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ABSTRACT. Let T < o0, b be a positive number, m be a positive number such that m > 1,
and ¢ be a nonnegative number. Existence and uniqueness of a classical solution are studied for the

following degenerate quasilinear parabolic problem,
zluy = (u™),, +0f (u) in (0,1) x (0,7,
u(x,0) =ug (x) in [0,1], w(0,t) =0=wu(1,¢) fort € (0,T),
where ug (z) is a positive function for 0 < z < 1, uf* (z) € C*t*([0,1]) for some a € (0,1),

uo (0) = up (1) = 0, and f (u) is a given function such that f(0) > 0 and f’ (u) > 0 for v > 0.

Furthermore, a criterion for v to blow up in a finite time is given.
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1. INTRODUCTION

Let T' < oo, b be a positive number, m be a positive number such that m > 1, ¢
be a nonnegative number, D = (0,1), Qr = D x (0,T), D and Q7 denote the closures
of D and Qr respectively, and 0€)r denote the parabolic boundary (D X {0}) U
({0,1} x (0,7)). We consider the following degenerate parabolic problem,

(1.1) vl = (u™),, +bf (u) in Qp,

(1.2) u(z,0) = up (x) on D, u(0,t) =0=u(l,t) fort € (0,T),

where ug () is a positive function in D, uf* (z) € C*** (D) for some a € (0,1),
up (0) = up (1) =0, and f (u) is a given function such that f(0) > 0 and f’'(u) >0
for u > 0. We assume that

(1.3) (upg")” + bf (ug) > 0in D.

The problem (1.1)—(1.2) arises in plasma physics (cf. Berryman [1], Berryman &
Holland [2], and Budd, Galaktionov and Chen [3]) with u denoting the particle density.
It describes a particle diffusion across a magnetic field in a toroidal octupole plasma
containment device; x¢ is a geometrical factor and mu™"! is the diffusion coefficient.

Since mu™"! tends to zero as u — 0, (1.1) describes a phenomenon having a “slow
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diffusion”. When ¢ = 0, the problem (1.1)—(1.2) can be used to describe population
dynamics (cf. Gurtin and MacCamy [10]) with ™ representing individuals migrating
away from a region of high density, and with bf (u) being the population supply due
to births.

For an n-dimensional version of the problem (1.1)—(1.2) with ¢ =0, f (u) = u?/b
with p > 1, and ug () > 0, Galaktionov [9] obtained results on existence and the
blow-up in a finite time of a weak solution. Since the fundamental eigenvalue o of
the problem,

" +0op=0,0(0)=0=¢(1),

is greater than 1, his results for n = 1 showed that existence of a weak solution u in
a finite time, and its blow-up can occur for the case 1 < m < p < 3m + 2; for the
case 1 < m < p, he also gave a criterion (in terms of the fundamental eigenvalue)
for u to blow up in a finite time. Results on existence and blow-up in a finite time
of weak solutions for a more general multi-dimensional version of the problem (1.1)—
(1.2) with ¢ = 0 were obtained by Levine and Sacks [12]. We note that existence and
the blow-up in a finite time of a classical solution for a multi-dimensional version of
the problem (1.1)—(1.2) with ¢ = 0 and f (u) = u™/b was discussed by Samarskii,
Galaktionov, Kurdyumov and Mikhailov [13, pp. 29-30]. Budd, Galaktionov and
Chen [3] studied the blow-up point of a weak solution of the problem (1.1)-(1.2)
when f(u) = w”/b. They proved that © = 0 is the single blow-up point when
(p—1)/m = q. Our main purpose here is to use a completely different approach
from the above-mentioned references to obtain existence, uniqueness and the blow-up
in a finite time of a classical solution for the problem (1.1)—(1.2).

For the problem (1.1)—(1.2) with m = 1, f(u) = w?/b and ug(x) > 0 in D,
existence and uniqueness of a classical solution were studied by Floater [7], and by
Chan and Liu [6]. Furthermore, Floater [7] proved that = 0 is the only blow-up point
if 1 <p<q+1,and (ug(v) /x) <0 for x € D. On the other hand, Chan and Liu [6]
proved that if p > ¢+ 1, and for some positive constant K, ug () + uf (x) > Kug ()
for x € D, then x = 0 is not a blow-up point, and the blow-up set is a compact subset
of D. When b = 1, Chan and Chan [5] also proved existence and uniqueness of a

classical solution.

Let v = «™. Then, the problem (1.1)—(1.2) becomes

(1.4) 2, = mo™ Y/ My 4 bmo ™Y/ ™ g (v) in Qp,

(1.5) v(x,0) =vo(z) on D, v(0,t) =0=wv(1,t) for t € (0,T),

where vy (z) = uf' (z) and g (v) = f(u). It is noted that vy (z) € C*™ (D), and
g(0) >0 and ¢’ (v) > 0 for v > 0. (1.3) becomes

(1.6) vy + bg (ve) > 0in D.
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In Section 2, we shall prove existence and uniqueness of a classical solution u by
studying the problem (1.4)—(1.5) first. In Section 3, we shall study the blow-up of the
solution u in the following cases: (i) f(u) > u? where p is a positive constant such
that p > m for u > 0; (ii) f (u) = u™.

