M}}{2\bar{k}+1}\right)\left(\frac{a}{2}\right) > 0,$$

and a positive real number A such that

(2.1)
$$A\left(\frac{a}{2}\right)^{2\bar{k}} \left[1 - \frac{2\bar{M}}{2\bar{k}+1}\left(\frac{a}{2}\right)\right] > \frac{3}{5}\bar{M}a^{5/2} + \gamma(\bar{M}a-1),$$

where γ is an arbitrarily fixed positive constant.

For a fixed positive real number η , let

$$w(x,t) = v(x,t) + \eta g(x)e^{\kappa t},$$

where

$$g(x) = A\left(x - \frac{a}{2}\right)^{2\bar{k}} + a^{3/2} - x^{3/2} + \gamma,$$

and κ is some positive constant to be determined. We have

$$g''(x) = 2\bar{k}(2\bar{k}-1)A\left(x-\frac{a}{2}\right)^{2k-2} - \frac{3}{4}x^{-1/2},$$
$$(L-B)w = (L-B)v + x^q \kappa \eta g(x)e^{\kappa t} - \eta g''(x)e^{\kappa t} - B(\eta g(x)e^{\kappa t}).$$

Since in g''(x), $x^{-1/2}$ is unbounded at x = 0, there exists some real number $\delta \in D$ such that $-\eta g''(x)e^{\kappa t} - B(\eta g(x)e^{\kappa t}) > 0$ for $0 < x \le \delta$. For $\delta < x < a$, let us choose κ such that

$$\delta^q \kappa \eta g(x) e^{\kappa t} - \eta g''(x) e^{\kappa t} - B(\eta g(x) e^{\kappa t}) > 0.$$

Then,

$$Lw > B(w)$$
 in Ω .

Also, $w(x, 0) = v(x, 0) + \eta g(x) > 0$ on \overline{D} . At x = 0, we have

$$g(0) = A\left(\frac{a}{2}\right)^{2k} + a^{3/2} + \gamma,$$
$$\int_{0}^{a} K_{1}(x,t)\eta g(x)e^{\kappa t}dx \leq \eta \bar{M}e^{\kappa t} \left[\frac{2A}{2\bar{k}+1}\left(\frac{a}{2}\right)^{2\bar{k}+1} + \frac{3}{5}a^{5/2} + \gamma a\right].$$

These give

$$w(0,t) \ge \int_0^a K_1(x,t)v(x,t)dx + \eta \left[A\left(\frac{a}{2}\right)^{2\bar{k}} + a^{3/2} + \gamma\right]e^{\kappa t}.$$

From (2.1),

$$A\left(\frac{a}{2}\right)^{2\bar{k}} + \gamma > \bar{M}\left[\frac{2A}{2\bar{k}+1}\left(\frac{a}{2}\right)^{2\bar{k}+1} + \frac{3}{5}a^{5/2} + \gamma a\right]$$

Therefore,

$$w(0,t) > \int_0^a K_1(x,t)w(x,t)dx.$$

Similarly,

$$w(a,t) > \int_0^a K_2(x,t)w(x,t)dx.$$

By Lemma 2.1, w(x,t) > 0 on $\overline{\Omega}$. As $\eta \to 0$, we obtain $v(x,t) \ge 0$.

We now prove a uniqueness result.

Theorem 2.3. The problem (1.1)–(1.3) has at most one solution u.

Proof. Let u and v be two solutions of the problem (1.1)-(1.3), and w = u - v. By the mean value theorem,

$$Lw = G'(\xi)(u-v),$$

where ξ is a function between u and v. We have w(x, 0) = 0. Using the mean value theorem, we have for some functions ζ_1 and ζ_2 ,

$$w(0,t) = \int_0^a M(x)p\zeta_1^{p-1}(x,t)w(x,t)dx,$$
$$w(a,t) = \int_0^a N(x)r\zeta_2^{r-1}(x,t)w(x,t)dx.$$

By Theorem 2.2, w(x,t) = 0. This contradiction proves the theorem.

Theorem 2.4. The solution u is nondecreasing with respect to t.

Proof. Let 0 < h < T, and w(x,t) = u(x,t+h) - u(x,t). Then,

$$Lw(x,t) = G(u(x,t+h)) - G(u(x,t)) = G'(\xi)w(x,t)$$

where ξ lies between u(x, t + h) and u(x, t). Since u(x, 0) = 0 and u(x, t) > 0 in Ω , we have w(x, 0) > 0. Using the mean value theorem, we have for some functions ξ_1 and ξ_2 , $w(0, t) = \int_0^a M(x)p\xi_1^{p-1}w(x, t)dx$ and $w(a, t) = \int_0^a N(x)r\xi_2^{r-1}w(x, t)dx$. By Theorem 2.2, $w \ge 0$ on $\overline{\Omega}$. Hence u(x, t) is nondecreasing with respect to t. \Box

