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ABSTRACT. A criterion for the quenching of the solution for a degenerate semilinear parabolic
first initial-boundary value problem with a concentrated nonlinear source situated at b is given. The

locations of b for global existence of the solution and for the quenching of the solution are given.

AMS (MOS) Subject Classification. 35K60, 35K57, 35K65, 35B35

1. INTRODUCTION

Let ¢, a, T and b be any numbers such that ¢ > 0, a > 0, T" > 0, and 0 <
b < 1. Also, let D denote the interval (0,1), and D be its closure. We consider the
following degenerate semilinear parabolic first initial-boundary value problem with a

concentrated nonlinear source situated at b,

Uy — Uy = ad(x — ) f(u(z,t)) in D x (0,77,
(1.1) u(r,0) =0 on D,

where 0 () is the Dirac delta function, f is a given function such that lim, . f(u) =
oo for some positive constant ¢, and f(u) and its derivatives f’(u) and f”(u) are pos-
itive for 0 < u < ¢. The case ¢ = 0 was studied by Deng and Roberts [7] by analyzing
its corresponding nonlinear Volterra equation at the site b of the concentrated source.
Instead of studying a solution u (b,t) of the nonlinear Volterra equation, we would

like to investigate a solution u(x,t) of the degenerate problem (1.1).

The right-hand side of the partial differential equation in (1.1) has the term
d(xz — b). This implies that u, has a jump discontinuity at x = b. Thus, a solution of
the problem (1.1) is a continuous function satisfying (1.1). In the proof of Theorem 3
of Chan and Jiang [4], it is shown that u,, > 0 for z € (0,0) and = € (b,1). It follows
from the differential equation in (1.1) that wu; (b, t) = oo for each ¢ > 0. Hence, we say
that a solution u of the problem (1.1) is said to quench if there exists some ¢, such
that

max{u(z,t):x € D} — ¢ ast —t,
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(cf. Chan and Liu [5]). If ¢, is finite, then u is said to quench in a finite time. On the
other hand, if ¢, = oo, then u is said to quench in infinite time.

Let G (x,t; &, 7) denote Green’s function corresponding to the problem (1.1), and

t, denote the supremum of all ¢; such that on [0, #;], the integral equation,

(1.2) u(x,t) = a/o G (x,t;0,7) f (u(b,7))dr,

corresponding to the problem (1.1) has a unique nonnegative continuous solution.
For ease of reference, we summarize the main results of Theorems 1, 2 and 3 of Chan
and Jiang [4] as Theorem 1.1 below.

Theorem 1.1. There exists some t, (< 00) such that for 0 < t < t,, the integral
equation (1.2) has a unique nonnegative continuous solution u (z,t), which is a strictly
increasing function of t in D. Before a quenching occurs, u is the solution of the
problem (1.1), and attains its mazimum at (b,t) for each t > 0. Ift, is finite, then u
quenches at t,. Furthermore, if u quenches, then b is the single quenching point.

In Section 2, we give a criterion for the quenching. It turns out that the forcing
term f (u) need not be superlinear in u for a quenching to occur. This is in sharp
contrast with the blow-up phenomenon, which requires the forcing term to be super-
linear (cf. Chan and Tian [6]). In Section 3, we find the exact position b* for the
problem (1.1) such that u never quenches for b € (0,0*] U [1 —b*,1), and u always

quenches in a finite time for b € (b*,1 — b*). For illustration, an example is given.

2. A QUENCHING CRITERION

Let
n(0) = [ a0 ()ulat)da,
D
where ¢ denotes the normalized fundamental eigenfunction of the problem,
¢" + A9 =0, ¢(0) = ¢(1) =0,

with A denoting its corresponding eigenvalue, which is positive (cf. Chan and Chan

[2]). Below is a quenching criterion.

Theorem 2.1. If there exist constants ¢, (> 0) and ¢y (> 0) such that
2.1) VITao ) f (b)) > er + e (bt).

