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ABSTRACT. Let T ≤ ∞, b be a positive number, m be a positive number such that m > 1,

and q be a nonnegative number. Existence and uniqueness of a classical solution are studied for the

following degenerate quasilinear parabolic problem,

xqut = (um)xx + bf (u) in (0, 1)× (0, T ) ,

u (x, 0) = u0 (x) in [0, 1] , u (0, t) = 0 = u (1, t) for t ∈ (0, T ) ,

where u0 (x) is a positive function for 0 < x < 1, um
0 (x) ∈ C2+α ([0, 1]) for some α ∈ (0, 1),

u0 (0) = u0 (1) = 0, and f (u) is a given function such that f (0) ≥ 0 and f ′ (u) ≥ 0 for u ≥ 0.

Furthermore, a criterion for u to blow up in a finite time is given.
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1. INTRODUCTION

Let T ≤ ∞, b be a positive number, m be a positive number such that m > 1, q

be a nonnegative number, D = (0, 1), ΩT = D× (0, T ), D̄ and Ω̄T denote the closures

of D and ΩT respectively, and ∂ΩT denote the parabolic boundary
(

D̄ × {0}
)

∪

({0, 1} × (0, T )). We consider the following degenerate parabolic problem,

(1.1) xqut = (um)xx + bf (u) in ΩT ,

(1.2) u (x, 0) = u0 (x) on D̄, u (0, t) = 0 = u (1, t) for t ∈ (0, T ) ,

where u0 (x) is a positive function in D, um
0 (x) ∈ C2+α

(

D̄
)

for some α ∈ (0, 1),

u0 (0) = u0 (1) = 0, and f (u) is a given function such that f (0) ≥ 0 and f ′ (u) ≥ 0

for u ≥ 0. We assume that

(1.3) (um
0 )′′ + bf (u0) ≥ 0 in D.

The problem (1.1)–(1.2) arises in plasma physics (cf. Berryman [1], Berryman &

Holland [2], and Budd, Galaktionov and Chen [3]) with u denoting the particle density.

It describes a particle diffusion across a magnetic field in a toroidal octupole plasma

containment device; xq is a geometrical factor and mum−1 is the diffusion coefficient.

Since mum−1 tends to zero as u → 0, (1.1) describes a phenomenon having a “slow
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diffusion”. When q = 0, the problem (1.1)–(1.2) can be used to describe population

dynamics (cf. Gurtin and MacCamy [10]) with um representing individuals migrating

away from a region of high density, and with bf (u) being the population supply due

to births.

For an n-dimensional version of the problem (1.1)–(1.2) with q = 0, f (u) = up/b

with p > 1, and u0 (x) ≥ 0, Galaktionov [9] obtained results on existence and the

blow-up in a finite time of a weak solution. Since the fundamental eigenvalue σ of

the problem,

ϕ′′ + σϕ = 0, ϕ (0) = 0 = ϕ (1) ,

is greater than 1, his results for n = 1 showed that existence of a weak solution u in

a finite time, and its blow-up can occur for the case 1 < m < p < 3m + 2; for the

case 1 < m < p, he also gave a criterion (in terms of the fundamental eigenvalue)

for u to blow up in a finite time. Results on existence and blow-up in a finite time

of weak solutions for a more general multi-dimensional version of the problem (1.1)–

(1.2) with q = 0 were obtained by Levine and Sacks [12]. We note that existence and

the blow-up in a finite time of a classical solution for a multi-dimensional version of

the problem (1.1)–(1.2) with q = 0 and f (u) = um/b was discussed by Samarskii,

Galaktionov, Kurdyumov and Mikhailov [13, pp. 29-30]. Budd, Galaktionov and

Chen [3] studied the blow-up point of a weak solution of the problem (1.1)–(1.2)

when f (u) = up/b. They proved that x = 0 is the single blow-up point when

(p− 1) /m = q. Our main purpose here is to use a completely different approach

from the above-mentioned references to obtain existence, uniqueness and the blow-up

in a finite time of a classical solution for the problem (1.1)–(1.2).

For the problem (1.1)–(1.2) with m = 1, f (u) = up/b and u0 (x) ≥ 0 in D,

existence and uniqueness of a classical solution were studied by Floater [7], and by

Chan and Liu [6]. Furthermore, Floater [7] proved that x = 0 is the only blow-up point

if 1 < p ≤ q+1, and (u0 (x) /x)′ ≤ 0 for x ∈ D. On the other hand, Chan and Liu [6]

proved that if p > q+ 1, and for some positive constant K, u′′0 (x) + up
0 (x) ≥ Ku0 (x)

for x ∈ D, then x = 0 is not a blow-up point, and the blow-up set is a compact subset

of D. When b = 1, Chan and Chan [5] also proved existence and uniqueness of a

classical solution.

Let v = um. Then, the problem (1.1)–(1.2) becomes

(1.4) xqvt = mv(m−1)/mvxx + bmv(m−1)/mg (v) in ΩT ,

(1.5) v (x, 0) = v0 (x) on D̄, v (0, t) = 0 = v (1, t) for t ∈ (0, T ) ,

where v0 (x) = um
0 (x) and g (v) = f (u). It is noted that v0 (x) ∈ C2+α

(

D̄
)

, and

g (0) ≥ 0 and g′ (v) ≥ 0 for v ≥ 0. (1.3) becomes

(1.6) v′′0 + bg (v0) ≥ 0 in D.
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In Section 2, we shall prove existence and uniqueness of a classical solution u by

studying the problem (1.4)–(1.5) first. In Section 3, we shall study the blow-up of the

solution u in the following cases: (i) f (u) ≥ up where p is a positive constant such

that p > m for u ≥ 0; (ii) f (u) = um.

2. EXISTENCE AND UNIQUENESS OF A CLASSICAL SOLUTION

Let ε be a sufficiently small positive number less than 1. We consider the following

problem,

(2.1) xqvεt = mv(m−1)/m
ε vεxx + bmv(m−1)/m

ε g (vε) in ΩT ,

(2.2) vε (x, 0) = v0 (x) + ε on D̄, vε (0, t) = ε = vε (1, t) for t ∈ (0, T ) .

Also, let δ (< 1/2) be a positive number, Dδ = (δ, 1), ΩδT = Dδ × (0, T ), D̄δ and

Ω̄δT denote the closures of Dδ and ΩδT respectively, and ∂ΩδT denote the parabolic

boundary
(

D̄δ × {0}
)

∪ ({δ, 1} × (0, T )). We consider the following problem,

(2.3) xq
tvεδt

= mv(m−1)/m
εδ

vεδxx
+ bmv(m−1)/m

εδ
g (vεδ

) in ΩδT ,

(2.4)

{

vεδ
(x, 0) = v0 (x) + ε on D̄δ,

vεδ
(δ, t) = v0 (δ) + ε and vεδ

(1, t) = ε for t ∈ (0, T ) .