Let k be a positive integer such that

$$\left(\frac{a}{2}\right)\left(\frac{2\max M(x)}{2k+1}\right) < \frac{1}{8}.$$

Let c_1 and c_2 be positive real numbers such that

$$\max M(x)\left(\frac{2}{3}a^{\frac{3}{2}}\right)c_1 < \frac{1}{16}, \ c_1a^{\frac{1}{2}} < \frac{1}{2}, \ \frac{1}{4} < c_2\left(\frac{a}{2}\right)^{2k} < \frac{1}{2}.$$

Then, $c_1 a^{1/2} + c_2 (a/2)^{2k} < 1$. We consider the function,

$$\tilde{v}(x,t) = \left[c_1 x^{\frac{1}{2}} + c_2 \left(x - \frac{a}{2}\right)^{2k}\right] e^{\tilde{K}t - 1},$$

where \tilde{K} is a positive constant to be determined. Since

$$\tilde{v}_{xx} = \left[-\frac{c_1}{4} x^{-\frac{3}{2}} + (2k)(2k-1)c_2\left(x-\frac{a}{2}\right)^{2k-2} \right] e^{\tilde{K}t-1}$$

is unbounded at x = 0, there exists some real number $\delta \in D$ such that $\tilde{v}_{xx} + G(\tilde{v}) \leq 0$ for $0 < x \leq \delta$. This can be achieved by choosing δ satisfying

$$\left[-\frac{c_1}{4}x^{-\frac{3}{2}} + (2k)(2k-1)c_2\left(x-\frac{a}{2}\right)^{2k-2}\right]e^{\tilde{K}t-1} + G\left(\left[c_1\delta^{\frac{1}{2}} + c_2\left(\frac{a}{2}\right)^{2k}\right]e^{\tilde{K}t-1}\right) \le 0$$

for $0 < x \leq \delta$. For $\delta < x < a$, let us choose \tilde{K} such that $x^q \tilde{v}_t(x,0) > \tilde{v}_{xx}(x,0) +$ $G(\tilde{v}(x,0))$. This can be accomplished by choosing \tilde{K} satisfying

$$\tilde{K}\delta^{q}\left(c_{1}\delta^{\frac{1}{2}}\right)e^{-1} > \left[-\frac{c_{1}}{4}\delta^{-\frac{3}{2}} + (2k)(2k-1)c_{2}\left(\frac{a}{2}\right)^{2k-2}\right]e^{-1} + G\left(\left[c_{1}a^{\frac{1}{2}} + c_{2}\left(\frac{a}{2}\right)^{2k}\right]e^{-1}\right).$$

There exists some \hat{t} (> 0) such that $L\tilde{v}(x,t) \ge G(\tilde{v}(x,t))$ for $\delta < x < a, 0 < t < \hat{t}$, and $\tilde{v}(x,t) < 1$. We now have

$$\begin{split} L\tilde{v} \geq G(\tilde{v}) \text{ and } \tilde{v} < 1 \text{ in } D \times (0, \hat{t}), \\ \tilde{v}(x, 0) > 0 \text{ on } \bar{D}, \end{split}$$

$$\begin{split} \tilde{v}(0,t) &= c_2 \left(\frac{a}{2}\right)^{2k} e^{\tilde{K}t-1} > \frac{1}{4} e^{\tilde{K}t-1} > \left(\frac{1}{16} + \frac{1}{2} \cdot \frac{1}{8}\right) e^{\tilde{K}t-1} \\ &> \max M(x) \left(\frac{2}{3}a^{\frac{3}{2}}\right) c_1 e^{\tilde{K}t-1} + c_2 \left(\frac{a}{2}\right)^{2k+1} \left(\frac{2\max M(x)}{2k+1}\right) e^{\tilde{K}t-1} \\ &= \max M(x) \left[\left(\frac{2}{3}a^{\frac{3}{2}}\right) c_1 + c_2 \left(\frac{a}{2}\right)^{2k+1} \left(\frac{2}{2k+1}\right) \right] e^{\tilde{K}t-1} \\ &= \max M(x) \int_0^a \left[c_1 x^{\frac{1}{2}} + c_2 \left(x - \frac{a}{2}\right)^{2k} \right] e^{\tilde{K}t-1} dx \\ &\geq \int_0^a M(x) \tilde{v}(x,t) dx \ge \int_0^a M(x) \tilde{v}^p(x,t) dx, \\ \tilde{v}(a,t) &= \left[c_1 a^{\frac{1}{2}} + c_2 \left(\frac{a}{2}\right)^{2k} \right] e^{\tilde{K}t-1} \ge \int_0^a N(x) \tilde{v}(x,t) dx \ge \int_0^a N(x) \tilde{v}^r(x,t) dx. \end{split}$$

An argument similar to that in the proof of Theorem 2.4 shows that $\tilde{v} \ge u$ on $\bar{D} \times [0, \hat{t}]$.