2. EXISTENCE AND UNIQUENESS OF A CLASSICAL SOLUTION

Let € be a sufficiently small positive number less than 1. We consider the following

problem,

(2.1) 2., = mu™ DMy bme™Y/ Mg (v,) in Qp,

(2.2) v (2,0) = vy () +con D, v.(0,t) =e=n.(1,t) fort € (0,T).

Also, let 6 (< 1/2) be a positive number, Ds = (6,1), Q57 = Ds x (0,T), Ds and
Qsr denote the closures of Ds and s respectively, and 92 denote the parabolic
boundary (Ds x {0}) U ({6,1} x (0,T)). We consider the following problem,

(2.3) rive, = mvg”_l)/mvgém + bmvé?”_l)/mg (ves) in Qsr,
(2.4) Ves (7,0) = v (7) + € on D,
' Vs (0,1) =09 (0) + ¢ and v, (1,t) =¢ for t € (0,7).

We would like to show that the problem (2.3)—(2.4) has a classical solution v, con-
verging to a classical solution v. of the problem (2.1)—(2.2) as 6 — 0. We then prove
that v. converges to a classical solution v of the problem (1.4)—(1.5) as ¢ — 0. With
this, we establish a classical solution u of the problem (1.1)—(1.2) either exists globally

or blows up in a finite time.
To establish existence of v.,, we construct a sequence {w;} as follows: wy = vo+¢,
and fori=1,2,3,...,

(2.5) rlw;, = mwgr_”l_l)/mwim + bmwlgf’fl)/mg (w;—q) in Qsr,

(2.6) { w; (z,0) = vy (x) + € on Ds,

w; (0,t) = vy (0) + & and w; (1,t) = ¢ for t € (0, 7).
To prove that w; converges to v., as ¢ tends to infinity, we modify Lemma 2.2 of
Floater [7] to obtain the following lemma.

Lemma 2.1. There exists some positive number t; < T and an a priori bound
Y € C* () such that ¢ > w; > vg + ¢ on Qg, for any positive integer i.

Proof. From (2.5) with i = 1,

(2.7) 2wy, = mw(™ V™ wy, + bmawd™ Mg (w) .
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From (1.6),

(2.8) 0 < mwd™ V"™ [(vg + )" + by (vg + )] -
Subtracting (2.8) from (2.7), we obtain

(2.9) 2wy, > mw(™ " wy — (vo + €)],, -

Since w; (z,0) —wo (x) = 0 on Ds, and w; (6,) —wp (§) = 0 and wy (1,1) —wp (1) = 0
for 0 < t < t;, by the weak maximum principle (cf. Friedman [8, pp. 39-40)),
wy > v (z) +& on Qp,. Suppose w; > vy + ¢ for some integer j > 1. Similar to (2.9),
we have

29 (wjy1 — wp), > mwj(»m b/m
(

T i = o), + bmawg™ ™V (g (w;) = g (wo))

2 mwjm 1)/m (

Wit = W)y -

Since w;41 (2,0) — wp (z) = 0 on Ds, and wjyy (6,¢) —wo (§) = 0 and w;yy (1,¢) —
wo (1) = 0 for 0 < ¢t < ¢, by the weak maximum principle, w; 1 > vy + € on Q.
Using the principle of mathematical induction, we have w; > vy + € on g, for any

positive integer 1.

(i) Let 0 (z) = 2 (1 — x) /2, and 79 be a positive number greater than or equal to 1
such that
0 (z) 79 > v (z) for z € D, and g (1) < %.

(ii) Let v € (0,1/2) be a constant such that
1-— i
g <77( 5 7)7'0+1> < ?0'
(iii) Let 7 (¢) be the solution of the initial value problem,

2bm (/8 + 1) ™ VMg (r/8 + 1
i (r/ )7q+2 g(t/ )77(0)2270

From (iii), 7 (¢) is an increasing function and 7 (¢) > 75. We choose a positive

number ¢; such that

(2.10) g(lgilL@Q+1):T%Q.

Let ¢ (x,t) = 0 (x) 7 (t) + &, and
J = a%y — map " — b0 g ()

Then,
(2.11) J = 2907 + myp "D/ [ — bg (4)] .

If (z,t) is in (0,7) x (0,%;] or (1 —~,1) x (0,¢;], then 8 < v (1 —~) /2 for v €
(0,1/2). From (2.11) and 7 > 0,

J > mapm—/m [T —bg (0 (x)7(t) +¢)]
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By (2.10), J > 0. If (z,t) € [y,1 — ] x (0,¢;], then by (2.11) and 7 > 0,
(2.12) J > 2997 — bmap™m=D/™mg (1)) .
At z = 1/2, 0m=D/m () attains its maximum (1/8)™ Y™ From (2.12) and (iii),

it (7 )(m—l)/m (7’ )
N —wm (T z > 0.
J > 5 7 —bm g + € g 3 +e) >0

We now have
291y > map MY M bmap MY Mg () in Q.

