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ABSTRACT. A criterion for the quenching of the solution for a degenerate semilinear parabolic
first initial-boundary value problem with a concentrated nonlinear source situated at b is given. The
locations of b for global existence of the solution and for the quenching of the solution are given.
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1. INTRODUCTION

Let q, a, T and b be any numbers such that q ≥ 0, a > 0, T > 0, and 0 <

b < 1. Also, let D denote the interval (0, 1), and D̄ be its closure. We consider the

following degenerate semilinear parabolic first initial-boundary value problem with a

concentrated nonlinear source situated at b,

(1.1)


xqut − uxx = aδ(x− b)f(u(x, t)) in D × (0, T ] ,

u(x, 0) = 0 on D̄,

u(0, t) = u(1, t) = 0 for 0 < t ≤ T,

where δ (x) is the Dirac delta function, f is a given function such that limu→c− f(u) =

∞ for some positive constant c, and f(u) and its derivatives f ′(u) and f ′′(u) are pos-

itive for 0 ≤ u < c. The case q = 0 was studied by Deng and Roberts [7] by analyzing

its corresponding nonlinear Volterra equation at the site b of the concentrated source.

Instead of studying a solution u (b, t) of the nonlinear Volterra equation, we would

like to investigate a solution u(x, t) of the degenerate problem (1.1).

The right-hand side of the partial differential equation in (1.1) has the term

δ(x− b). This implies that ux has a jump discontinuity at x = b. Thus, a solution of

the problem (1.1) is a continuous function satisfying (1.1). In the proof of Theorem 3

of Chan and Jiang [4], it is shown that uxx ≥ 0 for x ∈ (0, b) and x ∈ (b, 1). It follows

from the differential equation in (1.1) that ut (b, t) = ∞ for each t > 0. Hence, we say

that a solution u of the problem (1.1) is said to quench if there exists some tq such

that

max{u(x, t) : x ∈ D̄} → c− as t→ tq
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(cf. Chan and Liu [5]). If tq is finite, then u is said to quench in a finite time. On the

other hand, if tq = ∞, then u is said to quench in infinite time.

Let G (x, t; ξ, τ) denote Green’s function corresponding to the problem (1.1), and

tq denote the supremum of all t1 such that on [0, t1], the integral equation,

(1.2) u (x, t) = a

∫ t

0

G (x, t; b, τ) f (u (b, τ)) dτ,

corresponding to the problem (1.1) has a unique nonnegative continuous solution.

For ease of reference, we summarize the main results of Theorems 1, 2 and 3 of Chan

and Jiang [4] as Theorem 1.1 below.

Theorem 1.1. There exists some tq (≤ ∞) such that for 0 ≤ t < tq, the integral

equation (1.2) has a unique nonnegative continuous solution u (x, t), which is a strictly

increasing function of t in D. Before a quenching occurs, u is the solution of the

problem (1.1), and attains its maximum at (b, t) for each t > 0. If tq is finite, then u

quenches at tq. Furthermore, if u quenches, then b is the single quenching point.

In Section 2, we give a criterion for the quenching. It turns out that the forcing

term f (u) need not be superlinear in u for a quenching to occur. This is in sharp

contrast with the blow-up phenomenon, which requires the forcing term to be super-

linear (cf. Chan and Tian [6]). In Section 3, we find the exact position b∗ for the

problem (1.1) such that u never quenches for b ∈ (0, b∗] ∪ [1− b∗, 1), and u always

quenches in a finite time for b ∈ (b∗, 1− b∗). For illustration, an example is given.

2. A QUENCHING CRITERION

Let

µ (t) =

∫
D

xqφ (x)u (x, t) dx,

where φ denotes the normalized fundamental eigenfunction of the problem,

φ′′ + λxqφ = 0, φ(0) = φ(1) = 0,

with λ denoting its corresponding eigenvalue, which is positive (cf. Chan and Chan

[2]). Below is a quenching criterion.

Theorem 2.1. If there exist constants c1 (> 0) and c2 (≥ 0) such that

(2.1)
√

1 + qφ (b) f (u (b, t)) ≥ c1 + c2u (b, t) ,

(2.2)
λ

a
> c2,

ac1
λ− ac2

> c,

then u quenches in a finite time. Furthermore, an upper bound for the quenching time

is given by

1

λ− ac2
ln

[
1− (λ− ac2) c

ac1

]−1

.
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Proof. Multiplying the partial differential equation in (1.1) by φ, and integrating with

respect to x over D, we obtain

(2.3) µ′ (t) + λµ (t) = aφ (b) f (u (b, t)) .

Since u (x, t) ≤ u (b, t), we have

µ (t) ≤
(∫

D

xqφ (x) dx

)
u (b, t) .