We now show existence of the solution. Let $\Omega_{\hat{t}} = D \times (0, \hat{t}]$, and $\bar{\Omega}_{\hat{t}}$ be its closure. **Theorem 2.5.** The problem (1.1)-(1.3) has a unique solution $u \in C(\overline{\Omega}_{\hat{t}}) \cap C^{2,1}(\Omega_{\hat{t}})$. *Proof.* Let $u_0(x,t) \equiv 0$. For $n \geq 1$, let u_n be the solution of the problem,

$$Lu_n = G(u_{n-1}) \text{ in } \Omega_{\hat{t}},$$
$$u_n(x,0) = 0 \text{ on } \bar{D},$$
$$u_n(0,t) = \int_0^a M(x)u_{n-1}^p(x,t)dx, \ u_n(a,t) = \int_0^a N(x)u_{n-1}^r(x,t)dx, \ 0 < t \le \hat{t}.$$

Since $\tilde{v} > 0$, we have $\tilde{v} > u_0$ in $\Omega_{\hat{t}}$. Suppose that $\tilde{v} \ge u_n$ in $\Omega_{\hat{t}}$. Then,

$$L(\tilde{v} - u_{n+1}) \ge G(\tilde{v}) - G(u_n) \ge 0 \text{ in } \Omega_{\hat{t}},$$
$$(\tilde{v} - u_{n+1})(x, 0) > 0 \text{ on } \bar{D},$$
$$(\tilde{v} - u_{n+1})(0, t) \ge \int_0^a M(x)(\tilde{v}^p(x, t) - u_n^p(x, t))dx \ge 0, \ 0 < t \le \hat{t},$$
$$(\tilde{v} - u_{n+1})(a, t) \ge \int_0^a N(x)(\tilde{v}^r(x, t) - u_n^r(x, t))dx \ge 0, \ 0 < t \le \hat{t}.$$

By Theorem 2.2, $\tilde{v} - u_{n+1} \ge 0$ in $\Omega_{\hat{t}}$. It follows from the principle of mathematical induction that for any nonnegative integer n, $\tilde{v}(x,t) \ge u_n(x,t)$ for (x,t) in $\Omega_{\hat{t}}$. By using an argument similar to the proof of Theorem 2.4 and the principle of mathematical induction, we have $u_n(x,t) \ge u_{n-1}(x,t)$ in $\Omega_{\hat{t}}$, and $u_n(x,t)$ is nondecreasing with respect to t.

We now prove that $u_n(x,t)$ exists.

For n = 1, we consider the problem

(2.2)
$$\begin{cases} Lu_1 = G(0) \text{ in } \Omega_{\hat{t}}, \\ u_1(x,0) = 0 \text{ on } \bar{D}, \ u_1(0,t) = 0 = u_1(a,t) \quad \text{ for } 0 < t \le \hat{t}. \end{cases}$$

To show that the problem (2.2) has a solution, we let $\omega_{\delta} = (\delta, a) \times (0, \hat{t}]$, where $\delta \in (0, a)$, and $\bar{\omega}_{\delta}$ be its closure. We consider the problem,

$$Lu_{1\delta} = G(0)$$
 in ω_{δ} ,

$$u_{1\delta}(x,0) = 0 \text{ on } \bar{D}, \ u_{1\delta}(\delta,t) = 0 = u_{1\delta}(a,t) \text{ for } 0 < t \le \hat{t}.$$

By Theorem 4.2.1 of Ladde, Lakshmikantham and Vatsala [5, pp. 139–142], the problem has a solution $u_{1\delta} \in C^{2+\alpha,1+\alpha/2}(\bar{\omega}_{\delta})$ for some $\alpha \in (0,1)$. By Theorem 2.2, $u_{1\delta_1} < u_{1\delta_2}$ in ω_{δ_1} if $\delta_1 > \delta_2$. Since $\tilde{v}(x,t) \ge u_{1\delta}(x,t)$, it follows that $\lim_{\delta \to 0} u_{1\delta}$ exists. Let $\lim_{\delta \to 0} u_{1\delta}(x,t)$ be denoted by $u_1(x,t)$.