A
(2.2) ) a

>cC
A —acy ’

then u quenches in a finite time. Furthermore, an upper bound for the quenching time

s given by
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Proof. Multiplying the partial differential equation in (1.1) by ¢, and integrating with

respect to x over D, we obtain

(2.3) () + A (t) = ag (b) f (u(b,1)).

Since u (x,t) < u (b, t), we have

w(t) < (/qugb(x) dx) w(bt).

It follows from the Schwarz inequality and [, 29¢? (x) dz = 1 that

() < ( /D 2962 (z) dx)m ( /D qua,) et

1
= 1= qu (b,1).
By (2.1),
ap (b) f (u(b,t)) > Ve (c1 4+ cou (b, 1))
(g ontt)
From (2.3),
, a
Pt + (A —ac) p(t) 2 — =
Since p (0) = 0, we obtain
acy o —(A—ace2)t
() > T30 ) [1 — e~Omac2)t]

Hence,
acy

w(b,t) > /1+qu(t) > 5 [1— ¢ Oaea)t]

— QCy
From (2.2), there exists some finite ¢, such that u quenches at (b, ;). An upper bound
for the quenching time follows by setting the right-hand side of the above inequalities

equal to ¢ to evaluate t. O

3. CRITICAL POSITION b*

Let limy . u (z,t) be denoted by U (x). For ease of reference, let us summarize

the main results of Section 3 of Chan and Jiang [4] in the following theorem.

Theorem 3.1.  There exists a critical length a* such that u exists on D for all
t >0 i a <a*, and u quenches in a finite time if a > a*. The critical length a*
is determined as the supremum of all positive values a for which a solution U of the

nonlinear two-point boundary value problem,

(3.1) ~U"(z) = ad(z — b)f(U(z)) in D, U(0) = U(1) = 0,
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exists. Furthermore, u (z,t) < U(x) in D x (0,00),

(3.2) U(z) = ag (z;0) f (U (b)),
where
1—2),0< &<,
g(@:8) = c(1-2) ¢
r(l=¢),x<€&<1,
is Green’s function corresponding to the problem (3.1),

1

(3.3) a* = m(%lfgc (%) for a given b € D.

As a consequence of the above theorem, the solution u does not quench in infinite
time. We note from (3.3) that a* depends on b. For a given a (> a*), there exists a
position b such that the problem (1.1) quenches in a finite time. Chan and Boonklurb
[1] studied the critical position of the concentrated source for a blow-up problem.
Here, we give an analogous argument for the quenching problem (1.1). To find a
position b for the same given a (> a*) such that the solution u exists for all ¢ > 0, let

us first consider the problem (1.1) with ¢ = 0, namely,

(3.4) Uy — Vge = ad(z — b) f (v(x,t)) in D x (0,77,
. v(z,0) =0on D, v(0,t) =v(1,t) =0for 0 <t < T.

From Theorem 1.1, the quenching set is the single point x = b, and

(3.5) o(b,t) = a /0 Gl 126, 7) f(0b, 7)),
where

Go(z,t;&,7) =2 Z(sin nrz)(sinnrl)e ™™ ) for ¢ > 7

n=1

is Green’s function corresponding to the problem (3.4). From Olmstead and Roberts
19,

t 2 =sin’nmb 2o
/OGO(b,t;b,T)dT:b(l—b)—P; e .

Since °°°, (sinnmb)e™" ™ /n? and 23207 (sin?nmb)e ™™t converge uniformly in
(0,t), we have

a ! - 2 —n272t
5 (/0 Go(b, t; b, T)dT) = 2;(8111 nmb)e > 0,

t

(3.6) z‘/lim Go(b, t;b,7)dT
2 w=sin®nmb. 2o,
_b(l_b)_ﬁ DR tlggl()@

— (1 b).
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From Theorem 1.1, v (z,t) attains its maximum M at (b, 0) for 0 <t < . Thus given
any positive number M (< ¢), it follows from (3.5) and (3.6) that for 0 <t <6,

o(b,t) < af (M) /Ot Go(b, £:b, 7)dr < af (M) b(1 — b).