It follows from the Schwarz inequality and
∫

D
xqφ2 (x) dx = 1 that

µ (t) ≤
(∫

D

xqφ2 (x) dx

)1/2(∫
D

xqdx

)1/2

u (b, t)

=
1√

1 + q
u (b, t) .

By (2.1),

aφ (b) f (u (b, t)) ≥ a√
1 + q

(c1 + c2u (b, t))

≥ a

(
1√

1 + q
c1 + c2µ (t)

)
.

From (2.3),

µ′ (t) + (λ− ac2)µ (t) ≥ a√
1 + q

c1.

Since µ (0) = 0, we obtain

µ (t) ≥ ac1√
1 + q (λ− ac2)

[
1− e−(λ−ac2)t

]
.

Hence,

u (b, t) ≥
√

1 + qµ (t) ≥ ac1
λ− ac2

[
1− e−(λ−ac2)t

]
.

From (2.2), there exists some finite tq such that u quenches at (b, tq). An upper bound

for the quenching time follows by setting the right-hand side of the above inequalities

equal to c to evaluate t.

3. CRITICAL POSITION b∗

Let limt→∞ u (x, t) be denoted by U (x). For ease of reference, let us summarize

the main results of Section 3 of Chan and Jiang [4] in the following theorem.

Theorem 3.1. There exists a critical length a∗ such that u exists on D̄ for all

t > 0 if a ≤ a∗, and u quenches in a finite time if a > a∗. The critical length a∗

is determined as the supremum of all positive values a for which a solution U of the

nonlinear two-point boundary value problem,

(3.1) −U ′′
(x) = aδ(x− b)f(U(x)) in D, U(0) = U(1) = 0,
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exists. Furthermore, u (x, t) < U(x) in D × (0,∞),

(3.2) U(x) = ag (x; b) f (U (b)) ,

where

g (x; ξ) =

{
ξ (1− x) , 0 ≤ ξ ≤ x,

x (1− ξ) , x < ξ ≤ 1,

is Green’s function corresponding to the problem (3.1),

(3.3) a∗ =
1

b(1− b)
max
0≤s≤c

(
s

f(s)

)
for a given b ∈ D.

As a consequence of the above theorem, the solution u does not quench in infinite

time. We note from (3.3) that a∗ depends on b. For a given a (> a∗), there exists a

position b such that the problem (1.1) quenches in a finite time. Chan and Boonklurb

[1] studied the critical position of the concentrated source for a blow-up problem.

Here, we give an analogous argument for the quenching problem (1.1). To find a

position b for the same given a (> a∗) such that the solution u exists for all t > 0, let

us first consider the problem (1.1) with q = 0, namely,

(3.4)

{
vt − vxx = aδ(x− b)f (v(x, t)) in D × (0, T ] ,

v(x, 0) = 0 on D̄, v(0, t) = v(1, t) = 0 for 0 < t ≤ T.

From Theorem 1.1, the quenching set is the single point x = b, and

(3.5) v(b, t) = a

∫ t

0

G0(b, t; b, τ)f(v(b, τ))dτ,

where

G0(x, t; ξ, τ) = 2
∞∑

n=1

(sinnπx)(sinnπξ)e−n2π2(t−τ) for t > τ

is Green’s function corresponding to the problem (3.4). From Olmstead and Roberts

[9], ∫ t

0

G0(b, t; b, τ)dτ = b(1− b)− 2

π2

∞∑
n=1

sin2 nπb

n2
e−n2π2t.

Since
∑∞

n=1(sin
2nπb)e−n2π2t/n2 and 2

∑∞
n=1(sin

2nπb)e−n2π2t converge uniformly in

(0, t), we have

∂

∂t

(∫ t

0

G0(b, t; b, τ)dτ

)
= 2

∞∑
n=1

(sin2 nπb)e−n2π2t > 0,

lim
t→∞

∫ t

0

G0(b, t; b, τ)dτ(3.6)

= b(1− b)− 2

π2

∞∑
n=1

sin2 nπb

n2
lim
t→∞

e−n2π2t

= b(1− b).
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From Theorem 1.1, v (x, t) attains its maximum M at (b, θ) for 0 ≤ t ≤ θ. Thus given

any positive number M (< c), it follows from (3.5) and (3.6) that for 0 ≤ t ≤ θ,

v(b, t) ≤ af (M)

∫ t

0

G0(b, t; b, τ)dτ ≤ af (M) b(1− b).

In order that af (M) b(1− b) ≤ M so that v exists for all t > 0, we choose b in such

a way that

(3.7) 0 < b ≤ 1

2

(
1−

√
1− 4M

af(M)

)
or

1

2

(
1 +

√
1− 4M

af(M)

)
≤ b < 1.

