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EFFECTS OF A CONCENTRATED NONLINEAR SOURCE
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ABSTRACT. Let T and « be positive real numbers, 3 be a real number, B be a N-dimensional
ball {x ERN : |z| < R} centered at the origin with a radius R, and OB be its boundary. Also, let
v(z) denote the unit inward normal at 2 € 9B, and xp(x) be the characteristic function, which is 1
for z € B, and 0 for z € R \ B. This article studies the following parabolic Cauchy problem with

a concentrated nonlinear source on 9B:

0
up— Au=a(l+ \3:|)BX8L(x)f(u) in RN x (0,77,
v
u(z,0) =0 for z € RN, u(x,t) - 0as |z| — oo for 0 <t < T,
where f is a given function such that lim,_,.- f(u) = oo for some positive constant ¢, and f(u) and
its derivatives f’(u) and f” (u) are positive for 0 < u < ¢. It is shown that the solution u always
quenches for N < 2, and quenching can be prevented for any § for N > 3. For given R and 3, the

effects of a on quenching are discussed. Similarly for a given «, the effects of R and 3 on quenching

are investigated.
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1. INTRODUCTION

Let H = 0/0t — A, T and « be positive real numbers, # be a real number,
xr = (21,%2,...,7y) be a point in the N-dimensional Euclidian space RY, and Q =
RN x (0,T]. Dai and Zeng [2] studied quenching phenomena of the following Cauchy

problem:

Hu = a1+ ]:l:\)ﬁl — in Q,

u(z,0) =0 for z € RN, u(z,t) — 0 as |z| — oo for 0 <t < T.
They proved that there exists a number ¢, € (0, 00) such that

(1.1) lim sup w(z,t) =1

t—ty zeRN

for N < 2 while for N > 3 and > —2, (1.1) holds for any «. They also showed that
for N > 3 and 8 < —2, there exists a critical number o* such that u exists globally
for < o* and (1.1) holds for a > a*.
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Here, we would like to study the effects of a concentrated nonlinear source. Let
B be a N-dimensional ball {a: c RV : ‘a: — I_)‘ < R} centered at a given point b with a
radius R, OB be the boundary of B, v(z) denote the unit inward normal at x € 9B,

and

(2) 1 for z € B,
€Tr) =
X5 0 for z € RN \ B,

be the characteristic function. Without loss of generality, let b be the origin. We
consider the parabolic Cauchy problem with a concentrated nonlinear source on the
surface of the ball:

= —aXB(x) U in
TR LRt (0 2

u(r,0) =0 for r € RV, u(z,t) - 0as |z| w00 for0<t<T.

This model is motivated by a N-dimensional ball B having a radius R and situated in
RY: on the surface OB of the ball, there is a concentrated nonlinear source of strength
a(l + |z|)°f (u), where u (z,t) in Q is the unknown to be determined. We assume
that lim, ..~ f(u) = oo for some positive constant ¢, and f(u) and its derivatives
f'(u) and f” (u) are positive for 0 < u < c.

A solution u of the problem (1.2) is said to quench if there exists an extended

real number ¢, € (0, co] such that
sup {u(z,t) :x € RV} — ¢ ast —t,.

If t, < oo, then u is said to quench in a finite time. If ¢, = oo, then u quenches in

infinite time.

We note that a quenching problem in RY with a concentrated nonlinear source
af (u) was studied by Chan and Tragoonsirisak [1]. Since for given «, R and [, the
term a(1+ R)? is a constant, it follows from Theorem 3.1 of Chan and Tragoonsirisak

[1] that we have the following result.

Theorem 1.1. For N < 2, u always quenches, in a finite time, everywhere on 0B

only.

For N > 3, u behaves differently. In Section 2, we study the effects of the
coefficient o when the radius R and 3 are fixed. We also derive a formula for the
critical value a* such that u exists globally for a < o* and quenches in a finite time
for a > o*. In Section 3, the effects of R and [ on quenching are investigated for any

given .
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2. EFFECTS OF a ON QUENCHING FOR N > 3

The integral equation corresponding to the problem (1.2) is given by
t
wat)=a [ [ o tie )1+ 16D ul, )dSedr
o JoB
t
(2.1) =a(l+ R)ﬂ/ / 9(@, ;& 7) f(u(, 7))dSedr
o Jom

(cf. Chan and Tragoonsirisak [1]), where

; T:—l ex _|x—§|2
ST = p(4@—ﬂ>'

Let M (t) denote sup,cpn u(z,t), and ¢, denote the supremum of all ¢; such that

the integral equation (2.1) has a unique continuous nonnegative solution for 0 < ¢ <
t;. Since for given «, R and 3, the term (1 + R)? is a constant, it follows from
Theorems 2.1, 2.2 and 2.3 of Chan and Tragoonsirisak [1] that we have the following

results.

Theorem 2.1. There exists some t, such that for 0 <t < t,, the integral equation
(2.1) has a unique continuous nonnegative solution u. Furthermore, u is the solution

of the problem (1.2), and is a strictly increasing function of t. For any t > 0,
u(x,t) = M(t) forx € dB, M (t) > u(y,t) for anyy ¢ OB.

If t, is finite, then at t,, u quenches everywhere on OB only.

The fundamental solution (cf. Evans [3, pp. 22 and 615]) of the Laplace equation
for N > 3 is given by
I'(§+1) 1
NN =27 2 |52

The following result follows from Theorem 4.2 of Chan and Tragoonsirisak [1].

G(z) =

Theorem 2.2. If u(z,t) < C for some constant C' € (0,c¢), then u(x,t) converges

from below to a solution U(x) = limy_ u(x,t) of the nonlinear integral equation,

Uw) =a(+R) [ G- 5UE€)dse

oB

The next result follows from Theorems 4.3 to 4.5 of Chan and Tragoonsirisak [1].

