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ABSTRACT. In this paper, constructive control techniques have been proposed for controlling

strict feedback (lower triangular form) nonlinear systems with a time delay in the state. The uncer-

tain nonlinearities are assumed to be bounded by functions of the output multiplied by unmeasured

states or delayed states. Based on the using of a linear dynamic high gain observer in combination

with a linear dynamic high gain controller, the delay-independent output feedback controller making

the closed-loop system globally asymptotically stable (GAS) is explicitly constructed. A simulation

example is given to demonstrate the effectiveness of the proposed design procedure.

AMS (MOS) Subject Classification. 93C10

1. INTRODUCTION

Over the years, there have been constant progresses on the problem of global sta-

bilization of triangular structural nonlinear systems by output feedback control. As

investigated in [1], some extra growth conditions on the unmeasurable states of the

system are usually necessary for the global stabilization of nonlinear systems via out-

put feedback. In [2], under a linear growth assumption, a class of uncertain nonlinear

systems were considered by output feedback control. In [3], the problem of robust

output feedback control is considered for systems in lower triangular form under the

global Lipschitz-like condition on the unmeasurable states with output dependent in-

cremental rate. Global output feedback stabilization for uncertain nonlinear systems

with output dependant incremental rate is considered in [4, 5, 6]. Unfortunately, in

the literature mentioned above, the stabilization of triangular structural nonlinear

time-delay systems has not been fully investigated and remains to be important and

challenging.
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The existence of time delays is frequently a source of instability. Hence, the

problem of stability analysis of time-delay systems has been one of the main con-

cerns of researchers wishing to inspect the properties of such systems, see [7, 8] and

the references therein. The Lyapunov-Krasovskii method and Lyapunov-Razumikhin

method are always employed in the stability analysis and robust control problem

for linear time-delay systems. The result are often obtained in the form of linear

matrix inequalities (LMIs). However little attention has been focused on nonlinear

time-delay systems. Based on the backstepping method, strict-feedback nonlinear

time-delay systems were considered in [9, 10], but the main results obtained were not

quite correct [11, 12, 13, 14].

It was considered the problem of decentralized disturbance attenuation by state

feedback for large-scale nonlinear systems with delayed state interconnections in [15]

and Guo [15] considered only the systems with delays in parts of states. In [16], the

problem of robust output feedback control was considered for time delay systems in

lower triangular form under the global Lipschitz-like condition on the unmeasurable

states with constant incremental rate, and the delay appears only in the output of

the systems. Fu, et al. [17] studied the output feedback stabilization for a class of

stochastic systems which only include output or delayed output nonlinearities.

In this paper, we consider nonlinear time-delay systems of the form

ẋi(t) = xi+1(t) + φi(t, x(t), x(t − d), u), i = 1, 2, . . . , n − 1,

ẋn(t) = u + φn(t, x(t), x(t − d), u),

y = x1(t),

(1)

where x(t) = [x1(t), x2(t), . . . , xn(t)]T is the state, u ∈ R and y ∈ R are the sys-

tem input and output, respectively, the functions φi : R2n+2 → R are continuously

uncertain functions, for i = 1, 2, . . . , n. d ≥ 0 is the time delay of the system.

Throughout this paper, we let [xd,1(t), . . . , xd,n(t)]T = xd(t) = x(t − d). The

argument of the functions will be omitted or simplified whenever no confusion can

arise from the context. For example, we may denote xi(t) by xi. For vector ξ =

(ξ1, ξ2, . . . , ξn), we denote vector (|ξ1|, |ξ2|, . . . , |ξn|) by |ξ|. For matrix B = [bij ]m×n, we

denote matrix [|bij |]m×n by |B|. The matrix B = [bij ]m×n is said to be a nonnegative

matrix if bij ≥ 0, for 1 ≤ i ≤ m, 1 ≤ j ≤ n. The property about the nonnegative

matrix can be found in [19]. We let ‖ · ‖ denote the Euclidean norm for vector, or

the induced Euclidean norm for matrix. I is used to represent an identity matrix of

appropriate dimension.

In the first part of this paper, the following condition is assumed.

Assumption 1 For i = 1, 2, . . . , n, there exist non-negative constant C and smooth
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function L(y), such that

|φ1(t, x, xd, u)| ≤ C (|x1| + |xd,1|)

|φi(t, x, xd, u)| ≤ L(y)
∑i

j=1 (|xj| + |xd,j |) .
(2)

Remark 1 Under a linear growth assumption (e.g. L(y) = C), Qian and Lin [2]

provide an output feedback controler for the sysytem (1) without delay in the state.

Under a linear growth assumption, a class of uncertain nonlinear time-delay systems

were considered by both state and output feedback control in [18].

In this note, constructive control techniques are proposed for controlling a class

of strict feedback nonlinear systems with a time delay in the state. Comparing our

paper with the existed work such as in [2, 4, 21], our paper has three contributions.