We are now going to show that $u_1 \in C(\overline{\Omega}_{\hat{t}}) \cap C^{2,1}(\Omega_{\hat{t}})$. For any $(\check{x}_1,\check{t}_1) \in \Omega_{\hat{t}}$, there is a set $Q_1 = [\check{b}_1,\check{b}_2] \times [\check{t}_2,\check{t}_3] \subset \overline{\Omega}_{\hat{t}}$, where $\check{b}_1,\check{b}_2,\check{t}_2$ and \check{t}_3 are positive numbers such that $\check{b}_1 < \check{x}_1 < \check{b}_2 < a$ and $\check{t}_2 < \check{t}_1 \leq \check{t}_3$. Since $1 > \tilde{v}(x,t) \geq u_{1\delta}(x,t)$, there is some constant $\check{p} > 1$ and some positive constants \check{k}_1, \check{k}_2 such that

- (i) $||u_{1\delta}||_{L^{\tilde{p}}(Q_1)} \le ||\tilde{v}||_{L^{\tilde{p}}(Q_1)} \le \check{k}_1,$
- (ii) $||x^{-q}G(0)||_{L^{\tilde{p}}(Q_1)} \leq \check{b}_1^{-q} ||G(\tilde{v})||_{L^{\tilde{p}}(Q_1)} \leq \check{k}_2.$

By Ladyženskaja, Solonnikov and Ural'ceva [6, pp. 341–342], $u_{1\delta} \in W^{2,1}_{\check{p}}(Q_1)$. By the embedding theorems there [6, pp. 61 and 80], $W^{2,1}_{\check{p}}(Q_1) \hookrightarrow H^{\check{\alpha},\check{\alpha}/2}(Q_1)$ by choosing

 $\check{p} > 2/(1-\check{\alpha})$ with $\check{\alpha} \in (0,1)$. Then, $||u_{1\delta}||_{H^{\check{\alpha},\check{\alpha}/2}(Q_1)} \leq \check{k}_3$ for some constant \check{k}_3 . Now,

$$\begin{aligned} \left\| x^{-q} G(0) \right\|_{H^{\check{\alpha},\check{\alpha}/2}(Q_1)} &\leq \check{b}_1^{-q} G(0) + \sup_{\substack{(x_1,t) \in Q_1 \\ (x_2,t) \in Q_1}} \frac{\left| x_1^{-q} G(0) - x_2^{-q} G(0) \right|}{|x_1 - x_2|^{\check{\alpha}}} \\ &\leq \check{b}_1^{-q} G(0) + q \check{b}_1^{-(q+1)} G(0) \sup |x_1 - x_2|^{1-\check{\alpha}} \\ &\leq \check{k}_4 \text{ for some constant } \check{k}_4. \end{aligned}$$

By Theorem 4.10.1 of Ladyženskaja, Solonnikov and Ural'ceva [6, pp. 351–352], we have

$$||u_{1\delta}||_{H^{2+\check{\alpha},1+\check{\alpha}/2}(Q_1)} \leq \check{K}$$

for some constant \check{K} which is independent of δ . This implies that $u_{1\delta}$, $(u_{1\delta})_t$, $(u_{1\delta})_x$ and $(u_{1\delta})_{xx}$ are equicontinuous in Q_1 . By the Ascoli-Arzela theorem,

$$||u_1||_{H^{2+\check{\alpha},1+\check{\alpha}/2}(Q_1)} \le \check{K}$$

and the partial derivatives of u_1 are the limits of the corresponding partial derivatives of $u_{1\delta}$. Thus, $u_1 \in C(\bar{\Omega}_{\hat{t}}) \cap C^{2,1}(\Omega_{\hat{t}})$.

Next, we assume that $u_n \in C(\bar{\Omega}_{\hat{t}}) \cap C^{2,1}(\Omega_{\hat{t}})$ and show that $u_{n+1} \in C(\bar{\Omega}_{\hat{t}}) \cap C^{2,1}(\Omega_{\hat{t}})$. For $0 < \delta < a$, let $L_{\delta}u = (x+\delta)^q u_t - u_{xx}$, and we consider the problem,

$$L_{\delta}u_{(n+1)\delta} = G(u_n(x,t))$$
 in $\Omega_{\hat{t}}$,

 $u_{(n+1)\delta}(x,0) = 0$ on \overline{D} , and for $0 < t \le \hat{t}$,

$$u_{(n+1)\delta}(0,t) = \int_0^a M(x)u_n^p(x,t)dx, u_{(n+1)\delta}(a,t) = \int_0^a N(x)u_n^r(x,t)dx.$$

Since L_{δ} is an uniformly parabolic operator in $\Omega_{\hat{t}}$, it follows from Theorem 4.2.1 of Ladde, Lakshmikantham and Vatsala [5, pp. 139–142] that the problem has a solution $u_{(n+1)\delta} \in C^{2,1}(\bar{\Omega}_{\hat{t}})$. An argument similar to that in the proof of Theorem 2.4 shows that $u_{(n+1)\delta} \geq 0$, and $u_{(n+1)\delta}$ is nondecreasing with respect to t.