Theorem 2.3. For N > 3, there exists a unique

* (N — 2)r(N-3)/2 < 5 )
@' = , v (709
) () (T sin o) =N
i=1

where for N = 3, Hf\;?’ fo7r sin’ pdp = 1, such that u exists globally for a < o, and

u quenches in a finite time for a > a*.
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From the above theorem, U(b) exists when a = «*. This rules out the possi-
bility of quenching in infinite time. In contrast to that with a source which is not
concentrated, we note that the presence of the concentrated source can prevent the
occurence of quenching for any given f3.

For illustration, let f(u) = 1/(1 —u). A direct computation shows that s (1 — s)

attains its maximum when s = 0.5. Hence,

0.25(N — 2)gN=3)/2

(1+ R)’ RI (251 <N1j13 I sin’ gpdgp) |

of =

3. EFFECTS OF R AND g ON QUENCHING FOR N > 3
In this section, we study the effects of R and 3 on quenching for a given a.
Lemma 3.1. For N > 3,

(i) if
(3.1) (1+R)°R< (N —2) et max (i) ,

N=3 T . 0<s<c
ar (352) (T1 Jy v o

then u exists globally.
(i) if
(3.2) (1+R)’R> (N = 2)n Vo7 max (i)
' N-3 0<s<ec ’
ar (552) (11 Jy s v )
i=1

then u quenches in a finite time.

Proof. (i) (3.1) is equivalent to a < a*. By Theorem 2.3, u exists globally.

(ii) Since (3.2) is equivalent to a > a*, it follows from Theorem 2.3 that u quenches

in a finite time. O]

Let ¢ (R) = (1+ R)” R. We have
(3.3) ¢ (R)=(1+R"'[1+(8+1)R].

Theorem 3.2. For N > 3, and a given «, if f > —1, then there exists a unique R*
such that u exists globally for R < R* and quenches in a finite time for R > R*.

Proof. Using (3.3), we have for 8 > —1,

¢ (R) >0 for R >0,

(3.4) ¢ (0) =0,
lim ¢ (R) = 0.

R—o00
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By solving

(N — 2)r(N=3)/2 s
(1 +‘}%)6}%:: — qg%§ (-——__>
ar (32) (T fysn o) = V)
=1

for R, it follows from (3.4) that there exists exactly one solution, denoted by R*. The
theorem then follows from Lemma 3.1 and (3.4). O

Theorem 3.3. For N > 3 and = —1,
(i) if

(3.5) a < (N — 2)n N max (i)
' - N-3 0<s<c ’
o (1T o) 22 (76

then u exists globally for any R.

(i) if
(N —2)g(N=3)/2 ( s
a > max | ——
N2 0<s<e f(s)) ’
r(52) (T Jy s o)
then there exists a unique R* such that u exists globally for R < R* and quenches in
a finite time for R > R*.

Proof. (i) It follows from (3.3) that for 5§ = —1,

¢ (R)>0for R>0,

(3.6) ¢ (0) =0,
lim ¢ (R) = 1.

R—oo
(3.5) is equivalent to o < a*. By Theorem 2.3, u exists globally.

(ii) We note from the assumption that

(N — 2)r(N=3)/2 s
) <1
ol (%74) (H1 Jo sin’ wdso)

By solving

R (N —2)g(N=3)/2 . (i)
VI ar ) (T gy s )N
=1

0<s<c
for R, it follows from (3.6) that there exists only one solution, denoted by R*. The
theorem then follows from Lemma 3.1 and (3.6). O

Theorem 3.4. For N > 3 and 3 < —1,
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w
-
o)
IN
=
o
<

(N = 2902 (5~ 1) ()
(81 (Nl:[?)fﬁsini d )( g >6058§C f(s))”
2 i=1 °° i p+1
then u exists globally for any R.
(i) if
(N = 2)x5 92 (-5 - 1)
I () (NHS 7 sin' od ) (—5
2 =1 ? i p+1

then there exist R** and R** such that u exists globally for R < R** or R > R***,
and quenches in a finite time for R*™ < R < R**.

)gonglsasxc (ﬁ) ’

Proof. (i) From (3.3), we have for § < —1,

( 1
¢ (R) attains its maximum at R = R ESE
1
. ' £ _
(3.8) ¢ (R) >0 for R< 5-11-1’
/
f e
\ ¢ (R) <0 for R > E

(3.7) is equivalent to o < a*. By Theorem 2.3, u exists globally.

(ii) We note from the assumption that

(N = )72 :
ol (%5%) <N;13 Jy sin’ <pd90> & (W) 7 (_L) |

By solving

N — 2)r(V=3)/2
(1+R)’R= ( NZT max (_fs )
ar (552) (11 Jy s ) =

for R, it follows from (3.8) that there exist two solutions. Let us denote the solution
less than (—3—1)"! by R**, and the one larger than (—3—1)"! by R***. The theorem
then follows from Lemma 3.1 and (3.8). O

For illustration, let f(u) = 1/(1 —u), « = 1, and N = 3. A direct computation
gives maxg<s<. (s/f(s)) = 0.25. We give below examples for the three cases: § > —1,
B=—1,and § < —1.
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Example 3.1. Let § = 3. Since § > —1, it follows from Theorem 3.2 that
(14 R*)® R* = 0.25. By using Mathematica version 6.0, we have R* ~ 0.160116.

Example 3.2. Let § = —1. It follows from Theorem 3.3(ii) that R*/ (1 + R*) = 0.25,
which gives R* = 1/3.

Example 3.3. Let § = —1.5. It follows from Theorem 3.4(ii) that
R
By using Mathematica version 6.0, we have R** =~ 0.425485 and R*** ~ 12.7587.

= 0.25.
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