In order that af (M)b(1 —b) < M so that v exists for all ¢ > 0, we choose b in such
a way that

1 AM 1 AM
(3.7) O<b§§(1— 1—af(M)) 0r§<1+ 1—af(M)>§b<1.

Since v is a nondecreasing function of ¢, we have for 0 < x <1 and ¢ > 0,

q
TV — Ugg S UVt — Ugg,

which implies that the solution of the problem (1.1) is a lower solution of the problem
(3.4). Thus under the above condition (3.7) on b, the solution of (1.1) exists for all
t>0.

Let us consider the function
U (b)
U (b)) = ——~—.
YTO= 5@ )

Since ¢ (U (b)) > 0 for 0 < U (b) < ¢, and  (0) = 0 = limy () ¢ (U (b)), a direct
computation shows that ¢ (U (b)) attains its maximum when ¢ (U (b)) = 1/f" (U (b)),
where U (b) € (0, ¢) by Rolle’s Theorem. Thus, max (U(b)/f(U(b))) occurs when
upb 1
FW®)  fU®)
This also implies that U (z) exists when a = a*.

From (3.2), U(b) = ab(1 —b)f (U (b)). We would like to know how U (b) behaves

as b varies when a > a*. A direct calculation gives

_ a-m) PO )
1—ab(1-0)f" (U (b))
Since a > a*, and 1/4 > b(1 — b), we have
4 U(b) 4 U(b)

l——max ———>1— — max ———— > 0.

a 0<U=e f (U (b)) a* o<v<e f (U (b)) ~

| 4 U(b)
b e (0,5 (1_\/1_50?3§6W>>7

the numerator is positive. Also,

Ty 124 s YO
b<2<1 \/1 @OSUSCf(U(b))>

(3.8)

, where 0 < U(b) < c.

(3.9) U’ (b)

Thus for
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gives

11 4 U(b)

(0-3) =3 (-2 s 100,

1—ab(1—2b)f (U®) >0,

and hence, U’ (b) > 0. Thus for a given a > a*, the function U (b) is a strictly

We have

which by (3.8) gives

increasing function of b for

1 4 U(b)
be (0’5 (“\/“5&%@))-

Similarly for a given a > a*, the function U (b) is a strictly decreasing function of b

1 e YO
be (2 <1+\/1 aOSUSCf(Ua))))’l)‘

Hence on the interval (0,1/2), the position b for global existence of u is closer to 0

for

than the position b for the quenching of v in a finite time. On the other hand, on
the interval (1/2,1), the position b for global existence of u is closer to 1 than the
position b for the quenching of u in a finite time. Thus, there exists b* € (0,1/2) such
that the steady state U (x) exists for b € (0,0*) U (1 — b*,1), and does not exist for
be (b*,1—10b"). We note that

S . —émax —U(b>
b‘2<1 \/1 a0<U<cf(U(b))>’

and is attained for 0 < U (b) < ¢ by (3.8). Since u (z,t) < U (x) = limy_o u (z,t) in
D x (0,00) when U exists, we have for b € (0,b*] U[1 — b*, 1), u exists for 0 < ¢ < oo,

and for b € (b*,1 — b*), u quenches in a finite time.

The above discussion gives the following result.
Theorem 3.2.  For a > a*, the solution of the problem (1.1) ezists globally for
be (0,b*] U[l —0b%1), and quenches in a finite time for b € (b*,1 — b*).

For illustration, let f(u) = (1 —u)~P. A direct computation shows that

o P
b(1 = b)(1 +p)t+7’

N N
Y

When p =1 and b =1/2, we have a* =1, and b* = (1 — V1 —a"1) /2 for a > 1. We
note that the concept of the quenching was introduced by Kawarada [8] through the
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following problem, which arises in the study of a polarization phenomenon in ionic

conductors: .
in (0,a) x (0,77,

u(x,0)=00n 0 <z <a,
u(0,t) = u(a,t) =0for 0 <t <T.
Its a* = 1.5303 (to five significant figures) (cf. Chan and Chen [3]). Thus, the presence

of the concentrated source shortens the critical length.

Ut — Ugy =
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