Now,

$$L(\tilde{v} - u_{(n+1)\delta}) = L\tilde{v} - L_{\delta}u_{(n+1)\delta} + [(x+\delta)^q - x^q](u_{(n+1)\delta})_t \ge 0,$$

$$(\tilde{v} - u_{(n+1)\delta})(x,0) > 0 \text{ on } \bar{D},$$

$$(\tilde{v} - u_{(n+1)\delta})(0,t) = \int_0^a M(x)(\tilde{v}^p(x,t) - u_n^p(x,t))dx \ge 0, \ 0 < t \le \tilde{t}$$

$$(\tilde{v} - u_{(n+1)\delta})(a,t) = \int_0^a N(x)(\tilde{v}^r(x,t) - u_n^r(x,t))dx \ge 0, \ 0 < t \le \tilde{t}$$

By Theorem 2.2, $\tilde{v} - u_{(n+1)\delta} \ge 0$ in $\Omega_{\hat{t}}$ for any $\delta > 0$.

Furthermore, for any $0 < \delta_1 < \delta_2$, we have

$$L_{\delta_2}(u_{(n+1)\delta_1} - u_{(n+1)\delta_2}) = L_{\delta_1}u_{(n+1)\delta_1} - L_{\delta_2}u_{(n+1)\delta_2} + [(x+\delta_2)^q - (x+\delta_1)^q](u_{(n+1)\delta_1})_t$$
$$= [(x+\delta_2)^q - (x+\delta_1)^q](u_{(n+1)\delta_1})_t \ge 0,$$

$$(u_{(n+1)\delta_1} - u_{(n+1)\delta_2})(x,0) = 0$$
 on D ,

$$(u_{(n+1)\delta_1} - u_{(n+1)\delta_2})(0,t) = 0 = (u_{(n+1)\delta_1} - u_{(n+1)\delta_2})(a,t), \ 0 < t \le \hat{t}.$$

By the strong maximum principle (cf. Friedman [4, p. 39]), $u_{(n+1)\delta_1} \ge u_{(n+1)\delta_2}$. Since $\tilde{v}(x,t) \ge u_{(n+1)\delta}(x,t)$, it follows that $\lim_{\delta \to 0} u_{(n+1)\delta}$ exists. Let $\lim_{\delta \to 0} u_{(n+1)\delta}(x,t)$ be denoted by $u_{n+1}(x,t)$.

We are now going to show that $u_{n+1} \in C(\bar{\Omega}_{\hat{t}}) \cap C^{2,1}(\Omega_{\hat{t}})$. For any $(\tilde{x}_1, \tilde{t}_1) \in \Omega_{\hat{t}}$, there is a set $Q_2 = [\tilde{b}_1, \tilde{b}_2] \times [\tilde{t}_2, \tilde{t}_3] \subset \bar{\Omega}_{\hat{t}}$, where $\tilde{b}_1, \tilde{b}_2, \tilde{t}_2$ and \tilde{t}_3 are positive numbers such that $\tilde{b}_1 < \tilde{x}_1 < \tilde{b}_2 < a$ and $\tilde{t}_2 < \tilde{t}_1 \leq \tilde{t}_3$. Since $u_{(n+1)\delta} \leq \tilde{v} < 1$, and $u_n \leq \tilde{v} < 1$, there is some constant $\tilde{p} > 1$ and some positive constants \tilde{k}_1, \tilde{k}_2 such that

- (i) $||u_{(n+1)\delta}||_{L^{\tilde{p}}(Q_2)} \le ||\tilde{v}||_{L^{\tilde{p}}(Q_2)} \le \tilde{k}_1,$
- (ii) $\|(x+\delta)^{-q}G(u_n)\|_{L^{\tilde{p}}(Q_2)} \leq \tilde{b}_1^{-q} \|G(\tilde{v})\|_{L^{\tilde{p}}(Q_2)} \leq \tilde{k}_2.$

By Ladyženskaja, Solonnikov and Ural'ceva [6, pp. 341–342], $u_{(n+1)\delta} \in W^{2,1}_{\tilde{p}}(Q_2)$. By the embedding theorems there [6, pp. 61 and 80], $W^{2,1}_{\tilde{p}}(Q_2) \hookrightarrow H^{\tilde{\alpha},\tilde{\alpha}/2}(Q_2)$ by choosing $\tilde{p} > 2/(1-\tilde{\alpha})$ with $\tilde{\alpha} \in (0,1)$. Then for some constant \tilde{k}_3 , $||u_{(n+1)\delta}||_{H^{\tilde{\alpha},\tilde{\alpha}/2}(Q_2)} \leq \tilde{k}_3$. Now,

$$\begin{split} \left\| (x+\delta)^{-q} G(u_n(x,t)) \right\|_{H^{\tilde{\alpha},\tilde{\alpha}/2}(Q_2)} &\leq \tilde{b}_1^{-q} \left\| G(\tilde{v}) \right\|_{\infty} \\ &+ \sup_{\substack{(x_1,t) \in Q_2 \\ (x_2,t) \in Q_2}} \frac{\left| (x_1+\delta)^{-q} G(u_n(x_1,t)) - (x_2+\delta)^{-q} G(u_n(x_2,t)) \right|}{|x_1 - x_2|^{\tilde{\alpha}}} \\ &+ \sup_{\substack{(x,t_1) \in Q_2 \\ (x,t_2) \in Q_2}} \frac{(x+\delta)^{-q} \left| G(u_n(x,t_1)) - G(u_n(x,t_2)) \right|}{|t_1 - t_2|^{\tilde{\alpha}/2}}, \end{split}$$