By (i),
Y (2,0) = 019+ > vy (x) + ¢ for v € Ds.

Since 7 (t) is an increasing function for 0 < ¢t < ¢y,

5(1— ) _(1=9)

P (6,t) = 5 T(t)+e> 5 To+€e>wv(0) + ¢,

¥ (1,t) =e.
It follows from (i) and 7 (¢) being increasing that v¥» > wg on Qg,. From (2.5) with

1 =1, we have
(¢ — w1),, + bg () — by (wo)

< (gt g g T
m m

Because wél_m)/m > pU=m/m on Qg,, ¥ > 0, and ¢’ > 0, we obtain

q,,,(1—m)/m
. wom (h —wi)y = (¢ —wi),, -

Since ¢ (z,0)—w; (x,0) > 0on Ds, and ¢ (6,¢)—w; (6,¢) > 0and ¢ (1,¢)—w; (1,¢) =0

for 0 < ¢ < ¢, by the weak maximum principle, ¢ > w; on Qg,. Suppose that ¢ > w;

on 4, for some integer j > 1. Then,

.flqu(-l_m)/m

— (¢ —wjn),

m
xq —m)/m —m)/m
> (6 = wir),, + (9 () = g (wy)) + (1wl " =7 g
> (V¥ = wjt1),, -
Since ¥ (2,0) — w;11 (x,0) > 0 on Ds, and ¥ (§,t) — w41 (6,¢) > 0 and ¥ (1,t) —
wjtq (1,) = 0 for 0 < t < ¢y, by the weak maximum principle, ¥ > w;;; on Qs;,. By

the principle of mathematical induction, 1) > w; on Qg for any nonnegative integer
1. O
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The following result is useful in estimating the coefficients and the forcing terms

of the differential equations.

Lemma 2.2. Let a1, as, and h be positive numbers, R = [ai,as] X [0,h], and
Z (x,t) denote a positive classical solution of one of the following problems: (1.4)—
(1.5), (2.1)—(2.2), (2.3)—(2.4), and (2.5)—(2.6). If there exist positive numbers kq, ko,
and v with r > 3/ (2 — «), and positive functions A (x,t) and [ (x,t) on R such that
B(z,t) < Z(z,t) < A(x,t) < ki on R and |[A(z,1)|[p(r) < ko, then there exist
some positive numbers ks and ky depending on 3, A and R such that

(i) "mx_qz(m_l)/mHHa,a/z(R) < ks,

(it) [|oma1Zm 017G (Z)|] aayogry < Fa.

Proof. Since Z (z,t) < A(x,t) < ky on R and ¢’ > 0, we have

U211 ry < 1A pr gy < K2,

‘ }bmx_qZ(m_l)/mg (Z)}

< b [[ A0 (1)

Lr( L(R)
By Theorem 4.9.1 of Ladyzenskaja, Solonnikov and Ural’ceva [11, pp. 341-342], Z €
W21 (R). Since r > 3/ (2 — «), it follows from Lemma 2.3.3 there [11, p. 80] that

W2 (R) — H*%/2(R). Thus, | Z|| gaar2(gy < ks for some positive constant ks.
(1)
‘ ‘ml’_qZ(m_l)/m‘ ‘HQ,Q/Z(R)
- m—1)/m m—1)/m -z
< map? | [/ | A sup P
(@ner T — |
(z,t)ER

Zm=D/m (g t) — Zm=D/m(z ¢
+mai;? | sup } (z.1) ( )}

(z,t)eR ‘LE - i“a
(Z,t)eR

‘Z(m—l)/m(a;’ t) — Z(m—l)/m(x’{)‘
a/2

+ sup —
(z,t)ER ‘t — t‘
(x,f)ER

By the mean value theorem,

‘ }msc_qz(m_l)/m} }HQ»G/Q(R)

< map ! [[ATT] 4 m AT a7 gy

C 120 - 2, 0)

2.13 +(m—1)a;?| sup -
(2.13) ( Ja (x1)eR |z — 7
(Z,t)eR
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2|2, t) - Z(2,D)

+ sup —
(z,t)eR ‘t — t‘
(:c,f)ER
for some & between Z(z,t) and Z(,t), and some & between Z (z,t) and Z (x,1).
Since & /™ and & /™ are bounded by 3~Y/™, inequality (2.13) becomes

me_qZ(m_l ) < ks,

|| ooz
which is a constant for fixed 3, A and R.
(ii) Replacing Zm=1/™ with bZ(m=Y/mg (Z) in (i), and by ¢’ > 0, we have
| ‘bmz_qz(m_l)/mg (2)] }Ha,a/z(R)
< bmay  [[AC | g (A)]]
+ bm [ g (Mo |27 oz ry
|Z0m= 0/ (1) — 2D (3. )|