We would like to show that the problem (2.3)–(2.4) has a classical solution vεδ
, con-

verging to a classical solution vε of the problem (2.1)–(2.2) as δ → 0. We then prove

that vε converges to a classical solution v of the problem (1.4)–(1.5) as ε → 0. With

this, we establish a classical solution u of the problem (1.1)–(1.2) either exists globally

or blows up in a finite time.

To establish existence of vεδ
, we construct a sequence {wi} as follows: w0 = v0+ε,

and for i = 1, 2, 3, . . . ,

(2.5) xqwit = mw
(m−1)/m
i−1 wixx + bmw

(m−1)/m
i−1 g (wi−1) in ΩδT ,

(2.6)

{

wi (x, 0) = v0 (x) + ε on D̄δ,

wi (δ, t) = v0 (δ) + ε and wi (1, t) = ε for t ∈ (0, T ) .

To prove that wi converges to vεδ
as i tends to infinity, we modify Lemma 2.2 of

Floater [7] to obtain the following lemma.

Lemma 2.1. There exists some positive number t1 < T and an a priori bound

ψ ∈ C2,1
(

Ω̄t1

)

such that ψ ≥ wi ≥ v0 + ε on Ω̄δt1 for any positive integer i.

Proof. From (2.5) with i = 1,

(2.7) xqw1t = mw
(m−1)/m
0 w1xx + bmw

(m−1)/m
0 g (w0) .
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From (1.6),

(2.8) 0 ≤ mw
(m−1)/m
0

[

(v0 + ε)′′ + bg (v0 + ε)
]

.

Subtracting (2.8) from (2.7), we obtain

(2.9) xqw1t ≥ mw
(m−1)/m
0 [w1 − (v0 + ε)]xx .

Since w1 (x, 0)−w0 (x) = 0 on D̄δ, and w1 (δ, t)−w0 (δ) = 0 and w1 (1, t)−w0 (1) = 0

for 0 < t ≤ t1, by the weak maximum principle (cf. Friedman [8, pp. 39-40]),

w1 ≥ v0 (x) + ε on Ω̄δt1 . Suppose wj ≥ v0 + ε for some integer j > 1. Similar to (2.9),

we have

xq (wj+1 − w0)t ≥ mw
(m−1)/m
j (wj+1 − w0)xx + bmw

(m−1)/m
j (g (wj) − g (w0))

≥ mw
(m−1)/m
j (wj+1 − w0)xx .

Since wj+1 (x, 0) − w0 (x) = 0 on D̄δ, and wj+1 (δ, t) − w0 (δ) = 0 and wj+1 (1, t) −

w0 (1) = 0 for 0 < t ≤ t1, by the weak maximum principle, wj+1 ≥ v0 + ε on Ω̄δt1 .

Using the principle of mathematical induction, we have wi ≥ v0 + ε on Ω̄δt1 for any

positive integer i.

(i) Let θ (x) = x (1 − x) /2, and τ0 be a positive number greater than or equal to 1

such that

θ (x) τ0 ≥ v0 (x) for x ∈ D̄, and g (1) <
τ0
b
.

(ii) Let γ ∈ (0, 1/2) be a constant such that

g

(

γ (1 − γ)

2
τ0 + 1

)

<
τ0
b
.

(iii) Let τ (t) be the solution of the initial value problem,

τ ′ =
2bm (τ/8 + 1)(m−1)/m g (τ/8 + 1)

γq+2
, τ(0) = τ0.

From (iii), τ (t) is an increasing function and τ (t) ≥ τ0. We choose a positive

number t1 such that

(2.10) g

(

γ (1 − γ)

2
τ (t1) + 1

)

=
τ (t1)

b
.

Let ψ (x, t) = θ (x) τ (t) + ε, and

J = xqψt −mψ(m−1)/mψxx − bmψ(m−1)/mg (ψ) .

Then,

(2.11) J = xqθτ ′ +mψ(m−1)/m [τ − bg (ψ)] .

If (x, t) is in (0, γ) × (0, t1] or (1 − γ, 1) × (0, t1], then θ < γ (1 − γ) /2 for γ ∈

(0, 1/2). From (2.11) and τ ′ ≥ 0,

J ≥ mψ(m−1)/m [τ − bg (θ (x) τ (t) + ε)]
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≥ mψ(m−1)/m

[

τ0 − bg

(

γ (1 − γ)

2
τ + 1

)]

.

By (2.10), J ≥ 0. If (x, t) ∈ [γ, 1 − γ] × (0, t1], then by (2.11) and τ ≥ 0,

(2.12) J ≥ xqθτ ′ − bmψ(m−1)/mg (ψ) .

At x = 1/2, θ(m−1)/m (x) attains its maximum (1/8)(m−1)/m. From (2.12) and (iii),

J ≥
γq+2

2
τ ′ − bm

(τ

8
+ ε

)(m−1)/m

g
(τ

8
+ ε

)

≥ 0.

We now have

xqψt ≥ mψ(m−1)/mψxx + bmψ(m−1)/mg (ψ) in Ωt1 .

By (i),

ψ (x, 0) = θτ0 + ε ≥ v0 (x) + ε for x ∈ D̄δ.

Since τ (t) is an increasing function for 0 < t ≤ t1,

ψ (δ, t) =
δ (1 − δ)

2
τ (t) + ε ≥

δ (1 − δ)

2
τ0 + ε ≥ v0 (δ) + ε,

ψ (1, t) = ε.

It follows from (i) and τ (t) being increasing that ψ ≥ w0 on Ω̄δt1 . From (2.5) with

i = 1, we have

(ψ − w1)xx + bg (ψ) − bg (w0)

≤
xq

m

(

ψ(1−m)/m − w
(1−m)/m
0

)

ψt +
xqw

(1−m)/m
0

m
(ψ − w1)t .

Because w
(1−m)/m
0 ≥ ψ(1−m)/m on Ω̄δt1 , ψt ≥ 0, and g′ ≥ 0, we obtain

xqw
(1−m)/m
0

m
(ψ − w1)t ≥ (ψ − w1)xx .