the first term of which is bounded while the second term satisfies

$$\begin{split} \sup_{\substack{(x_1,t)\in Q_2\\(x_2,t)\in Q_2}} \frac{|(x_1+\delta)^{-q}G(u_n(x_1,t)) - (x_2+\delta)^{-q}G(u_n(x_2,t))|}{|x_1 - x_2|^{\tilde{\alpha}}} \\ &\leq \sup_{\substack{(x_1,t)\in Q_2\\(x_2,t)\in Q_2}} \frac{\tilde{b}_1^{-q} \left|G'(\tilde{v}\left(\varsigma,t\right))(u_n\left(x_1,t\right) - u_n\left(x_2,t\right)\right)\right|}{|x_1 - x_2|^{\tilde{\alpha}}} \quad \text{for some } \varsigma \in (x_1,x_2) \\ &\leq \tilde{b}_1^{-q} \left||G'(\tilde{v})||_{\infty} \sup_{\substack{(x_1,t)\in Q_2\\(x_2,t)\in Q_2}} \frac{|u_n\left(x_1,t\right) - u_n\left(x_2,t\right)|}{|x_1 - x_2|^{\tilde{\alpha}}} \end{split}$$

 $\leq \tilde{k}_4$ for some constant \tilde{k}_4 ,

and the last term

$$\sup_{\substack{(x,t_1)\in Q_2\\(x,t_2)\in Q_2}} \frac{(x+\delta)^{-q} |G(u_n(x,t_1)) - G(u_n(x,t_2))|}{|t_1 - t_2|^{\tilde{\alpha}/2}}$$

$$\leq \tilde{b}_1^{-q} ||G'(\tilde{v}(x,\theta))||_{\infty} \sup_{\substack{(x,t_1)\in Q_2\\(x,t_2)\in Q_2}} \frac{|u_n(x,t_1) - u_n(x,t_2)|}{|t_1 - t_2|^{\tilde{\alpha}/2}} \text{ for some } \theta \in (t_1,t_2)$$

$$\leq \tilde{k}_5 \text{ for some constant } \tilde{k}_5.$$

Hence, $||(x + \delta)^{-q} G(u_n(x, t))||_{H^{\tilde{\alpha}, \tilde{\alpha}/2}(Q_2)} \leq \tilde{k}_6$ for some constant \tilde{k}_6 which is independent of δ . By Theorem 4.10.1 of Ladyženskaja, Solonnikov and Ural'ceva [6, pp. 351-352], we have

$$\left\| u_{(n+1)\delta} \right\|_{H^{2+\tilde{\alpha},1+\tilde{\alpha}/2}(Q_2)} \le \tilde{K}$$

for some constant K which is independent of δ . This implies that $u_{(n+1)\delta}$, $(u_{(n+1)\delta})_t$, $(u_{(n+1)\delta})_x$ and $(u_{(n+1)\delta})_{xx}$ are equicontinuous in Q_2 . By the Ascoli-Arzela theorem,

$$||u_{n+1}||_{H^{2+\tilde{\alpha},1+\tilde{\alpha}/2}(Q_2)} \leq \tilde{K}$$

and the partial derivatives of u_{n+1} are the limits of the corresponding partial derivatives of $u_{(n+1)\delta}$. Thus, $u_{n+1} \in C(\bar{\Omega}_{\hat{t}}) \cap C^{2,1}(\Omega_{\hat{t}})$.

Since the sequence $\{u_n(x,t)\}$ is nondecreasing, $\lim_{n\to\infty} u_n(x,t)$ exists in $\Omega_{\hat{t}}$. Let $\lim_{n\to\infty} u_n(x,t)$ be denoted by u(x,t).

For any $(x_1, t_1) \in \Omega_{\hat{t}}$, there is a set $Q = [b_1, b_2] \times [\tau_1, \tau_2] \subset \overline{\Omega}_{\hat{t}}$, where b_1, b_2, τ_1 and τ_2 are positive numbers such that $b_1 < x_1 < b_2 < a$ and $\tau_1 < t_1 \leq \tau_2$. Since $u_n \leq \tilde{v}$ in Q and $\tilde{v} < 1$, we have for some constant $p_1 > 1$, and some positive constants k_1, k_2 , (i) $||u_n||_{L^{p_1}(Q)} \leq ||\tilde{v}||_{L^{p_1}(Q)} \leq k_1$,