+bma; g ()], sup 4
(z,t)ER |z — 7|
(zZ,t)ER
(m—1)/m _ (m=1)/m
+ bmai;?||g (A)]|,, sup ‘Z (z,1) ~ZQ (Im
(z,t)ER }t _ t‘a/
(w,f)eR
+ bmay® |[A™=V/") | sup l9(Z (2.) —9(Z(Z.1))
(¢.t)ER |z — |
(zZ,t)ER
g | up 2Z 20 =9 (Z (D)
(z,t)ER }t _ t‘

(:c,f)ER
By the mean value theorem, the above inequality is equivalent to
} ‘bmx—qz(m—l)/mg (Z) } ‘Ha,a/2(R)
< bmay ® |[AD| g (Al
+ bm | |ATD ] g ()] [ |27 e

Z(m—l)/m‘ ‘Ha,a/z

(R)
+bmay? [|g (A)

o ||

(R)
+ bmal_q HA(m_l)/m‘ }OO ||9l (Z)Hoo ||Z||Ha»a/2(R)
S k4a
which is a constant for fixed 3, A and R. 0

The following result deals with the linear problems.

Lemma 2.3. For any arbitrarily fixed 6 and any positive integer i,

(i) w; € C*Fo+e/2(Qg ) and is unique,
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(ii) wy, > 0 on Qg
(iii) {w;_1} is a monotone nondecreasing sequence on Qs .

Proof. (i) By Lemma 2.2 with R = Qg,, we have for some positive numbers kg and

k7 depending on £, ¥ and Q5t1,
(m— 1>/m‘
-1

< kﬁv

‘ ‘mx T, B
HQ’Q/Q(Q&l)

Hbmx 4"y (wi_l)‘

< ks.

Ha'a/Q(Qétl)
By Theorem 4.5.2 of Ladyzenskaja, Solonnikov and Ural’ceva [11, p. 320], the result
follows.

(i) Since w; is bounded below and above by positive functions, and
w; € C*rl+a/2(Q5 ), a direct computation and using (3.3.2) of Friedman [8, p. 66]
show that (m 2™V /m> /ot 8( —aqy"D/m g (wi_l)) JOt, 52 ( w!™ Y /m> /0,
and §? (:L’_qwl@l_ D/m e (w;_1)) JOx? are Holder continuous of exponent a in Qg,. By
Theorem 3.11 of Friedman [8, p. 74], w;,,, and w;,, exist and they are Holder contin-
uous of exponent « in (g, .

When i = 1, we differentiate (2.5) with respect to ¢, then

q (1—m)/m
9wy B
Wiy = Wiggy-

Also, for x € Dy

w, (z,0) = hh%1+ wy (7, h)h— wo () >0,

and wy, (§,t) = 0 =wy, (1,t) for 0 < t < ;. By the weak maximum principle, wq, > 0
on Qs;,. Suppose that it is true for i = j for some positive integer j. When i = j + 1,
we have

xqw§1—m)/m

- Wjy1, = Wjt1,, + bg (wy).

By differentiating this expression with respect to t,

xf 1-m)/m xt 1 1-2m)/m
Ewﬂ( Mg, + (E - 1) Ry g,

_ /

Furthermore,

. B) —
Wjt1, (ZL’,O) = lim Wit (SL’, ) Wo (LL’)

> 0 for x € Dy,
h—0+ h

and wji1, (0,t) = 0 = wjp, (1,8) for 0 < ¢ < t;. Since w; € C*FIFe/2 (O ),

w(l—2m)/m
J

Qst,. The result follows from the principle of mathematical induction.

w;, is bounded on Qg,. By the weak maximum principle, w;y;, > 0 on
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(iii) If we let i = 1 and 2, then from (2.5) we have

! 1-m)/m

v _ b :

o wy, = wi,, + bg (wo)

T (—m)/m

m

Therefore,
x1 -m)/m
wa,, — wi,, +b(g (wr) — g (wo)) = —wl ™™ (ws, —wy,)
! (1—m)/m ! (1—m)/m
+mw1 w1, mwo wy, -

According to Lemma 2.1 and (ii), we have w; > wg and wy, > 0. Thus,

xz? 4 x4 _ _
_w§1 m)/m (w2 _ wl)t > T + E 'LU((]l m)/m 'LU§1 m)/m e

> Wo,, — Wi,,,

wy (2,0) —w; (2,0) = 0 on Dy, and wsy (§,t) —w; (6,t) = 0 and ws (1,t) —w; (1,£) =0
for 0 < t < t;. By the weak maximum principle, wy > w; on Qg,. Suppose that it is

true for ¢ = 5 for some positive integer j. When i = j + 1,

! (1—m)/m T (1=m)/m (1=m)/m
el (Wjt1 — W), = Wjt1,, — Wy, + ool LU RS —w; ] Wy,

wjz1 (2,0) — w; (,0) = 0 on Ds, and w;1 (6,t) — w; (6,) = 0 and wjyy (1,¢) —
w; (1,¢) = 0 for 0 < t < t;. By the weak maximum principle, w;,; > w; on Q.
Hence, by the principle of mathematical induction {w;_;} is a monotone nondecreas-

ing sequence on g, . O

Let v, be the solution to the problem (2.3)-(2.4) when € = ¢;, and v, be the
solution to the problem (2.3)—(2.4) when ¢ = §;.