Since ψ (x, 0)−w1 (x, 0) ≥ 0 on D̄δ, and ψ (δ, t)−w1 (δ, t) ≥ 0 and ψ (1, t)−w1 (1, t) = 0

for 0 < t ≤ t1, by the weak maximum principle, ψ ≥ w1 on Ω̄δt1 . Suppose that ψ ≥ wj

on Ω̄δt1 for some integer j ≥ 1. Then,

xqw
(1−m)/m
j

m
(ψ − wj+1)t

≥ (ψ − wj+1)xx + b (g (ψ) − g (wj)) +
xq

m

(

w
(1−m)/m
j − ψ(1−m)/m

)

ψt

≥ (ψ − wj+1)xx .

Since ψ (x, 0) − wj+1 (x, 0) ≥ 0 on D̄δ, and ψ (δ, t) − wj+1 (δ, t) ≥ 0 and ψ (1, t) −

wj+1 (1, t) = 0 for 0 < t ≤ t1, by the weak maximum principle, ψ ≥ wj+1 on Ω̄δt1 . By

the principle of mathematical induction, ψ ≥ wi on Ω̄δt1 for any nonnegative integer

i. �
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The following result is useful in estimating the coefficients and the forcing terms

of the differential equations.

Lemma 2.2. Let a1, a2, and h be positive numbers, R = [a1, a2] × [0, h], and

Z (x, t) denote a positive classical solution of one of the following problems: (1.4)–

(1.5), (2.1)–(2.2), (2.3)–(2.4), and (2.5)–(2.6). If there exist positive numbers k1, k2,

and r with r > 3/ (2 − α), and positive functions Λ (x, t) and β (x, t) on R such that

β (x, t) ≤ Z (x, t) ≤ Λ (x, t) ≤ k1 on R and ||Λ (x, t)||Lr(R) ≤ k2, then there exist

some positive numbers k3 and k4 depending on β, Λ and R such that

(i)
∣

∣

∣

∣mx−qZ(m−1)/m
∣

∣

∣

∣

Hα,α/2(R)
≤ k3,

(ii)
∣

∣

∣

∣bmx−qZ(m−1)/mg (Z)
∣

∣

∣

∣

Hα,α/2(R)
≤ k4.

Proof. Since Z (x, t) ≤ Λ (x, t) ≤ k1 on R and g′ ≥ 0, we have

||Z||Lr(R) ≤ ||Λ||Lr(R) ≤ k2,

∣

∣

∣

∣bmx−qZ(m−1)/mg (Z)
∣

∣

∣

∣

Lr(R)
≤ bma−q

1

∣

∣

∣

∣Λ(m−1)/mg (Λ)
∣

∣

∣

∣

Lr(R)
.

By Theorem 4.9.1 of Ladyženskaja, Solonnikov and Ural’ceva [11, pp. 341–342], Z ∈

W 2,1
r (R). Since r > 3/ (2 − α), it follows from Lemma 2.3.3 there [11, p. 80] that

W 2,1
r (R) →֒ Hα,α/2 (R). Thus, ||Z||Hα,α/2(R) ≤ k5 for some positive constant k5.

(i)

∣

∣

∣

∣mx−qZ(m−1)/m
∣

∣

∣

∣

Hα,α/2(R)

≤ ma−q
1

∣

∣

∣

∣Λ(m−1)/m
∣

∣

∣

∣

∞
+m

∣

∣

∣

∣Λ(m−1)/m
∣

∣

∣

∣

∞
sup

(x,t)∈R
(x̃,t)∈R

|x−q − x̃−q|

|x− x̃|α

+ma−q
1






sup

(x,t)∈R
(x̃,t)∈R

∣

∣Z(m−1)/m(x, t) − Z(m−1)/m(x̃, t)
∣

∣

|x− x̃|α

+ sup
(x,t)∈R

(x,t̃)∈R

∣

∣Z(m−1)/m(x, t) − Z(m−1)/m(x, t̃)
∣

∣

∣

∣t− t̃
∣

∣

α/2









.

By the mean value theorem,

∣

∣

∣

∣mx−qZ(m−1)/m
∣

∣

∣

∣

Hα,α/2(R)

≤ ma−q
1

∣

∣

∣

∣Λ(m−1)/m
∣

∣

∣

∣

∞
+m

∣

∣

∣

∣Λ(m−1)/m
∣

∣

∣

∣

∞

∣

∣

∣

∣x−q
∣

∣

∣

∣

Hα,α/2(R)

+ (m− 1) a−q
1






sup

(x,t)∈R
(x̃,t)∈R

∣

∣

∣
ξ
−1/m
1

∣

∣

∣
|Z(x, t) − Z(x̃, t)|

|x− x̃|α
(2.13)
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+ sup
(x,t)∈R

(x,t̃)∈R

∣

∣

∣
ξ
−1/m
2

∣

∣

∣

∣

∣Z(x, t) − Z(x, t̃)
∣

∣

∣

∣t− t̃
∣

∣

α/2









for some ξ1 between Z(x, t) and Z(x̃, t), and some ξ2 between Z (x, t) and Z
(

x, t̃
)

.

Since ξ
−1/m
1 and ξ

−1/m
2 are bounded by β−1/m, inequality (2.13) becomes

∣

∣

∣

∣mx−qZ(m−1)/m
∣

∣

∣

∣

Hα,α/2(R)
≤ k3,

which is a constant for fixed β, Λ and R.

(ii) Replacing Z(m−1)/m with bZ(m−1)/mg (Z) in (i), and by g′ ≥ 0, we have
∣

∣

∣

∣bmx−qZ(m−1)/mg (Z)
∣

∣

∣

∣

Hα,α/2(R)

≤ bma−q
1

∣

∣

∣

∣Λ(m−1)/m
∣

∣

∣

∣

∞
||g (Λ)||

∞

+ bm
∣

∣

∣

∣Λ(m−1)/m
∣

∣

∣

∣

∞
||g (Λ)||

∞

∣

∣

∣

∣x−q
∣

∣

∣

∣

Hα,α/2(R)

+ bma−q
1 ||g (Λ)||

∞
sup

(x,t)∈R
(x̃,t)∈R

∣

∣Z(m−1)/m (x, t) − Z(m−1)/m (x̃, t)
∣

∣

|x− x̃|α

+ bma−q
1 ||g (Λ)||

∞
sup

(x,t)∈R

(x,t̃)∈R

∣

∣Z(m−1)/m (x, t) − Z(m−1)/m
(

x, t̃
)
∣

∣

∣

∣t− t̃
∣

∣

α/2

+ bma−q
1

∣

∣

∣

∣Λ(m−1)/m
∣

∣

∣

∣

∞
sup

(x,t)∈R
(x̃,t)∈R

|g (Z (x, t)) − g (Z (x̃, t))|

|x− x̃|α

+ bma−q
1

∣

∣

∣

∣Λ(m−1)/m
∣

∣

∣

∣

∞
sup

(x,t)∈R

(x,t̃)∈R

∣

∣g (Z (x, t)) − g
(

Z
(

x, t̃
))

∣

∣

∣

∣t− t̃
∣

∣

α/2
.

