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ABSTRACT. Let T and α be positive real numbers, β be a real number, B be a N -dimensional
ball

{
x ∈ RN : |x| < R

}
centered at the origin with a radius R, and ∂B be its boundary. Also, let

ν(x) denote the unit inward normal at x ∈ ∂B, and χB(x) be the characteristic function, which is 1
for x ∈ B, and 0 for x ∈ RN \B. This article studies the following parabolic Cauchy problem with
a concentrated nonlinear source on ∂B:

ut −4u = α(1 + |x|)β ∂χB(x)
∂ν

f(u) in RN × (0, T ],

u(x, 0) = 0 for x ∈ RN , u(x, t) → 0 as |x| → ∞ for 0 < t ≤ T,

where f is a given function such that limu→c− f(u) = ∞ for some positive constant c, and f(u) and
its derivatives f ′(u) and f ′′ (u) are positive for 0 ≤ u < c. It is shown that the solution u always
quenches for N ≤ 2, and quenching can be prevented for any β for N ≥ 3. For given R and β, the
effects of α on quenching are discussed. Similarly for a given α, the effects of R and β on quenching
are investigated.
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1. INTRODUCTION

Let H = ∂/∂t − 4, T and α be positive real numbers, β be a real number,

x = (x1, x2, . . . , xN) be a point in the N -dimensional Euclidian space RN , and Ω =

RN × (0, T ]. Dai and Zeng [2] studied quenching phenomena of the following Cauchy

problem:

Hu = α(1 + |x|)β 1

1− u
in Ω,

u(x, 0) = 0 for x ∈ RN , u(x, t) → 0 as |x| → ∞ for 0 < t ≤ T.

They proved that there exists a number tq ∈ (0,∞) such that

(1.1) lim
t→t−q

sup
x∈RN

u (x, t) = 1

for N ≤ 2 while for N ≥ 3 and β ≥ −2, (1.1) holds for any α. They also showed that

for N ≥ 3 and β < −2, there exists a critical number α∗ such that u exists globally

for α < α∗ and (1.1) holds for α > α∗.
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Here, we would like to study the effects of a concentrated nonlinear source. Let

B be a N -dimensional ball
{
x ∈ RN :

∣∣x− b̄
∣∣ < R

}
centered at a given point b̄ with a

radius R, ∂B be the boundary of B, ν(x) denote the unit inward normal at x ∈ ∂B,

and

χB(x) =

{
1 for x ∈ B,

0 for x ∈ RN \B,

be the characteristic function. Without loss of generality, let b̄ be the origin. We

consider the parabolic Cauchy problem with a concentrated nonlinear source on the

surface of the ball:

(1.2)

Hu = α(1 + |x|)β ∂χB(x)

∂ν
f(u) in Ω,

u(x, 0) = 0 for x ∈ RN , u(x, t) → 0 as |x| → ∞ for 0 < t ≤ T.

This model is motivated by a N -dimensional ball B having a radius R and situated in

RN ; on the surface ∂B of the ball, there is a concentrated nonlinear source of strength

α(1 + |x|)βf (u), where u (x, t) in Ω is the unknown to be determined. We assume

that limu→c− f(u) = ∞ for some positive constant c, and f(u) and its derivatives

f ′(u) and f ′′ (u) are positive for 0 ≤ u < c.

A solution u of the problem (1.2) is said to quench if there exists an extended

real number tq ∈ (0,∞] such that

sup
{
u(x, t) : x ∈ RN

}
→ c− as t → tq.

If tq < ∞, then u is said to quench in a finite time. If tq = ∞, then u quenches in

infinite time.

We note that a quenching problem in RN with a concentrated nonlinear source

αf (u) was studied by Chan and Tragoonsirisak [1]. Since for given α, R and β, the

term α(1+R)β is a constant, it follows from Theorem 3.1 of Chan and Tragoonsirisak

[1] that we have the following result.

Theorem 1.1. For N ≤ 2, u always quenches, in a finite time, everywhere on ∂B

only.

For N ≥ 3, u behaves differently. In Section 2, we study the effects of the

coefficient α when the radius R and β are fixed. We also derive a formula for the

critical value α∗ such that u exists globally for α ≤ α∗ and quenches in a finite time

for α > α∗. In Section 3, the effects of R and β on quenching are investigated for any

given α.
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2. EFFECTS OF α ON QUENCHING FOR N ≥ 3

The integral equation corresponding to the problem (1.2) is given by

u(x, t) = α

∫ t

0

∫
∂B

g(x, t; ξ, τ)(1 + |ξ|)βf(u(ξ, τ))dSξdτ

= α(1 + R)β

∫ t

0

∫
∂B

g(x, t; ξ, τ)f(u(ξ, τ))dSξdτ(2.1)

(cf. Chan and Tragoonsirisak [1]), where

g(x, t; ξ, τ) =
1

[4π(t− τ)]N/2
exp

(
− |x− ξ|2

4(t− τ)

)
.