Since v is a nondecreasing function of t, we have for 0 ≤ x ≤ 1 and q > 0,

xqvt − vxx ≤ vt − vxx,

which implies that the solution of the problem (1.1) is a lower solution of the problem

(3.4). Thus under the above condition (3.7) on b, the solution of (1.1) exists for all

t > 0.

Let us consider the function

ψ (U (b)) =
U (b)

f (U (b))
.

Since ψ (U (b)) > 0 for 0 < U (b) < c, and ψ (0) = 0 = limU(b)→c− ψ (U (b)), a direct

computation shows that ψ (U (b)) attains its maximum when ψ (U (b)) = 1/f ′ (U (b)),

where U (b) ∈ (0, c) by Rolle’s Theorem. Thus, max (U(b)/f(U(b))) occurs when

(3.8)
U (b)

f (U (b))
=

1

f ′ (U (b))
, where 0 < U(b) < c.

This also implies that U (x) exists when a = a∗.

From (3.2), U(b) = ab(1− b)f (U (b)). We would like to know how U (b) behaves

as b varies when a > a∗. A direct calculation gives

(3.9) U ′ (b) =
a (1− 2b) f (U (b))

1− ab (1− b) f ′ (U (b))
.

Since a > a∗, and 1/4 ≥ b (1− b), we have

1− 4

a
max

0≤U≤c

U(b)

f (U (b))
> 1− 4

a∗
max

0≤U≤c

U(b)

f (U (b))
≥ 0.

Thus for

b ∈

(
0,

1

2

(
1−

√
1− 4

a
max

0≤U≤c

U(b)

f (U (b))

))
,

the numerator is positive. Also,

b <
1

2

(
1−

√
1− 4

a
max

0≤U≤c

U(b)

f (U (b))

)
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gives

b− 1

2
< −1

2

√
1− 4

a
max

0≤U≤c

U(b)

f (U (b))
< 0.

We have (
b− 1

2

)2

>
1

4

(
1− 4

a
max

0≤U≤c

U(b)

f (U (b))

)
,

which by (3.8) gives

1− ab (1− b) f ′ (U (b)) > 0,

and hence, U ′ (b) > 0. Thus for a given a > a∗, the function U (b) is a strictly

increasing function of b for

b ∈

(
0,

1

2

(
1−

√
1− 4

a
max

0≤U≤c

U(b)

f (U (b))

))
.

Similarly for a given a > a∗, the function U (b) is a strictly decreasing function of b

for

b ∈

(
1

2

(
1 +

√
1− 4

a
max

0≤U≤c

U(b)

f (U (b))

)
, 1

)
.

Hence on the interval (0, 1/2), the position b for global existence of u is closer to 0

than the position b for the quenching of u in a finite time. On the other hand, on

the interval (1/2, 1), the position b for global existence of u is closer to 1 than the

position b for the quenching of u in a finite time. Thus, there exists b∗ ∈ (0, 1/2) such

that the steady state U (x) exists for b ∈ (0, b∗) ∪ (1− b∗, 1), and does not exist for

b ∈ (b∗, 1− b∗). We note that

b∗ =
1

2

(
1−

√
1− 4

a
max

0≤U≤c

U(b)

f (U (b))

)
,

and is attained for 0 < U (b) < c by (3.8). Since u (x, t) ≤ U (x) = limt→∞ u (x, t) in

D× (0,∞) when U exists, we have for b ∈ (0, b∗]∪ [1− b∗, 1), u exists for 0 ≤ t <∞,

and for b ∈ (b∗, 1− b∗), u quenches in a finite time.

The above discussion gives the following result.

Theorem 3.2. For a > a∗, the solution of the problem (1.1) exists globally for

b ∈ (0, b∗] ∪ [1− b∗, 1), and quenches in a finite time for b ∈ (b∗, 1− b∗).

For illustration, let f(u) = (1− u)−p. A direct computation shows that

a∗ =
pp

b(1− b)(1 + p)1+p
,

b∗ =
1

2

(
1−

√
1− 4pp

a(1 + p)1+p

)
.

When p = 1 and b = 1/2, we have a∗ = 1, and b∗ =
(
1−

√
1− a−1

)
/2 for a > 1. We

note that the concept of the quenching was introduced by Kawarada [8] through the
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following problem, which arises in the study of a polarization phenomenon in ionic

conductors:

ut − uxx =
1

1− u
in (0, a)× (0, T ] ,

u(x, 0) = 0 on 0 ≤ x ≤ a,

u(0, t) = u(a, t) = 0 for 0 < t ≤ T.

Its a∗ = 1.5303 (to five significant figures) (cf. Chan and Chen [3]). Thus, the presence

of the concentrated source shortens the critical length.
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