By the mean value theorem, the above inequality is equivalent to
∣

∣

∣

∣bmx−qZ(m−1)/mg (Z)
∣

∣

∣

∣

Hα,α/2(R)

≤ bma−q
1

∣

∣

∣

∣Λ(m−1)/m
∣

∣

∣

∣

∞
||g (Λ)||

∞

+ bm
∣

∣

∣

∣Λ(m−1)/m
∣

∣

∣

∣

∞
||g (Λ)||

∞

∣

∣

∣

∣x−q
∣

∣

∣

∣

Hα,α/2(R)

+ bma−q
1 ||g (Λ)||

∞

∣

∣

∣

∣Z(m−1)/m
∣

∣

∣

∣

Hα,α/2(R)

+ bma−q
1

∣

∣

∣

∣Λ(m−1)/m
∣

∣

∣

∣

∞
||g′ (Z)||

∞
||Z||Hα,α/2(R)

≤ k4,

which is a constant for fixed β, Λ and R. �

The following result deals with the linear problems.

Lemma 2.3. For any arbitrarily fixed δ and any positive integer i,

(i) wi ∈ C2+α,1+α/2
(

Ω̄δt1

)

and is unique,
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(ii) wit ≥ 0 on Ω̄δt1 ,

(iii) {wi−1} is a monotone nondecreasing sequence on Ω̄δt1 .

Proof. (i) By Lemma 2.2 with R = Ω̄δt1 , we have for some positive numbers k6 and

k7 depending on ε, ψ and Ω̄δt1 ,
∣

∣

∣

∣

∣

∣
mx−qw

(m−1)/m
i−1

∣

∣

∣

∣

∣

∣

Hα,α/2(Ω̄δt1)
≤ k6,

∣

∣

∣

∣

∣

∣
bmx−qw

(m−1)/m
i−1 g (wi−1)

∣

∣

∣

∣

∣

∣

Hα,α/2(Ω̄δt1)
≤ k7.

By Theorem 4.5.2 of Ladyženskaja, Solonnikov and Ural’ceva [11, p. 320], the result

follows.

(ii) Since wi is bounded below and above by positive functions, and

wi ∈ C2+α,1+α/2(Ω̄δt1), a direct computation and using (3.3.2) of Friedman [8, p. 66]

show that ∂
(

x−qw
(m−1)/m
i−1

)

/∂t, ∂
(

x−qw
(m−1)/m
i−1 g (wi−1)

)

/∂t, ∂2
(

x−qw
(m−1)/m
i−1

)

/∂x2,

and ∂2
(

x−qw
(m−1)/m
i−1 f (wi−1)

)

/∂x2 are Hölder continuous of exponent α in Ωδt1 . By

Theorem 3.11 of Friedman [8, p. 74], wixxt and witt exist and they are Hölder contin-

uous of exponent α in Ωδt1 .

When i = 1, we differentiate (2.5) with respect to t, then

xqw
(1−m)/m
0

m
w1tt = w1xxt.

Also, for x ∈ D̄δ

w1t (x, 0) = lim
h→0+

w1 (x, h) − w0 (x)

h
≥ 0,

and w1t (δ, t) = 0 = w1t (1, t) for 0 < t ≤ t1. By the weak maximum principle, w1t ≥ 0

on Ω̄δt1 . Suppose that it is true for i = j for some positive integer j. When i = j+ 1,

we have

xqw
(1−m)/m
j

m
wj+1t = wj+1xx + bg (wj) .

By differentiating this expression with respect to t,

xq

m
w

(1−m)/m
j wj+1tt +

xq

m

(

1

m
− 1

)

w
(1−2m)/m
j wjtwj+1t

= wj+1xxt + bg′ (wj)wjt ≥ wj+1xxt.

Furthermore,

wj+1t (x, 0) = lim
h→0+

wj+1 (x, h) − w0 (x)

h
≥ 0 for x ∈ D̄δ,

and wj+1t (δ, t) = 0 = wj+1t (1, t) for 0 < t ≤ t1. Since wj ∈ C2+α,1+α/2
(

Ω̄δt1

)

,

w
(1−2m)/m
j wjt is bounded on Ω̄δt1 . By the weak maximum principle, wj+1t ≥ 0 on

Ω̄δt1 . The result follows from the principle of mathematical induction.
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(iii) If we let i = 1 and 2, then from (2.5) we have

xq

m
w

(1−m)/m
0 w1t = w1xx + bg (w0) ,

xq

m
w

(1−m)/m
1 w2t = w2xx + bg (w1) .

Therefore,

w2xx − w1xx + b (g (w1) − g (w0)) =
xq

m
w

(1−m)/m
1 (w2t − w1t)

+
xq

m
w

(1−m)/m
1 w1t −

xq

m
w

(1−m)/m
0 w1t .

According to Lemma 2.1 and (ii), we have w1 ≥ w0 and w1t ≥ 0. Thus,

xq

m
w

(1−m)/m
1 (w2 − w1)t ≥ w2xx − w1xx +

xq

m

[

w
(1−m)/m
0 − w

(1−m)/m
1

]

w1t

≥ w2xx − w1xx ,

w2 (x, 0)−w1 (x, 0) = 0 on D̄δ, and w2 (δ, t)−w1 (δ, t) = 0 and w2 (1, t)−w1 (1, t) = 0

for 0 < t ≤ t1. By the weak maximum principle, w2 ≥ w1 on Ω̄δt1 . Suppose that it is

true for i = j for some positive integer j. When i = j + 1,

xq

m
w

(1−m)/m
j (wj+1 − wj)t ≥ wj+1xx − wjxx +

xq

m

[

w
(1−m)/m
j−1 − w

(1−m)/m
j

]

wjt

≥ wj+1xx − wjxx,

wj+1 (x, 0) − wj (x, 0) = 0 on D̄δ, and wj+1 (δ, t) − wj (δ, t) = 0 and wj+1 (1, t) −

wj (1, t) = 0 for 0 < t ≤ t1. By the weak maximum principle, wj+1 ≥ wj on Ω̄δt1 .