(ii) $||x^{-q}G(u_n(x,t))||_{L^{p_1}(Q)} \leq b_1^{-q} ||G(\tilde{v})||_{L^{p_1}(Q)} \leq k_2.$

By Ladyženskaja, Solonnikov and Ural'ceva [6, pp. 341-342], $u_n \in W_{p_1}^{2,1}(Q)$. By the embedding theorems there [6, pp. 61 and 80], $W_{p_1}^{2,1}(Q) \hookrightarrow H^{\alpha,\alpha/2}(Q)$ by choosing $p_1 > 2/(1-\alpha)$ with $\alpha \in (0,1)$. Then, $||u_n||_{H^{\alpha,\alpha/2}(Q)} \leq k_3$ for some constant k_3 . An argument as before gives

$$||u_n||_{H^{2+\alpha,1+\alpha/2}(Q)} \le K$$

for some constant K which is independent of n. This implies that u_n , $(u_n)_t$, $(u_n)_x$ and $(u_n)_{xx}$ are equicontinuous in Q. By the Ascoli-Arzela theorem,

$$|u||_{H^{2+\alpha,1+\alpha/2}(Q)} \le K,$$

and the partial derivatives of u are the limits of the corresponding partial derivatives of u_n . Thus, $u \in C(\overline{\Omega}_{\hat{t}}) \cap C^{2,1}(\Omega_{\hat{t}})$.

Theorem 2.5 gives a local existence of the solution of the problem (1.1)-(1.3). Let $T = \sup\{\hat{t} : \text{such that the problem } (1.1)-(1.3) \text{ has a solution on } \bar{D} \times [0, \hat{t}]\}$. Similar to Theorem 3 of Chan and Liu [3], we obtain $\lim_{t\to T} \max_{\bar{D}} u(x, t) = 1$ if $T < \infty$.

3. QUENCHING AND NON-QUENCHING

Let us consider the eigenvalue problem:

$$\varphi''(x) = -\lambda x^q \varphi(x), \, \varphi(0) = 0 = \varphi(a).$$

By the transformation $\varphi(x) = x^{1/2}y(x)$, the above differential equation gives

$$x^{2}y'' + xy' + \left(-\frac{1}{4} + \lambda x^{q+2}\right)y = 0$$

Let $x = z^{2/(q+2)}$. We have

$$z^{2}y'' + zy' + \left[-\frac{1}{(q+2)^{2}} + \frac{4\lambda}{(q+2)^{2}}z^{2}\right]y = 0,$$

whose general solution is given by

$$y(z) = AJ_{1/(q+2)}(2\sqrt{\lambda}z/(q+2)) + BJ_{-1/(q+2)}(2\sqrt{\lambda}z/(q+2)),$$

where $J_{1/(q+2)}$ and $J_{-1/(q+2)}$ denote Bessel functions of the first kind of order 1/(q+2)and -1/(q+2) respectively. Let μ be the first zero of $J_{1/(q+2)}(2\sqrt{\lambda}a^{(q+2)/2}/(q+2))$. By McLachlan [7, pp. 29, 75], it is positive. From the eigenvalue problem, the (fundamental) eigenfunction corresponding to μ is given by

$$\psi(x) = x^{1/2} J_{1/(q+2)} \left(\frac{2\sqrt{\mu}}{q+2} x^{(q+2)/2} \right),$$

which is positive for $x \in D$. From $\psi(a) = 0$, we see that μa^q decreases when a increases. Let φ denotes the (normalized) fundamental eigenfunction such that $\int_0^a x^q \varphi(x) dx = 1$.

We now give a criterion for quenching in a finite time.

Theorem 3.1. If G(u(x,t)) = f(u(x,t)), and $\mu a^q < f'(0)$, then u quenches in a finite time. If $G(u(x,t)) = \int_0^a h(x,t)f(u(x,t))dx$, and $\mu a^{q-1} < \underline{h}f(0)$, where $\underline{h} = \inf h(x,t) > 0$, then u quenches in a finite time.

Proof. Let $w(t) = \int_0^a x^q u(x,t) \varphi(x) dx$. Then,

$$w_{t} = \int_{0}^{a} x^{q} u_{t} \varphi dx$$

=
$$\int_{0}^{a} u_{xx} \varphi dx + \int_{0}^{a} G(u) \varphi dx$$

$$\geq -u(a,t) \varphi'(a) + u(0,t) \varphi'(0) - \mu w + a^{-q} \int_{0}^{a} G(u) x^{q} \varphi dx$$

If G(u(x,t)) = f(u(x,t)), then it follows from the Jensen inequality that $w_t \ge -\mu w + a^{-q}f(w)$. Since $f'' \ge 0$, we have $f(w) \ge f(0) + f'(0)w$. Hence

$$w_t \ge a^{-q} f(0) + (a^{-q} f'(0) - \mu) w$$

A direct calculation gives

$$w \ge \frac{f(0)}{f'(0) - \mu a^q} \left[e^{(a^{-q}f'(0) - \mu)t} - 1 \right].$$

Since $w(t) \leq 1$, and $f'(0) - \mu a^q > 0$, there exists some t_0 such that u reaches 1 somewhere in a finite time.