Let M (t) denote supx∈RN u (x, t), and tq denote the supremum of all t1 such that

the integral equation (2.1) has a unique continuous nonnegative solution for 0 ≤ t ≤
t1. Since for given α, R and β, the term α(1 + R)β is a constant, it follows from

Theorems 2.1, 2.2 and 2.3 of Chan and Tragoonsirisak [1] that we have the following

results.

Theorem 2.1. There exists some tq such that for 0 ≤ t < tq, the integral equation

(2.1) has a unique continuous nonnegative solution u. Furthermore, u is the solution

of the problem (1.2), and is a strictly increasing function of t. For any t > 0,

u (x, t) = M (t) for x ∈ ∂B, M (t) > u (y, t) for any y /∈ ∂B.

If tq is finite, then at tq, u quenches everywhere on ∂B only.

The fundamental solution (cf. Evans [3, pp. 22 and 615]) of the Laplace equation

for N ≥ 3 is given by

G(x) =
Γ
(

N
2

+ 1
)

N(N − 2)πN/2

1

|x|N−2
.

The following result follows from Theorem 4.2 of Chan and Tragoonsirisak [1].

Theorem 2.2. If u(x, t) ≤ C for some constant C ∈ (0, c), then u(x, t) converges

from below to a solution U(x) = limt→∞ u(x, t) of the nonlinear integral equation,

U(x) = α (1 + R)β

∫
∂B

G(x− ξ)f(U(ξ))dSξ.

The next result follows from Theorems 4.3 to 4.5 of Chan and Tragoonsirisak [1].

Theorem 2.3. For N ≥ 3, there exists a unique

α∗ =
(N − 2)π(N−3)/2

(1 + R)β RΓ
(

N−1
2

)(N−3∏
i=1

∫ π

0
sini ϕdϕ

)max
0≤s≤c

(
s

f(s)

)
,

where for N = 3,
∏N−3

i=1

∫ π

0
sini ϕdϕ = 1, such that u exists globally for α ≤ α∗, and

u quenches in a finite time for α > α∗.
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From the above theorem, U(b) exists when α = α∗. This rules out the possi-

bility of quenching in infinite time. In contrast to that with a source which is not

concentrated, we note that the presence of the concentrated source can prevent the

occurence of quenching for any given β.

For illustration, let f(u) = 1/(1− u). A direct computation shows that s (1− s)

attains its maximum when s = 0.5. Hence,

α∗ =
0.25(N − 2)π(N−3)/2

(1 + R)β RΓ
(

N−1
2

)(N−3∏
i=1

∫ π

0
sini ϕdϕ

) .

3. EFFECTS OF R AND β ON QUENCHING FOR N ≥ 3

In this section, we study the effects of R and β on quenching for a given α.

Lemma 3.1. For N ≥ 3,

(i) if

(3.1) (1 + R)β R ≤ (N − 2) π(N−3)/2

αΓ
(

N−1
2

)(N−3∏
i=1

∫ π

0
sini ϕdϕ

)max
0≤s≤c

(
s

f(s)

)
,

then u exists globally.

(ii) if

(3.2) (1 + R)β R >
(N − 2)π(N−3)/2

αΓ
(

N−1
2

)(N−3∏
i=1

∫ π

0
sini ϕdϕ

)max
0≤s≤c

(
s

f(s)

)
,

then u quenches in a finite time.

Proof. (i) (3.1) is equivalent to α ≤ α∗. By Theorem 2.3, u exists globally.

(ii) Since (3.2) is equivalent to α > α∗, it follows from Theorem 2.3 that u quenches

in a finite time.

Let ϕ (R) = (1 + R)β R. We have

(3.3) ϕ′ (R) = (1 + R)β−1 [1 + (β + 1) R] .

Theorem 3.2. For N ≥ 3, and a given α, if β > −1, then there exists a unique R∗

such that u exists globally for R ≤ R∗ and quenches in a finite time for R > R∗.

Proof. Using (3.3), we have for β > −1,

(3.4)


ϕ′ (R) > 0 for R ≥ 0,

ϕ (0) = 0,

lim
R→∞

ϕ (R) = ∞.
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By solving

(1 + R)β R =
(N − 2)π(N−3)/2

αΓ
(

N−1
2

)(N−3∏
i=1

∫ π

0
sini ϕdϕ

)max
0≤s≤c

(
s

f(s)

)

for R, it follows from (3.4) that there exists exactly one solution, denoted by R∗. The

theorem then follows from Lemma 3.1 and (3.4).