Hence, by the principle of mathematical induction {wi−1} is a monotone nondecreas-

ing sequence on Ω̄δt1 . �

Let vεiδ
be the solution to the problem (2.3)–(2.4) when ε = εi, and vεδi

be the

solution to the problem (2.3)–(2.4) when δ = δi.

Lemma 2.4. (i) For any arbitrarily fixed δ and ε, there exists a solution vεδ
∈

C2+α,1+α/2
(

Ω̄δt1

)

of the problem (2.3)–(2.4), and ψ ≥ vεδ
≥ v0 + ε on Ω̄δt1 .

(ii) vεδ1
≥ vεδ2

on Ω̄δ2t1 for any arbitrarily fixed ε and any positive δ1 and δ2 such

that δ1 ≤ δ2.

(iii) vε1δ
≤ vε2δ

on Ω̄δt1 for any arbitrarily fixed δ and any positive ε1 and ε2 such

that ε1 ≤ ε2.

Proof. (i) Since ψ ≥ wi ≥ v0 + ε on Ω̄δt1and {wi} is a monotone nondecreasing

sequence, we let vεδ
= limi→∞wi on Ω̄δt1 . For any point (x1, t2) ∈ Ω̄δt1 , let Q̃1 =

[c̃1, c̃2] ×
[

0, t̃1
]

such that (x1, t2) ∈ Q̃1 ⊂ Ω̄δt1 with δ ≤ c̃1, c̃2 ≤ 1 and t̃1 ≤ t1. By

Lemma 2.2,
∣

∣

∣

∣

∣

∣
mx−qw

(m−1)/m
i−1

∣

∣

∣

∣

∣

∣

Hα,α/2(Q̃1)
≤ k8,
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∣

∣

∣

∣

∣

∣
bmx−qw

(m−1)/m
i−1 g (wi−1)

∣

∣

∣

∣

∣

∣

Hα,α/2(Q̃1)
≤ k9,

for some positive numbers k8 and k9 (depending on v0 +ε, ψ and Q̃1, but independent

of i). By Theorem 4.10.1 of Ladyženskaja, Solonnikov and Ural’ceva [11, pp. 351–352],

there exists some positive number k10 independent of i such that

||wi||H2+α,1+α/2(Q̃1) ≤ k10.

This implies that wi, wit, wix and wixx are equicontinuous on Q̃1. By the Ascoli-Arzela

theorem,

||vεδ
||H2+α,1+α/2(Q̃1) ≤ k10,

and the partial derivatives of vεδ
are the limits of the corresponding wi. Therefore,

ψ ≥ vεδ
≥ v0 + ε on Ω̄δt1 . Since wi (δ, t) = v0 (δ) + ε and wi (1, t) = ε, we have

vεδ
(δ, t) = v0 (δ) + ε and vεδ

(1, t) = ε, and hence, vεδ
∈ C

2+α,1+α/2
(

Ω̄δt1

)

is a solution

to the problem (2.3)–(2.4).

(ii) Let wδ1i
and wδ2i

be the solutions to the problem (2.5)–(2.6) in Ωδ1t1 and

Ωδ2t1 respectively. When i = 0, we have wδ10
(x) = v0 (x) + ε for x ∈ D̄δ1 and

wδ20
(x) = v0 (x) + ε for x ∈ D̄δ2 . From (2.5),

xq
(

wδ10

)(1−m)/m

m

(

wδ11

)

t
=

(

wδ11

)

xx
+ bg

(

wδ10

)

in Ωδ1t1 ,

xq
(

wδ20

)(1−m)/m

m

(

wδ21

)

t
=

(

wδ21

)

xx
+ bg

(

wδ20

)

in Ωδ2t1 .

Thus,

xq
(

wδ10

)(1−m)/m

m

(

wδ11
− wδ21

)

t
=

(

wδ11
− wδ21

)

xx
in Ωδ2t1 .

Also, wδ11
(x, 0) − wδ21

(x, 0) = 0 for x ∈ D̄δ2 and wδ11
(1, t) − wδ21

(1, t) = 0 for

0 < t ≤ t1. By Lemma 2.3(ii),
(

wδ11

)

t
≥ 0 on Ω̄δ1t1 . Thus, wδ11

(δ2, t)−wδ21
(δ2, t) ≥ 0

for 0 < t ≤ t1. Hence, by the weak maximum principle wδ11
− wδ21

≥ 0 on Ω̄δ2t1 .

Suppose that it is true for i = j for some positive integer j. Then for i = j + 1, we

have

xq
(

wδ1j

)(1−m)/m

m

(

wδ1j+1

)

t
−
xq

(

wδ2j

)(1−m)/m

m

(

wδ2j+1

)

t

=
(

wδ1j+1
− wδ2j+1

)

xx
+ b

(

g
(

wδ1j

)

− g
(

wδ2j

))

≥
(

wδ1j+1
− wδ2j+1

)

xx
.

By
(

wδ2j+1

)

t
≥ 0 on Ω̄δ2t1 , we have

(

wδ1j+1
− wδ2j+1

)

xx
≤
xq

(

wδ1j

)(1−m)/m

m

(

wδ1j+1
− wδ2j+1

)

t
.
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Also, wδ1j+1
(x, 0) = wδ2j+1

(x, 0) for x ∈ D̄δ2 and wδ1j+1
(1, t) = wδ2j+1

(1, t) for 0 < t ≤

t1. By Lemma 2.3(ii),
(

wδ1j+1

)

t
≥ 0 on Ω̄δ1t1 . Thus, wδ1j+1

(δ2, t) − wδ2j+1
(δ2, t) ≥ 0

for 0 < t ≤ t1. Hence, by the weak maximum principle wδ1j+1
≥ wδ2j+1

on Ω̄δ2t1 . By

the principle of mathematical induction, wδ1i
≥ wδ2i

on Ω̄δ2t1 for nonnegative integer

i. Therefore, vεδ1
≥ vεδ2

on Ω̄δ2t1 .

(iii) Let w̃i be the solution to the problem (2.5)–(2.6) in Ωδt1 with w̃0 = v0 + ε1,

w̃i (x, 0) = v0 (x) + ε1 on D̄δ, w̃i (δ, t) = v0 (δ) + ε1 and w̃i (1, t) = ε1 for 0 < t ≤ t1,

and let ŵi be the solution to the problem (2.5)–(2.6) in Ωδt1 with ŵ0 = v0 + ε2,

ŵi (x, 0) = v0 (x)+ε2 on D̄δ, and ŵi (δ, t) = v0 (δ)+ε2 and ŵi (1, t) = ε2 for 0 < t ≤ t1.