Lemma 2.4. (i) For any arbitrarily fired 6 and e, there exists a solution v., €
CFrolte/2(Qg,,) of the problem (2.3)~(2.4), and ¢ > v, > vo+ € on Qg,.

(i) ves, > vey, oM Qs,1, for any arbitrarily fived € and any positive §; and 6y such
that §; < 0.

(ili) ve,, < ve,, on Qsi, for any arbitrarily fived § and any positive 1 and g4 such
that 1 < g9.

Proof. (i) Since ¥ > w; > vy + ¢ on Qg,and {w;} is a monotone nondecreasing
sequence, we let v, = lim; .., w; on Q.. For any point (z1,t;) € Qs let Q) =
[¢1, o) X [O,fl} such that (x1,t) € Q1 C Qs;, with § < &, & < land{; < t;. By
Lemma 2.2,

(m—l)/m‘

i—1

S k87

max~Tw
) ‘ Ha,a/Z(Ql)
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(m—1)/m

‘ ‘bmx_qwi_l g (wi_l)‘ < ko,

Ha,a/2((21)

for some positive numbers kg and kg (depending on vy +¢, ¢ and Q1, but independent
of 7). By Theorem 4.10.1 of Ladyzenskaja, Solonnikov and Ural’ceva [11, pp. 351-352],

there exists some positive number k¢ independent of 7 such that
||wz’||H2+a,1+a/2(Q1) < kio.

This implies that w;, w;,, w;, and w;,, are equicontinuous on Q1. By the Ascoli-Arzela
theorem,
‘|U55||H2+a,1+a/2(Q1) < klOv

and the partial derivatives of v., are the limits of the corresponding w;. Therefore,
Y > v, > vg+e on Q. Since w; (6,t) = vy (8) + ¢ and w; (1,t) = ¢, we have
v, (6,1) = vy (0) + € and v, (1,t) = &, and hence, v, € ¢ (Qst,) is a solution
to the problem (2.3)—(2.4).

(ii) Let ws, and ws, be the solutions to the problem (2.5)-(2.6) in Qs and
Qs,¢, vespectively. When i = 0, we have ws, (z) = vo(z) + ¢ for € Ds, and
ws,, (z) = vo (v) + ¢ for x € Ds,. From (2.5),

(1-m)/m
7 (w
( 6107’1)1 (wéll)t - (w511)xx + bg (wélo) in Q511517
(I1-m)/m
z? (w
( 62077)1 (w(sQl)t = (w521)m + bg (w(;%) n Qéztl-
Thus,
(1-m)/m
z? (w
( 61077)1 (wall - w521)t = (w(sll - w521)m in Qs,¢, .

Also, ws, (7,0) — w5, (2,0) = 0 for z € Ds, and ws, (1,t) — ws, (1,¢) = 0 for
0 <t <t;. By Lemma 2.3(ii), (w511)t > 0 on Qs,¢,. Thus, ws, (a,1) —ws,, (62,1) >0
for 0 <t < ;. Hence, by the weak maximum principle ws,, — ws, > 0 on sy,
Suppose that it is true for ¢ = 5 for some positive integer j. Then for ¢+ = j + 1, we
have

Q

(1-m)/m
o )

(1-m)/m
<w51j) 1 <w52j
<w61j+1 )t - m <w52j+1 )t

m
(), 00 (v) o (o)

By (w629’+1)t > 0 on §s,,, we have

(1—m)/m
x? (w(;lj)

— < — .
<w51j+1 w62j+1> - m (w51j+1 w52j+1>t

rxr
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Also, W, (x,0) = W, ,, (z,0) for z € Ds, and W, (1,t) = Wy, (I,t)for0 < t <
t1. By Lemma 2.3(ii), <w51j+1>t > 0 on Qs,4,. Thus, Wy, (0g,t) — Wy, ,, (09,t) >0
for 0 < t < t;. Hence, by the weak maximum principle Ws,, | 2> W,  ON Qs,1,- By
the principle of mathematical induction, ws, > ws, on s, for nonnegative integer
1. Therefore, Ves, 2 Ve, OL ngtl.
(iii) Let w; be the solution to the problem (2.5)-(2.6) in 5, with Wy = v + &1,
W; (2,0) = vy (x) + &, on Dy, w; (6,t) = vy () + &1 and w; (1,t) = ; for 0 < t < ¢y,
and let w; be the solution to the problem (2.5)—(2.6) in Qs, with wy = vy + &2,
W; (7,0) = vg () +e2 on Dy, and w; (6,t) = vo (0) +e and w; (1,t) = g5 for 0 < ¢ < ¢y,
From (2.5),