If
$$G(u(x,t)) = \int_0^a h(x,t) f(u(x,t)) dx$$
, then
$$\int_0^a G(u(x,t)) x^q \varphi(x) dx \ge a\underline{h} f(0).$$

Hence, $w_t \ge -\mu w + a^{-q+1}\underline{h}f(0)$. By a direct calculation,

$$w \ge \frac{hf(0)}{\mu a^{q-1}} \left(1 - e^{-\mu t}\right).$$

Since $\underline{h}f(0) > \mu a^{q-1}$, *u* reaches 1 somewhere in a finite time.

Since μa^q decreases when a increases, the theorem implies that the solution quenches in a finite time if a is sufficiently large.

Theorem 3.2. For a sufficiently small, the solution u exists globally.

Proof. Let $\rho(x) = x^{1/2} + 1$, and $\xi(t) = \epsilon(e^{-t} + 1)$, where ϵ is a positive number such that $2\epsilon(a^{1/2} + 1) \leq \sigma$ for some fixed $\sigma < 1$. Then, $0 < \rho(x)\xi(t) \leq \sigma < 1$ for $x \in \overline{D}$ and t > 0. Let $c = \max\{\max_{\overline{D}} M(x), \max_{\overline{D}} N(x)\}$, and a be chosen to satisfy further

$$\epsilon > ca \max\left\{\sigma^p, \, \sigma^r\right\}.$$

Then,

$$\rho(0) \xi(t) = \epsilon \left(e^{-t} + 1\right)$$

$$\geq ca \left(a^{1/2} + 1\right)^{p} \epsilon^{p} \left(e^{-t} + 1\right)^{p}$$

$$\geq \left[\epsilon \left(e^{-t} + 1\right)\right]^{p} \int_{0}^{a} M(x) \rho^{p}(x) dx$$

$$= \int_{0}^{a} M(x) \left(\rho(x) \xi(t)\right)^{p} dx,$$

$$\rho(a) \xi(t) = (a^{1/2} + 1) \epsilon (e^{-t} + 1)$$

$$\geq ca (a^{1/2} + 1)^r \epsilon^r (e^{-t} + 1)^r$$

$$\geq [\epsilon (e^{-t} + 1)]^r \int_0^a N(x) \rho^r(x) dx$$

$$= \int_0^a N(x) (\rho(x) \xi(t))^r dx.$$

On the other hand,

$$\begin{split} L(\rho(x)\xi(t)) - G(\rho(x)\xi(t)) &= -x^q \rho(x)\epsilon e^{-t} + \frac{1}{4}x^{-3/2}\xi(t) - G(\rho(x)\xi(t)) \\ &\geq -\epsilon a^q(a^{1/2}+1) + \frac{1}{4}\epsilon a^{-3/2} - G(2\epsilon(a^{1/2}+1)). \end{split}$$

Let us choose a to further satisfy

$$\frac{1}{4}a^{-3/2}\epsilon \ge \epsilon a^q(a^{1/2}+1) + G(2\epsilon(a^{1/2}+1)).$$

Then, $L(\rho(x)\xi(t)) \ge G(\rho(x)\xi(t))$ in Ω . An argument similar to the proof of Theorem 2.4 shows that $\rho(x)\xi(t) \ge u(x,t)$ for $x \in \overline{D}$ and any t > 0. Hence, the solution u is bounded above by $\sigma < 1$. This proves the theorem. \Box

REFERENCES

- C. Y. Chan and P. C. Kong, Quenching for degenerate semilinear parabolic equations, *Appl. Anal.*, 54:17–25, 1994.
- [2] C. Y. Chan and P. C. Kong, Channel flow of a viscous fluid in the boundary layer, Quart. Appl. Math., 55:51–56, 1997.
- [3] C. Y. Chan and H. T. Liu, Global existence of solutions for degenerate semilinear parabolic problems, *Nonlinear Anal.*, 34:617–628, 1998.
- [4] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, NJ, 1964.
- [5] G. S. Ladde, V. Lakshmikantham and A. S. Vatsala, Monotone Iteravtive Techniques for Nonlinear Differential Equations, Pitman Press, Boston, 1985.
- [6] O. A. Ladyženskaja, V. A. Solonnikov, N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, RI, 1968.
- [7] N. M. McLachlan, Bessel Functions for Engineers, 2nd ed., Oxford at the Clarendon Press, London, England, 1955.
- [8] C. A. Roberts and W. E. Olmstead, Local and non-local boundary quenching, *Math. Meth. Appl. Sci.*, 22:1465–1484, 1999.