From (2.5),

xqw̃
(1−m)/m
0

m
w̃1t = w̃1xx + bg (w̃0) in Ωδt1 ,

xqŵ
(1−m)/m
0

m
ŵ1t = ŵ1xx + bg (ŵ0) in Ωδt1 .

Thus,

xq

m

[

ŵ
(1−m)/m
0 ŵ1t − w̃

(1−m)/m
0 w̃1t

]

= (ŵ1 − w̃1)xx + b (g (ŵ0) − g (w̃0))

≥ (ŵ1 − w̃1)xx .

By Lemma 2.3(ii), w̃1t ≥ 0 on Ω̄δt1 , so we obtain

(ŵ1 − w̃1)xx ≤
xq

m
ŵ

(1−m)/m
0 (ŵ1 − w̃1)t +

xq

m

[

ŵ
(1−m)/m
0 − w̃

(1−m)/m
0

]

w̃1t

≤
xq

m
ŵ

(1−m)/m
0 (ŵ1 − w̃1)t .

Also, ŵ1 (x, 0) − w̃1 (x, 0) = ε2 − ε1 ≥ 0 for x ∈ D̄δ and ŵ1 (x, t) − w̃1 (x, t) = ε2 − ε1

at x = δ and x = 1 for 0 < t ≤ t1. Hence, by the weak maximum principle ŵ1 ≥ w̃1

on Ω̄δt1 . Suppose that ŵj ≥ w̃j on Ω̄δt1 for some integer j ≥ 1. Then by w̃jt ≥ 0 on

Ω̄δt1 and the above calculation, we have

(ŵj+1 − w̃j+1)xx ≤
xq

m
ŵ

(1−m)/m
j (ŵj+1 − w̃j+1)t .

Also, ŵj+1 (x, 0)− w̃j+1 (x, 0) = ε2 − ε1 ≥ 0 for x ∈ D̄δ, and ŵj+1 (x, t)− w̃j+1 (x, t) =

ε2 − ε1 at x = δ and x = 1 for 0 < t ≤ t1. Hence, by the weak maximum principle

ŵj+1 ≥ w̃j+1 on Ω̄δt1 . By the principle of mathematical induction, ŵi ≥ w̃i on Ω̄δt1

for any nonnegative integer i. Therefore, vε2δ
≥ vε1δ

on Ω̄δt1 . �

Let ωt1 = (0, 1] × [0, t1]. We now let δ tend to 0.

Lemma 2.5. (i) There exists a solution vε ∈ C
(

Ω̄t1

)

∩C2+α,1+α/2 (ωt1) of the problem

(2.1)–(2.2), and ψ ≥ vε ≥ v0 + ε on Ω̄t1 .

(ii) vε1
≤ vε2

on Ω̄t1 for any positive ε1 and ε2 such that ε1 ≤ ε2.

Proof. (i) Since ψ ≥ vεδ
≥ v0 + ε on Ω̄δt1 and {vεδ

} is a monotone nonincreasing

sequence in δ, we let vε = limδ→0 vεδ
. Then, ψ ≥ vε ≥ v0 + ε on Ω̄t1 . For any point
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(x2, t3) ∈ ωt1 , let Q̃2 = [c̃3, c̃4] ×
[

0, t̃2
]

such that (x2, t3) ∈ Q̃2 ⊂ ωt1 with 0 < c̃3,

c̃4 ≤ 1 and t̃2 ≤ t1. Since ψ ≥ vεδ
≥ v0 + ε on Ω̄δt1 , it follows from Lemma 2.2 that

there exist some positive numbers k11 and k12 (depending on v0 + ε, ψ and Q̃2, but

independent of δ) such that
∣

∣

∣

∣mx−qv(m−1)/m
εδ

∣

∣

∣

∣

Hα,α/2(Q̃2) ≤ k11,
∣

∣

∣

∣bmx−qv(m−1)/m
εδ

g (vεδ
)
∣

∣

∣

∣

Hα,α/2(Q̃2)
≤ k12.

By Theorem 4.10.1 of Ladyženskaja, Solonnikov and Ural’ceva,

||vεδ
||H2+α,1+α/2(Q̃2) ≤ k13

for some positive number k13 independent of δ. This implies that vεδ
, (vεδ

)t, (vεδ
)x

and (vεδ
)xx are equicontinuous in Q̃2. By the Ascoli-Arzela theorem,

||vε||H2+α,1+α/2(Q̃2) ≤ k13,

and the partial derivatives of vε are the limits of the corresponding derivatives of vεδ
.

By ψ ≥ vε ≥ v0 + ε on Ω̄t1 and the sandwich theorem, limx→0 vε (x, t) = ε. Hence,

vε ∈ C
(

Ω̄t1

)

∩ C2+α,1+α/2 (ωt1) is a solution to the problem (2.1)–(2.2).

(ii) This follows from Lemma 2.4(iii) by letting δ → 0. �

Let P = D × [0, t1]. We now let ε tend to 0 to give a local existence result.

Theorem 2.6. There exists a solution v ∈ C
(

Ω̄t1

)

∩ C2+α,1+α/2 (P ) of the problem

(1.4)–(1.5).

Proof. By Lemma 2.5(ii), we have vε1
≤ vε2

for 0 < ε1 ≤ ε2. Let v = limε→0 vε. Since

ψ ∈ C
(

Ω̄t1

)

, there exists a positive constant k14 (independent of ε) such that ψ < k14

on Ω̄t1 . An argument similar to that in Lemma 2.5(i) shows that {vε} converges to

v ∈ C
(

Ω̄t1

)

∩ C2+α,1+α/2 (P ). �

The following result gives local existence of a solution u.

Theorem 2.7. There exists a solution u ∈ C
(

Ω̄t1

)

∩ C2+α,1+α/2 (P ) of the problem

(1.1)–(1.2).

Proof. Using u = v1/(m+1), it follows from v ≥ v0 > 0 in Ωt1 and v ∈ C
(

Ω̄t1

)

∩

C2+α,1+α/2 (P ) that u ∈ C
(

Ω̄t1

)

, and that ut, ux and uxx exist in P . The Hölder

norm (cf. Friedman [8, p. 61]) of a function G with exponent α is given by

||G||Cα,α/2(P ) = ||G||
∞

+ sup
(x,t)∈P

(x̃,t̃)∈P

∣

∣G (x, t) −G
(

x̃, t̃
)
∣

∣

(

√

|x− x̃|2 +
∣

∣t− t̃
∣

∣

)α .