Theorem 3.3. For N ≥ 3 and β = −1,

(i) if

(3.5) α ≤ (N − 2)π(N−3)/2

Γ
(

N−1
2

)(N−3∏
i=1

∫ π

0
sini ϕdϕ

)max
0≤s≤c

(
s

f(s)

)
,

then u exists globally for any R.

(ii) if

α >
(N − 2)π(N−3)/2

Γ
(

N−1
2

)(N−3∏
i=1

∫ π

0
sini ϕdϕ

)max
0≤s≤c

(
s

f(s)

)
,

then there exists a unique R∗ such that u exists globally for R ≤ R∗ and quenches in

a finite time for R > R∗.

Proof. (i) It follows from (3.3) that for β = −1,

(3.6)


ϕ′ (R) > 0 for R ≥ 0,

ϕ (0) = 0,

lim
R→∞

ϕ (R) = 1.

(3.5) is equivalent to α ≤ α∗. By Theorem 2.3, u exists globally.

(ii) We note from the assumption that

(N − 2)π(N−3)/2

αΓ
(

N−1
2

)(N−3∏
i=1

∫ π

0
sini ϕdϕ

)max
0≤s≤c

(
s

f(s)

)
< 1.

By solving

R

1 + R
=

(N − 2)π(N−3)/2

αΓ
(

N−1
2

)(N−3∏
i=1

∫ π

0
sini ϕdϕ

)max
0≤s≤c

(
s

f(s)

)

for R, it follows from (3.6) that there exists only one solution, denoted by R∗. The

theorem then follows from Lemma 3.1 and (3.6).

Theorem 3.4. For N ≥ 3 and β < −1,
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(i) if

(3.7) α ≤ (N − 2)π(N−3)/2 (−β − 1)

Γ
(

N−1
2

)(N−3∏
i=1

∫ π

0
sini ϕdϕ

)(
β

β + 1

)β
max
0≤s≤c

(
s

f(s)

)
,

then u exists globally for any R.

(ii) if

α >
(N − 2)π(N−3)/2 (−β − 1)

Γ
(

N−1
2

)(N−3∏
i=1

∫ π

0
sini ϕdϕ

)(
β

β + 1

)β
max
0≤s≤c

(
s

f(s)

)
,

then there exist R∗∗ and R∗∗∗ such that u exists globally for R ≤ R∗∗ or R ≥ R∗∗∗,

and quenches in a finite time for R∗∗ < R < R∗∗∗.

Proof. (i) From (3.3), we have for β < −1,

(3.8)


ϕ (R) attains its maximum at R = − 1

β + 1
,

ϕ′ (R) > 0 for R < − 1

β + 1
,

ϕ′ (R) < 0 for R > − 1

β + 1
.

(3.7) is equivalent to α ≤ α∗. By Theorem 2.3, u exists globally.

(ii) We note from the assumption that

(N − 2)π(N−3)/2

αΓ
(

N−1
2

)(N−3∏
i=1

∫ π

0
sini ϕdϕ

)max
0≤s≤c

(
s

f(s)

)
< ϕ

(
− 1

β + 1

)
.

By solving

(1 + R)β R =
(N − 2)π(N−3)/2

αΓ
(

N−1
2

)(N−3∏
i=1

∫ π

0
sini ϕdϕ

)max
0≤s≤c

(
s

f(s)

)

for R, it follows from (3.8) that there exist two solutions. Let us denote the solution

less than (−β−1)−1 by R∗∗, and the one larger than (−β−1)−1 by R∗∗∗. The theorem

then follows from Lemma 3.1 and (3.8).

For illustration, let f(u) = 1/(1 − u), α = 1, and N = 3. A direct computation

gives max0≤s≤c (s/f(s)) = 0.25. We give below examples for the three cases: β > −1,

β = −1, and β < −1.
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Example 3.1. Let β = 3. Since β > −1, it follows from Theorem 3.2 that

(1 + R∗)3 R∗ = 0.25. By using Mathematica version 6.0, we have R∗ ≈ 0.160116.

Example 3.2. Let β = −1. It follows from Theorem 3.3(ii) that R∗/ (1 + R∗) = 0.25,

which gives R∗ = 1/3.

Example 3.3. Let β = −1.5. It follows from Theorem 3.4(ii) that

R

(1 + R)1.5 = 0.25.

By using Mathematica version 6.0, we have R∗∗ ≈ 0.425485 and R∗∗∗ ≈ 12.7587.

REFERENCES

[1] C. Y. Chan and P. Tragoonsirisak, A multi-dimensional quenching problem due to a concen-
trated nonlinear source in RN , Nonlinear Anal., 69:1494–1514, 2008.

[2] Q. Y. Dai and X. Z. Zeng, The quenching phenomena for the Cauchy problem of semilinear
parabolic equations, J. Differential Equations, 175:163–174, 2001.

[3] L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics vol. 19, American
Mathematical Society, Providence, RI, 1998, pp. 22 and 615.


