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ABSTRACT. We consider a Dirichlet type initial-boundary value problem for the porous medium

equation with a power function reaction term. We determine a condition on the initial data which

ensures blow-up of the solution in finite time and an upper bound for the blow-up time. We also

discuss when blow-up does not occur and a more general initial-boundary value problem where

blow-up does occur.

AMS (MOS) Subject Classification. 35K60, 35K57, 35K65

1. INTRODUCTION

There is a vast number of papers in the literature which deal with nonlinear evolu-

tionary processes and study the behavior of the solution to initial or initial-boundary

value problems that model the process. Due to the nonlinearity and/or data, some

problems that arise in chemical reactions, gaseous ignition, porous media, ohmic

heating, and chemotaxis in biological systems exhibit explosive growth of the solu-

tion. Studies of these problems are often concerned with the existence/nonexistence

of global solutions or the blow-up of the solution in finite time, where by blow-up,

we mean that the solution becomes unbounded in some manner in finite time. Vari-

ous criteria and conditions on the nonlinearity which imply blow-up does occur have

been presented and bounds on the blow-up rate or blow-up time, structure of the

blow-up set, and the asymptotic behavior of the solution have been determined. The

papers by Levine [6], Galaktionov and Vázquez [3], and Bandle and Brunner [2] have

an extensive list of references which deal with these and related investigations and

applications. In addition, the text by Straughan [14], which studies the explosive be-

havior of solutions to problems in mechanics, has a large bibliography (see also [11]).

Historically, the study of the phenomena of blow-up in reaction-diffusion equations

began with the seminal paper by Kaplan [4].

Many methods have been used in the study of blow-up phenomena (see the list

in [5] or [2]) and they often lead to upper bounds on the blow-up time when blow-up

does occur. Little attention appears to have been given to the determination of lower

bounds for the blow-up time. In fact, lower bounds are more important because of the

explosive nature of the process which is being modeled. Recently, Payne and Schaefer
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[7] used a first order differential inequality technique on a semilinear parabolic problem

under homogeneous Dirichlet condition to determine a lower bound on the blow-up

time if blow-up occurs (see also [8] for homogeneous Neumann boundary condition).

These results have been extended to more general nonlinear parabolic problems in

[9] and [10]. More recently, lower bounds for blow-up time for some porous medium

problems have been determined in [13].

In this note we continue the study of porous medium problems. In section 2 we

determine a criterion on the initial data which ensures that blow-up does occur and

an upper bound for the blow-up time. We cite conditions for which blow-up does

not occur in section 3. In section 4 we introduce alternative conditions (to [9]) on

the nonlinear function in a more general partial differential equation (that includes

the porous medium equation) which leads to blow-up and an upper bound on the

blow-up time.

2. CRITERION FOR BLOW-UP

In this section we consider a class of porous medium problems for which a suf-

ficient condition on the initial data is determined which ensures that blow-up of the

solution at some finite time does occur. In addition, an upper bound for the blow-up

time t∗ is determined.

We consider the initial-boundary value problem

ut = ∆(um) + kup in Ω × (0, t∗),

u(x, t) = 0 on ∂Ω × (0, t∗),(2.1)

u(x, 0) = g(x) > 0 in Ω,

where Ω is a bounded smooth domain in R
N . In (2.1), the subscript t denotes partial

differentiation with respect to time, ∆ is the N -dimensional Laplacian, g is a con-

tinuous function in Ω which vanishes on the boundary ∂Ω (for compatibility), k is a

positive constant, and m and p are parameters such that p > m > 1. It is well known

[1] that if m = 1, p > 1, then the solution blows up in finite time. We assume that

a nonnegative classical solution exists for some period of time and aim to show that

the solution blows up at some finite time t∗.