Since v−m/(m+1) and v−(2m+1)/(m+1) are differentiable, it follows from the above equa-

tion that
∣

∣

∣

∣v−m/(m+1)
∣

∣

∣

∣

Cα,α/2(P )
and

∣

∣

∣

∣v−(2m+1)/(m+1)
∣

∣

∣

∣

Cα,α/2(P )
are bounded. For two

given functions F and H , we have the inequalities (cf. Friedman [8, p. 66]):

||F +H||Cα,α/2(P ) ≤ ||F ||Cα,α/2(P ) + ||H||Cα,α/2(P ) ,
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||FH||Cα,α/2(P ) ≤ ||F ||Cα,α/2(P ) ||H||Cα,α/2(P ) .

Then, by these two inequalities, we obtain

||ut||Cα,α/2(P ) ≤
1

m+ 1

∣

∣

∣

∣v−m/(m+1)
∣

∣

∣

∣

Cα,α/2(P )
||vt||Cα,α/2(P ) ,

||uxx||Cα,α/2(P ) ≤
m

(m+ 1)2

∣

∣

∣

∣v−(2m+1)/(m+1)
∣

∣

∣

∣

Cα,α/2(P )
||vx||

2
Cα,α/2(P )

+
1

m+ 1

∣

∣

∣

∣v−m/(m+1)
∣

∣

∣

∣

Cα,α/2(P )
||vxx||Cα,α/2(P ) .

Hence, u ∈ C2+α,1+α/2 (P ). �

Let ts = sup{t1: the problem (1.1)–(1.2) has a solution u ∈ C
(

Ω̄t1

)

∩C2+α,1+α/2 (P )}.

We modify the proof of Theorem 8 of Chan and Chan [5] to obtain the following result.

Theorem 2.8. The problem (1.1)–(1.2) has a solution

u ∈ C
(

D̄ × [0, ts)
)

∩ C2+α,1+α/2 (D × [0, ts)) .

If ts <∞, then u is unbounded in D × (0, ts).

Proof. In order to prove global existence of u, it follows from Theorems 2.6 and 2.7

that it is sufficient to prove global existence of v. Let us suppose that v is bounded

above by some positive constant M in D × (0, ts). To arrive at a contradiction, we

need to show that v can be continued into a larger time interval [0, ts + t5] for some

positive t5. This can be achieved by extending the a priori bound of ψ: Let

Γ > max

{

bg (M) ,max
x∈D̄

2v0 (x)

x (1 − x)

}

,

E (x) = Γx (1 − x) /2 and Ẽ (x) = E (x) + δ. Then,

(2.14) −Ẽxx −

(

xqv−(m−1)/m

m
vt − vxx

)

= Γ − bg (v) > 0 in D × (0, ts) ,

Ẽ (x) > v0 (x) on D̄, and Ẽ (x) − v (x, t) > 0 at x = 0 and x = 1. To prove

Ẽ (x) > v (x, t) in D× (0, ts), let Y (x, t) = Ẽ (x)− v (x, t). Let us suppose that there

is a

t6 = inf {t : Y (x4, t) = 0 for some x4 ∈ D} .

Then, Ẽ (x4) = v (x4, t6), Ẽt (x4) = 0 ≤ vt (x4, t6), and Ẽxx (x4) ≥ vxx (x4, t6). Thus,

0 ≥ −
xq

4v
−(m−1)/m (x4, t6)

m
vt (x4, t6) .

On the other hand, it follows from (2.14) that

−
xq

4v
−(m−1)/m (x4, t6)

m
vt (x4, t6) > Ẽxx (x4) − vxx (x4, t6) ≥ 0.

This contradiction shows that Ẽ (x) > v (x, t) in D × (0, ts). When δ → 0, E (x) ≥

v (x, t) in D × (0, ts). In particular, v (x, t) is bounded by E (x) at t = ts.
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Let us choose a constant γ̃ ∈ (0, 1/2) such that bg (Γγ̃ (1 − γ̃) /2 + 1) < Γ. Then

we consider

τ̃ ′ =
2bm (Γτ̃ /8 + 1)(m−1)/m g (Γτ̃ /8 + 1)

Γδ̃q+2
, τ̃ (ts) = 1.

Let t5 be some positive constant determined by

bg

(

Γγ̃ (1 − γ̃)

2
τ̃ (t5) + 1

)

= Γ.

Following the previous procedures of constructing ψ (x, t) in Lemma 2.1, we can

construct an upper bound Ψ (x, t) = E (x) τ̃ (t) + ε of v (x, t) on D̄ × [ts, ts + t5].

Following the proof of Lemmas 2.4 and 2.5 and Theorem 2.6 with v0, ψ (x, t), 0 and

t1 replaced, respectively, by v (x, ts), Ψ (x, t), ts and ts + t5, we obtain a solution on

D̄× [ts, ts + t5]. Thus, v ∈ C
(

Ω̄ts+t5

)

∩C2+α,1+α/2 (D × [0, ts + t5]). This contradicts

the definition of ts. �

The proof of the following theorem is a modification of that by Wiegner [15].

Theorem 2.9. The problem (1.1)–(1.2) has at most one solution.

Proof. Suppose that the problem (1.1)–(1.2) has two different solutions u (x, t) and

z (x, t). Without loss of generality, let us assume that z > u somewhere, say, (x̄, t̄)

in ΩT . Since z (x, 0) − u (x, 0) = 0 on D̄, and z (0, t) − u (0, t) = 0, and z (1, t) −

u (1, t) = 0, there exists some nonnegative constants a3, a4, a5, and a6 such that

x̄ ∈ (a5, a6) ⊂ (a3, a4) ⊂ D̄, and z (a3, t) = u (a3, t) and z (a4, t) = u (a4, t) for

0 ≤ t ≤ t̄. Also, z (x, t̄) > u (x, t̄) for x ∈ (a5, a6) and z ≥ u on [a3, a4] × [0, t̄]. Let ϕ

and σ denote the fundamental eigenfunction and eigenvalue of the problem,

ϕ′′ + σϕ = 0 for a3 < x < a4, ϕ (a3) = 0 = ϕ (a4) .

Then, ϕ = sin [π (x− a3) / (a4 − a3)], and σ = [π/ (a4 − a3)]
2. We have

0 ≤

∫ t̄

0

∫ a4

a3

(zm − um)σϕdxdt = −

∫ t̄

0

∫ a4

a3

(zm − um)ϕ′′dxdt

= −

∫ t̄

0

∫ a4

a3

(zm − um)xx ϕdxdt.