24 ~((]1—m)/m
W, =, +bg (o) in Qty
24 Aél—m)/m
’LZJlt = 'LZJlm + bg ('LZJQ) n Q(Stl-
Thus,
.’L"q A —m)/m ~ ~ —m)/m ~ A ~ A ~
= |, — | = (= ), + b (g () — g ()

> (wl - wl)xw :

By Lemma 2.3(ii), w;, > 0 on s, , so we obtain

~ ~ l’q A~ —m m A~ ~ xq A —m m ~ —m m ~
(01 — 1), < Ewél I (g — i), + - [w(()l mg§tmm g,
:I;q A~ —m)/m ~ ~
< Ew(()l I (g — i),

Also, w0y (z,0) — W (z,0) = g9 — g1 > 0 for # € Dy and w0y (x,t) — W (,1) = 3 — &,
at x =90 and x = 1 for 0 < t < ;. Hence, by the weak maximum principle w; >
on Qgtl. Suppose that w; > w; on Qgtl for some integer j > 1. Then by w;, > 0 on

Qs:, and the above calculation, we have

N ~ xd ~(1—=m)/m , ~ ~
(Wj41 — Wjg1) 4y < ij(' M (41 — W),
AISO, UA)j+1 (LU, O) — ’U~Jj+1 (.flf, 0) — &9 — &1 > 0 for x € D5, and UA)j+1 (LU, t) — Tz)j+1 (LU, t) =
gg—eratx =90 and z = 1 for 0 < ¢t < ¢;. Hence, by the weak maximum principle
Wjp1 > Wiy1 on Qs . By the principle of mathematical induction, @; > @; on Qg

for any nonnegative integer i. Therefore, v., > ve, on (g, . O

Let wy, = (0,1] x [0,%1]. We now let § tend to 0.

Lemma 2.5. (i) There exists a solution v. € C' (Qy, ) NC* 12 (W, ) of the problem
(2.1)-(2.2), and 1 > v. > vg + on Q.

(ii) v, < w., on Q, for any positive e and ey such that &, < 5.

Proof. (i) Since ¢ > v., > vg + € on g, and {v.,} is a monotone nonincreasing

sequence in §, we let v. = lims o v.,. Then, 1 > v. > vy + ¢ on ,. For any point



74 W. Y. CHAN

(z2,13) € wy,, let Qy = [, E4] X [0,75] such that (z,t3) € Q2 C wy, with 0 < ¢,
¢ <1 and t, <t;. Since ¢ > Vey, > Vo + € On Qgtl, it follows from Lemma 2.2 that
there exist some positive numbers ki; and kq5 (depending on vy + £, ¥ and Q2, but
independent of §) such that

| ‘mx_qvém_l) ) < ki,

/m‘ ‘Hw/Z(Q

Q2) < kio.

By Theorem 4.10.1 of Ladyzenskaja, Solonnikov and Ural’ceva,

Hbmx qv(m ng U55 HHa a/2<

1051 r2va14ar2(g,) < Kz

for some positive number ki3 independent of §. This implies that v.,, (ve,),, (vs),

and (v, ), are equicontinuous in Q». By the Ascoli-Arzela theorem,

||ve | |H2+a,1+a/2 (G2) < ki3,

and the partial derivatives of v. are the limits of the corresponding derivatives of v.,.
By ¢ > v. > vy + ¢ on €, and the sandwich theorem, lim,_v. (z,t) = . Hence,
v: € C () NC?F1T/2 (4, ) is a solution to the problem (2.1)-(2.2).

(i) This follows from Lemma 2.4(iii) by letting § — 0. O

Let P =D x [0,%1]. We now let ¢ tend to 0 to give a local existence result.

Theorem 2.6. There ezists a solution v € C (Qy,) N C*+*1T/2 (P) of the problem

(1.4)—(1.5).

Proof. By Lemma 2.5(ii), we have v., < v, for 0 < 1 < ey. Let v = lim._gv.. Since

vel (Qtl), there exists a positive constant k14 (independent of €) such that ¢ < kq4

on €, . An argument similar to that in Lemma 2.5(i) shows that {v.} converges to

v e O (Q) NC2Hoite/2 (P). 0
The following result gives local existence of a solution wu.

Theorem 2.7. There ezists a solution u € C (€, ) N C*T*1Te/2(P) of the problem
(1.1)—(1.2).