We define the auxiliary function

(2.2) ϕ(t) =

∫

Ω

um+1dx

and compute

ϕ′(t) = (m+ 1)

∫

Ω

um[∆(um) + kup]dx

= −(m+ 1)

∫

Ω

∇um · ∇umdx+ k(m+ 1)

∫

Ω

um+pdx(2.3)
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> −
(m+ 1)(m+ p)

2m

∫

Ω

|∇um|2dx+ k(m+ 1)

∫

Ω

um+pdx,(2.4)

where ∇ is the gradient operator and we have used integration by parts and the fact

that p > m. We now define the right side of this inequality to be the function

(2.5) ψ(t) = −
(m+ 1)(m+ p)

2m

∫

Ω

|∇um|2dx+ k(m+ 1)

∫

Ω

um+pdx

and compute in a similar manner

ψ′(t) = −
(m+ 1)(m+ p)

m

∫

Ω

∇um · (∇um)tdx(2.6)

+ k(m+ 1)(m+ p)

∫

Ω

um+p−1utdx

=
(m+ 1)(m+ p)

m

∫

Ω

(um)t[ut − kup]dx

+ k(m+ 1)(m+ p)

∫

Ω

um+p−1utdx

= (m+ 1)(m+ p)

∫

Ω

um−1(ut)
2dx.

Since ψ′(t) > 0, it follows that if ψ(0) > 0, we have both

(2.7) ψ(t) > 0, ϕ′(t) > 0 for t > 0.

We note that the condition ψ(0) > 0 imposes the following constraint on the initial

data:

(2.8)

∫

Ω

g(x)m+pdx >
m+ p

2m

∫

Ω

|∇gm|2dx.

Under the assumption ψ(0) > 0, the functions ϕ(t), ψ(t), ϕ′(t), and ψ′(t) are all

positive valued for t > 0. Moreover, we can write

ϕ′(t) = (m+ 1)

∫

Ω

u
m+1

2 u
m−1

2 utdx

6 (m+ 1)

(
∫

Ω

um+1dx

)
1

2
(

∫

Ω

um−1(ut)
2dx

)
1

2

(2.9)

by Schwarz’s inequality so that by (2.2), (2.6), and (2.9) it follows that

(2.10) ϕ(t)ψ′(t) >
m+ p

m+ 1
ϕ′(t)2

>
m+ p

m+ 1
ψ(t)ϕ′(t), t > 0.

We now integrate (2.10) from 0 to t and obtain

ψ(t)

ψ(0)
>

[

ϕ(t)

ϕ(0)

]
m+p

m+1

.

Letting

c =
m+ p

m+ 1
> 1,
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we have that

ϕ′(t) > ψ(t) > ψ(0)ϕ(0)−cϕ(t)c.

A further integration results in

(2.11)
1

ϕ(t)c−1
6

1

ϕ(0)c−1
− (c− 1)

ψ(0)

ϕ(0)c
t.

Since (2.11) cannot hold for all t, we conclude that the solution blows up at some

finite time t∗ and that

(2.12) t∗ 6
1

c− 1

ϕ(0)

ψ(0)
.

We formalize this result in the following theorem.

Theorem 2.1. If u is a nonnegative classical solution of (2.1) where p > m > 1 and

the initial data g satisfies (2.8), then the solution blows up in the measure ϕ in finite

time t∗ and t∗ is bounded above by (2.12).

We note that Theorem 2.1 holds more generally for the problem (2.1) when the

differential equation is replaced by the inequality

ut > ∆(um) + f(u),

where f(u) > kup. Moreover, the result follows when the Dirichlet boundary condi-

tion is replaced by a homogeneous Neumann condition since (2.3) remains valid.

3. NONBLOW-UP

We again consider the problem (2.1) but now ask that m > p > 1. In this case,

we show that the solution remains bounded for all time when a restriction is imposed

on the constant k.

We define ϕ as in (2.2) and make use of the Rayleigh principle

λ1

∫

Ω

v2dx 6

∫

Ω

|∇v|2dx,

where λ1 is the first positive eigenvalue of the fixed membrane problem

(3.1) ∆v + λv = 0, v > 0, in Ω, v = 0 on ∂Ω.