From (1.1), and z (x, 0) = u (x, 0) on D̄,

0 ≤ −

∫ t̄

0

∫ a4

a3

[xqzt − bf (z) − (xqut − bf (u))]ϕdxdt

= −

∫ a4

a3

xqϕ (z (x, t̄) − u (x, t̄)) dx(2.15)

+ b

∫ t̄

0

∫ a4

a3

(f (z) − f (u))ϕdxdt.
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Since z (x, t̄)−u (x, t̄) ≥ 0 for x ∈ [a3, a4], it follows from the mean value theorem for

integrals [4, p. 5] that there exists some ζ ∈ (a3, a4) such that

(2.16)

∫ a4

a3

xqϕ (z (x, t̄) − u (x, t̄)) dx = ζq

∫ a4

a3

ϕ (z (x, t̄) − u (x, t̄)) dx.

By the mean value theorem, there exists some ς between z and u such that

f (z) − f (u) = f ′ (ς) (z − u) .

Since f ′ exists, |f ′ (ς)| ≤ k19 for some positive constant k19. Then,

(2.17) f (z) − f (u) ≤ k19 (z − u) .

According to (2.16) and (2.17), (2.15) is transformed to
∫ a4

a3

ϕ (z (x, t̄) − u (x, t̄)) dx ≤
bk19

ζq

∫ t̄

0

∫ a4

a3

ϕ (z − u) dxdt.

By the Gronwall inequality [14, pp. 14-15],
∫ a4

a3

ϕ (z (x, t̄) − u (x, t̄)) dx ≤ 0.

On the other hand, ϕ (z (x, t̄) − u (x, t̄)) > 0 for x ∈ (a5, a6) implies
∫ a4

a3

ϕ (z (x, t̄) − u (x, t̄)) dx > 0.

This contradiction shows that the problem (1.1)–(1.2) has at most one solution. �

3. BLOW-UP OF THE SOLUTION

In this section, we study the blow-up of the solution u in the following cases: (i)

f (u) ≥ up where p is a positive constant such that p > m for u ≥ 0; (ii) f (u) = um.

Let φ (x) be the fundamental eigenfunction of the problem,

(3.1) φ′′ + λxqφ = 0 in D, φ (0) = 0 = φ (1) ,

where λ is its corresponding eigenvalue. From the result of Chan and Chan [5], λ > 0

and

φ (x) = k20 (q + 2)1/2 x1/2J1/(q+2)

(

2λ1/2

q + 2
x(q+2)/2

)/
∣

∣

∣

∣

J[1/(q+2)]+1

(

2λ1/2

q + 2

)
∣

∣

∣

∣

,

where J1/(q+2) and J[1/(q+2)]+1 are Bessel functions of the first kind of orders 1/ (q + 2)

and [1/ (q + 2)] + 1 respectively, and φ (x) > 0 in D for some positive constant k20.

Let us choose k20 such that
∫ 1

0
xqφ (x) dx = 1. If p > m, let R (s) = bsp/m/2 − λs.

The largest positive root of R (s) = 0 is given by

s =

(

2λ

b

)m/(p−m)

.
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Let µ (t) =
∫ 1

0
xqφ (x) u (x, t) dx. When f (u) ≥ up with p > m, we prove that u blows

up in a finite time if the initial condition is sufficiently large for any positive b. When

f (u) = um, we show that u blows up if b > λ.

Theorem 3.1. (i) If f (u) ≥ up with p > m and

∫ 1

0

xqφum
0 dx >

(

2λ

b

)m/(p−m)

,

then u blows up in a finite time.

(ii) If f (u) = um and b > λ, then u blows up in a finite time.

Proof. (i) According to (1.1) and (3.1), and f (u) ≥ up, we have
∫ 1

0

xqφutdx =

∫ 1

0

φ (um)xx dx+

∫ 1

0

φbf (u) dx

≥ −λ

∫ 1

0

xqφumdx+ b

∫ 1

0

xqφ (um)p/m dx.(3.2)

It follows by p > m and the Jensen inequality

(
∫ 1

0

xqφudx

)

t

≥ −λ

∫ 1

0

xqφumdx+ b

(
∫ 1

0

xqφumdx

)p/m

.

By assumption,
∫ 1

0
xqφum

0 dx > (2λ/b)m/(p−m). Since u is an increasing function of t,

we have R
(

∫ 1

0
xqφumdx

)

> 0 for
∫ 1

0
xqφumdx > (2λ/b)m/(p−m). This implies that

(
∫ 1

0

xqφudx

)

t

>
b

2

(
∫ 1

0

xqφumdx

)p/m

.

By the Jensen inequality,

(
∫ 1

0

xqφudx

)

t

>
b

2

[(
∫ 1

0

xqφudx

)m]p/m

=
b

2

(
∫ 1

0

xqφudx

)p

.

This is equivalent to

µ′ (t) >
b

2
µp (t) .

Solving this differential inequality, it yields

µ−p+1 (t) < µ−p+1 (0) −
b

2
(p− 1) t.

Thus, µ (t) tends to infinity in a finite time. Hence, u blows up in a finite time.

(ii) If f (u) = um, it follows from (3.2) that
(

∫ 1

0

xqφudx

)

t

≥ (b− λ)

∫ 1

0

xqφumdx.

By using b > λ and the Jensen inequality,

µ′ (t) ≥ (b− λ)µm (t) .
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Solving this differential inequality, we have

µ−m+1 (t) ≤ µ−m+1 (0) − (b− λ) (m− 1) t.

Thus, µ (t) tends to infinity in a finite time. Hence, u blows up in a finite time. �
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[11] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural’ceva, Linear and Quasilinear Equations

of Parabolic Type, Amer. Math. Soc., Providence, RI, 1968, pp. 80, 320, 341–342 and 351–352.

[12] H. A. Levine and P. E. Sacks, Some existence and nonexistence theorems for solutions of de-

generate parabolic equations, J. Differential Equations, 52:135–161, 1984.

[13] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov and A. P. Mikhailov, Blow-up in Quasi-

linear Parabolic Equations, Walter de Gruyter, New York, NY, 1995, pp. 29–30.

[14] W. Walter, Differential and Integral Inequalities, Springer-Verlag, New York, NY, 1970, pp.

14–15.

[15] M. Wiegner, A degenerate diffusion equation with a nonlinear source term, Nonlinear Anal.,

28:1977–1995, 1997.