Proof. Using u = v+ it follows from v > vy > 0 in €, and v € C (Qtl) N
C#relte/2(P) that u € C (€,), and that w;, u, and u,, exist in P. The Holder

norm (cf. Friedman [8, p. 61]) of a function G with exponent « is given by

G (z,t) z,1
IGllguerey = 6o+ sup. G (@) =G (39)]
Gier (\/Ix—:vl +\t—t\)

Since v are differentiable, it follows from the above equa-
: —m/(m+1 —(2m+1)/(m+1
tion that H“ s )Hcma/?(P) and HU Gm)/ et Hca’aﬂ(P)

given functions F' and H, we have the inequalities (cf. Friedman [8, p. 66]):

—m/(m+1) —(2m+1)/(m+1)

and v

are bounded. For two

[E'+ Hl|gowrzpy < |[Fllganrzpy T [HIgoarzpy »
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EH||coor2(py < [1Fllconrzpy 1HI| goorapy -
Then, by these two inequalities, we obtain

—m/(m+1

HutHCO"&/%P) < m1 HU )Hca,a/2(P) Hthca,am(P)’

m 2m+1)/(m+1) ‘ ‘

— 2
Huxcha,a/z(p) S ( 2 HU ( Caya/z(P) HU;BHCa,a/2(P)

m+1)

+— Hv_’”/(’”“) | ‘CW/Z(P) Vel gesarz p) -

Hence, u € C?+*1+a/2(p), O

Let ¢, = sup{t;: the problem (1.1)—(1.2) has a solution u € C' (, )NC*T1+o/2 (P)}
We modify the proof of Theorem 8 of Chan and Chan [5] to obtain the following result.

Theorem 2.8. The problem (1.1)—(1.2) has a solution
u € C (D x[0,t,)) NC*rette/2(D x [0,t,)).

If t, < 00, then w is unbounded in D x (0,ty).

Proof. In order to prove global existence of u, it follows from Theorems 2.6 and 2.7
that it is sufficient to prove global existence of v. Let us suppose that v is bounded
above by some positive constant M in D x (0,ts). To arrive at a contradiction, we
need to show that v can be continued into a larger time interval [0, ts + ¢5] for some
positive t5. This can be achieved by extending the a priori bound of ¢: Let

r> max{bg(M),r;fg(%},

E(z) =Tz (1—=z)/2 and E (z) = E (z) + 6. Then,

_ pyy—(m=1)/m ‘
(2.14) —Fpp— | ——————v— v | =0 —bg(v) >0in D x (0,t,),
m

E(z) > vy (z) on D, and E(z) —v(z,t) > 0 at £ = 0 and = 1. To prove
E(z)>wv(z,t)in Dx (0,t,),let Y (x,t) = E (z) —v (x,t). Let us suppose that there
is a

te = inf {t : Y (x4,t) = 0 for some x4, € D}.
Then7 E (25'4) =v (LU4, tﬁ)? Et ($4> =0 < Uy (LU4, tﬁ)u and Exm (5(:4) > Uy (I47t6)- ThllS,

3o~ =DM (1 t6)
m
On the other hand, it follows from (2.14) that

q,,—(m—1)/m t B
_x4v (x4’ 6)Ut (LU4, tﬁ) > Emm (5(:4) — Uz (.]74, tG) Z 0.

0>— vy (24, 6) -

m
This contradiction shows that E (z) > v (z,t) in D x (0,t,). When § — 0, E (z) >
v (z,t) in D x (0,ts). In particular, v (x,t) is bounded by E (z) at t = t,.
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Let us choose a constant 4 € (0,1/2) such that bg (I'y (1 —4) /2+ 1) < I'. Then
we consider
o 2bm (D7/8 + 1)(7‘”/’”9 (I'7/8+1)
THa+2
Let t5 be some positive constant determined by

(T 1) o

, T (ts) = 1.

Following the previous procedures of constructing v (z,t) in Lemma 2.1, we can
construct an upper bound ¥ (z,t) = E (z)7(t) + ¢ of v(z,t) on D x [t t, +t5].
Following the proof of Lemmas 2.4 and 2.5 and Theorem 2.6 with vy, 9 (x,t), 0 and
t1 replaced, respectively, by v (x,ts), V (z,t), ts and ts + t5, we obtain a solution on
D x [t ts +t5]. Thus, v € C (Qp445) N CHFIH2 (D x [0, £, + ¢5]). This contradicts
the definition of ¢,. O

The proof of the following theorem is a modification of that by Wiegner [15].
Theorem 2.9. The problem (1.1)—(1.2) has at most one solution.
Proof. Suppose that the problem (1.1)—(1.2) has two different solutions u (x,t) and

z (z,t). Without loss of generality, let us assume that z > u somewhere, say, (Z,1)
in Qp. Since z (2,0) — u (x,0) = 0 on D, and 2 (0,¢) — u(0,¢) = 0, and 2 (1,t) —
u(1,t) = 0, there exists some nonnegative constants as, a4, as, and ag such that
T € (as,a5) C (as,as) C D, and z(as,t) = u(az,t) and 2 (a4, t) = u(aq,t) for
0<t<t Also, z(z,t) >u(xt) for z € (as,as) and z > u on [ag, a4] X [0,t]. Let ¢

and o denote the fundamental eigenfunction and eigenvalue of the problem,
" +op=0"foraz <z <ay ¢laz) =0=¢(a).