Firstly, we generalize the results for the systems considered in [2] to the systems with

delays in the state. Secondly, the use of a memoryless dynamical high gain observer in

combination with a memoryless dynamical high gain controller is proposed to design

the output feedback controller, while in [2, 4], it was applied that the use of a linear

high gain observer in combination with the backstepping method, which has been

widely used to deal with feedback nonlinear systems. Thirdly, we consider the global

output stabilization problem for uncertain strict feedback nonlinear systems with

outputs dependent incremental rate, while Chen and Huang [4] and Lei and Lin [21]

only considered the global output stabilization problem for uncertain strict feedback

nonlinear systems with polynomial functions of output incremental rate.

The following lemma is useful in the proof of our main result.

Lemma 1 There exist real numbers α > 0, ak, bk, k = 2, 3, . . . , n, and symmetric

matrices P > 0, Q > 0 satisfying the following inequalities:

PA + ATP ≤ −I, QB + BTQ ≤ −I,

PD + DP − P ≥ αI, QD + DQ − Q ≥ αI,

where

A =

















−a2 1 0 · · · 0

−a3 0 1 · · · 0
...

...
...

. . .
...

−an−1 0 0 · · · 1

−an 0 0 · · · 0

















,

B =

















0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−b2 −b3 −b3 · · · −bn

















,

D = diag[1, 2, . . . , n − 1].
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This Lemma could be thought as a corollary of Lemma 1 in reference [5], and we

omit its proof here.

2. OUTPUT FEEDBACK CONTROLLER

Theorem 1 For a family of uncertain systems (1) satisfying Assumption 1, the

following output feedback controller

ż2 = z3 + r2a3y − ṙa2y − ra2(z2 + ra2y)

ż3 = z4 + r3a4y − 2ṙra3y − r2a3(z2 + ra2y)
...

żn−1 = zn + rn−1any − (n − 2)ṙrn−3an−1y − rn−2an−1(z2 + ra2y)

żn = u(t) − (n − 1)ṙrn−2any − rn−1an(z2 + ra2y)

(3)

u = −rn
(

( b2M
r

+
∑n

i=2(biai))y + b2
z2

r
+ b3

z3

r2 + · · ·+ bn
zn

rn−1 ,
)

(4)

with the observer gain r being dynamically updated (see [4])

ṙ = r
α

max
{

̟(y) − r
4
, 0

}

,

r(t) = r0 ≥ 1, for t ∈ [−d, 0],
(5)

is such that the closed-loop system (1) and (3) is globally asymptotically stable (GAS)

at the equilibrium (x, z) = (0, 0), where M is positive constant determined by (24),

̟(·) is a continuously differentiable positive function determined by (25), α, ak and

bk(k = 2, 3, . . . , n) are constants given by Lemma 1.

Remark 2 It is obviously that the state r(t) of the system (5) has the following

three properties,

i : ṙ ≥ 0, t ≥ 0, (6)

ii : r
4

+ α ṙ
r
≥ ̟(y), t ≥ 0 (7)

iii : r(t) ≥ r(t − d) ≥ 1, t ≥ 0. (8)

The property (8) shall play a key role in our dealing with the delay in the state of

the system (1).

We now give a proof of the main result of this paper. The proof is constructive

and carried out by using Lyapunov analysis. For the convenience of the readers, we

break up the proof into three parts.
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2.1. The error dynamics and the closed-loop system. As done in [20], by

discarding the uncertain term φi(t, x(t), x(t − d), u) in system (1), we design a high-

gain observer (3) with the gain r(t) for the chain of integrators of (1). Let ei =

zi + ri−1aiy − xi, i = 2, 3, . . . , n be the estimate errors. Then, the error dynamics is

given by

ė2 = e3 − ra2e2 + ra2φ1 − φ2

ė3 = e4 − r2a3e2 + r2a3φ1 − φ3

...

ėn−1 = en − rn−2an−1e2 + rn−2an−1φ1 − φn−1

ėn = −rn−1ane2 + rn−1anφ1 − φn,

(9)

Letting εi = ei

ri−1 , (9) can be converted to the following system

ε̇2 = rε3 − ra2ε2 −
ṙ
r
ε2 + (a2φ1 −

φ2

r
)

ε̇3 = rε4 − ra3ε2 − 2 ṙ
r
ε3 + (a3φ1 −

φ3

r2 )
...

ε̇n−1 = rεn − ran−1ε2 − (n − 2) ṙ
r
εn−1 + (an−1φ1 −

φn−1

rn−2 )

ε̇n = −ranε2 − (n − 1) ṙ
r
εn + (anφ1 −

φn

rn−1 ).

(10)

Defining

η2 =
z2 + My

r
+ a2y,

ηk = zk

rk−1 + aky, k = 3, 4, . . . , n ,

where M is a positive constant to be specified later, (3) can be converted to the

following system

η̇2 = rη3 − ra2ε2 −
ṙ
r
η2 + M(η2 − ε2) + a2φ1 + M

r
(φ1 − My)

η̇3 = rη4 − ra3ε2 − 2 ṙ
r
η3 + a3φ1

...