From (2.3) we have

ϕ′(t) = −(m+ 1)

∫

Ω

|∇um|2dx+ k(m+ 1)

∫

Ω

um+pdx

6 −(m+ 1)λ1

∫

Ω

u2mdx+ k(m+ 1)

∫

Ω

um+pdx

= (m+ 1)

(

k

∫

Ω

um+pdx− λ1

∫

Ω

u2mdx

)
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6 (m+ 1)(k − λ1)

∫

Ω

u2mdx.

Thus, when k 6 λ1, we have ϕ′(t) 6 0 which implies that u is bounded since otherwise

we have a contradiction. We state this result in the following theorem.

Theorem 3.1. If u is a nonnegative classical solution of (2.1) where m > p > 1 and

k 6 λ1, the first positive eigenvalue of (3.1), then u is bounded for all time.

As in the previous section, we note that the result holds more generally when the

differential equation is replaced by the inequality

ut 6 ∆(um) + f(u),

where 0 6 f(u) 6 kum, m > 1, and that the result holds under a homogeneous

Neumann boundary condition as well. In the latter case, λ1 is the first positive

eigenvalue of the free membrane problem.

4. OTHER BLOW-UP PROBLEMS

In [9] the authors considered the nonlinear problem

ut = (ρ(u)u,i),i + f(u) in Ω × (0, t∗),

u(x, t) = 0 on ∂Ω × (0, t∗),(4.1)

u(x, 0) = g(x) > 0 in Ω,

under a general set and a special set of conditions on f and ρ (see (2.2) and (3.1),

respectively, in [9]) and determined lower bounds on blow-up time in each case as well

as determined when blow-up does not occur. The arguments there were restricted

to Ω ⊂ R
3 for technical reasons. The comma i notation in (4.1) denotes spatial

differentiation and the repeated index in a term implies summation over the index

from 1 to N .

We now assume a different set of conditions on ρ and f in (4.1) for Ω ⊂ R
N ,

namely,

f(0) = 0, f(s) > 0, f ′′(s) > 0 for s > 0,

ρ(0) = 0, ρ(s) > 0, for s > 0,(4.2)
∫

∞

g

dη

f(η)
6 M <∞,

where g denotes the mean value of the initial data over Ω, and show that no global

C1 solution can exist, i.e., that u ∈ C1(Ω × (0, t∗)) blows up in finite time t∗ and

that t∗ ≤ M . We shall use a simple argument that is well suited for a problem like

(4.1) with the Dirichlet condition replaced by a homogeneous Neumann condition

(see [11]). We note that although the blow-up result for (4.1), (4.2) is extended to a
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bounded smooth domain Ω ⊂ R
N , N ≥ 2, we are restricted by the need to assume

that the outward normal derivative ∂u
∂ν

is bounded on ∂Ω.

We define u to be the mean value of u over Ω, i.e.,

u =
1

|Ω|

∫

Ω

udx,

where |Ω| denotes the volume of Ω. Then by the divergence theorem and Jensen’s

inequality,

d

dt
u =

1

|Ω|

∫

Ω

[(ρ(u)u,i),i + f(u)]dx

=
1

|Ω|

∫

∂Ω

ρ(u)
∂u

∂ν
dx+ f(u)

> f(u),

and on integration, we have

M >

∫ u(t)

u(0)

dη

f(η)
> t.

However, this inequality cannot hold for all time t and we deduce that u blows up at

some finite time t∗ 6 M.

We summarize this result in the following theorem.

Theorem 4.1. If u ∈ C2(Ω × (0, t∗)) ∩ C1(Ω × (0, t∗)) is a nonnegative solution of

(4.1), (4.2), then u blows up in finite time t∗ in the measure u and t∗ is bounded above

by M .

We note that since ∆(um) = (mum−1u,i),i, we can let ρ(u) = mum−1, m > 1,

in (4.1) and that Sato [12] analyzes a problem similar to (4.1), (4.2) by means of

supersolutions and subsolutions in order to determine an asymptotic formula for the

blow-up time as a parameter in the initial condition goes to infinity.
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