Then, ¢ = sin [r (z — a3) / (as — as)], and 0 = [7/ (ay — a3)]>. We have

0< / / ™ opdrdt = / / " dxdt
/ / 2w PAdxdt.

From (1.1), and z(x,0) = u (x,0) on D,
0<— / / (272 — bf () — (2% — bf ()] wdadt
(2.15) = —/ o (z(x,t) —u(z,t))de

< f / (f () — f () it
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Since z (z,t) —u (z,t) > 0 for z € [ag, a4], it follows from the mean value theorem for

integrals [4, p. 5] that there exists some ¢ € (a3, a4) such that

a4

(2.16) / o () (e, D) e = [ (0d) e do

as as

By the mean value theorem, there exists some ¢ between z and u such that

fz) = flw)=f()(z—u).
Since f’ exists, |f’'(¢)| < kg for some positive constant kyg. Then,
(2.17) f(2) = f(u) < kg (2 —u).
According to (2.16) and (2.17), (2.15) is transformed to

/(p(z(x,f)—u(x,f) dx<%// (z — u) dxdt.

as

By the Gronwall inequality [14, pp. 14-15],

/a4gp(z(x,ﬂ—u(x,ﬂ)dx§0.

as

On the other hand, ¢ (z (z,t) — u (z,t)) > 0 for z € (a5, ag) implies

/a4<p(z(x,f)—u(x,f))dx>0.

as

This contradiction shows that the problem (1.1)—(1.2) has at most one solution. [

3. BLOW-UP OF THE SOLUTION

In this section, we study the blow-up of the solution u in the following cases: (i)
f (u) > uP where p is a positive constant such that p > m for u > 0; (ii) f (u) = u™.
Let ¢ (x) be the fundamental eigenfunction of the problem,

(3.1) §"+ N6 = 0in D, 6(0) = 0= 6 (1),
where A is its corresponding eigenvalue. From the result of Chan and Chan [5], A > 0

2)\1/2 2\L/2
gb(x) = k‘go (q + 2)1/2 1'1/2J1/(q+2) < (q+2 )/‘ 1/(g+2)]+1 ( + 2) )

and

where Ji/(g+2) and Jp (g+2)41 are Bessel functions of the first kind of orders 1/ (¢ + 2)
and [1/ (¢ +2)] + 1 respectively, and ¢ (z) > 0 in D for some positive constant k.
Let us choose kg such that fol 294 (v)dr = 1. If p > m, let R(s) = bs?/™/2 — )s.
The largest positive root of R (s) = 0 is given by

2\ m/(p—m)
s:(b) .
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Let p (t) = fol x1¢ () u (z,t) de. When f (u) > u? with p > m, we prove that u blows
up in a finite time if the initial condition is sufficiently large for any positive b. When
f (u) = u™, we show that u blows up if b > A.

Theorem 3.1. (i) If f(u) > u? with p > m and

1 2\ "/ (P—m)
/ rlouy'dr > (—) ;
0 b

then u blows up in a finite time.
(ii) If f(u) =u™ and b > X, then u blows up in a finite time.
Proof. (i) According to (1.1) and (3.1), and f (u) > u?, we have

/01 rludr = /01 ¢ (u™),, dr + /01 obf (u)dx

1 1
(3.2) > —)\/ ripu™dr + b/ 29 (W)™ da.
0 0

It follows by p > m and the Jensen inequality

1 1 1 p/m
(/ :cquudx) > —>\/ xlou™dr + b (/ xquumdx) )
0 ¢ 0 0

By assumption, fol rlpuftdr > (2\/ b)™P=™ Since u is an increasing function of ¢,
we have R ( fol xquumdx> > 0 for fol zipumdr > (20/b)™ ™™ This implies that

1 1 p/m
(/0 xquudx)t > g (/0 xqqﬁumd:c) :

By the Jensen inequality,

mq p/m p
(/01 xquudx)t > g [(/01 :cqqﬁudx) } = g (/01 :cqqﬁudx) )

This is equivalent to

b
W) > SuP ().
Solving this differential inequality, it yields
b
—(p—1)t.
5 (1)

Thus, p (t) tends to infinity in a finite time. Hence, u blows up in a finite time.

(i) If f (u) = u™, it follows from (3.2) that

1 1
(/ xq¢udx) > (b— )\)/ lou™dz.
0 ¢ 0

By using b > X and the Jensen inequality,

pt) = (b= A) ™ (t).

PP () < pTPHH(0) -
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Solving this differential inequality, we have

pom(E) < pmH(0) = (b= ) (m = 1)t

Thus, u (t) tends to infinity in a finite time. Hence, u blows up in a finite time. [

1]

9]
[10]
11)
12)
13]
[14]

[15]
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