η̇n−1 = rηn − ran−1ε2 − (n − 2) ṙ
r
ηn−1 + an−1φ1

η̇n = u
rn−1 − ranε2 − (n − 1) ṙ

r
ηn + anφ1.

(11)

Letting

u = −rn(b2η2 + b3η3 + · · ·+ bnηn) ,

where bk (k = 2, 3, . . . , n) are constants given by Lemma 1, from (1), (10) and (11),

a simple calculation gives

ẏ = rη2 − rε2 − My + φ1 , (12)

ε̇ = rAε − ṙ
r
Dε + A1φ1 − Φ , (13)

η̇ = rBη − ṙ
r
Dη − rA1ε2 + A1φ1 + Υ , (14)

where

ε = [ε2, ε3, . . . , εn]
T, η = [η2, η3, . . . , ηn]T,
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A1 =

















a2

a3

...

an−1

an

















, Φ =

















φ2

r
φ3

r2

...
φn−1

rn−2

φn

rn−1

















,

Υ =

(

M(η2 − ε2) +
M

r
(φ1 − My), 0, 0, . . . , 0

)T

,

and A, B, D as defined in Lemma 1.

In the next two parts, we will choose a positive constant M and a continuously

differentiable positive function ̟(·) such that the all states of the closed-loop system

(5), (12), (13), (14) are bounded, and (12), (13), (14), for any observer gain function

r(t) generated by (5), is GAS at (y, ε, η) = (0, 0, 0).

2.2. Lyapunov analysis of the closed-loop system. Choosing Vy = 1
2
y2, Vo =

rεTPε and Vc = rηTQη, and using Lemma 1, we have

V̇y|(12) = y(rη2 − rε2 − My + φ1)

≤ −My2 + 1
4
r2‖η‖2 + C1r

2‖ε‖2 + C2y
2 + C3y

2(t − d),
(15)

where Ci, i = 1, 2, 3, are constants independent of M ,

V̇o|(13) = ṙεTPε + r(rAε − ṙ
r
Dε + A1φ1 − Φ)TPε

+rεTP (rAε − ṙ
r
Dε + A1φ1 − Φ)

≤ −r2‖ε‖2 − αṙ‖ε‖2 + 2rεTPA1φ1 − 2rεTPΦ ,

(16)

V̇c|(14) = ṙηTQη + r(rBη − ṙ
r
Dη − rA1ε2 + A1φ1 + Υ)TQη

+rηTQ(rBη − ṙ
r
Dη − rA1ε2 + A1φ1 + Υ)

≤ −r2‖η‖2 − αṙ‖η‖2 − 2r2ηTQA1ε2 + 2rηTQA1φ1 + 2rηTQΥ.

(17)

Now, let us estimate the last two terms of (16) and last three terms of (17).

From the definitions of εi and ηi, we can get

x2

r
= η2 − ε2 −

My

r
,

xi

ri−1
= ηi − εi. i = 3, 4, . . . , n

From Assumption 1, and (8), we can get

r|φi(·)
ri−1 | ≤ L(y)

(

(1 + M)|y| + r
∑i

j=2(|ηj| + |εj|) + (1 + M)|y(t − d)|

+r
1

2 r
1

2 (t − d)
∑i

j=2(|ηj(t − d)| + |εj(t − d)|)
)

, i = 2, . . . , n.

Using the inequality 2a b ≤ γ a2 + 1
γ

b2 (a, b ∈ R, γ > 0), we can get

2rεTPA1φ1 ≤ 1
2
r2‖ε‖2 + C4y

2 + C4y
2(t − d), (18)
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2rεTPΦ ≤ rF1(y, M)‖ε‖2 + rF2(y)‖η‖2 + k1r(t − d)‖ε(t − d)‖2

+k2r(t − d)‖η(t − d)‖2 + C5y
2 + C5y

2(t − d),
(19)

2r2ηTQA1ε2 ≤ 1
4
r2‖η‖2 + C6r

2‖ε‖2, (20)

2rηTQA1φ1 ≤ 1
4
r2‖η‖2 + C7y

2 + C7y
2(t − d), (21)

and

2rηTQΥ ≤ k3(M)r‖η‖2 + k4(M)r‖ε‖2 + C8y
2 + C9y(t− d)2, (22)

where Cj > 0, j = 4, 5, . . . , 9, are constants independent of M , F1(·) is a function of y

and M , F2(·) is a function of y, k1 and k2 are constants, k3(·) and k4(·) are functions

of M .

Construct the following LKF

V = Ṽy + 4(C1 + C6)Ṽo + Ṽc,

where

Ṽy = Vy +
∫ t

t−d
C3y

2(s)ds,

Ṽo = Vo +
∫ t

t−d
(k1r(s)‖ε(s)‖

2 + k2r(s)‖η(s)‖2 + (C4 + C5)y
2(s)) ds

Ṽc = Vc +
∫ t

t−d
(C7 + C9)y

2(s)ds.

Using (15)–(22), one can get

V̇ |(12)(13)(14)

≤ 4(C1 + C6)(−
1
4
r2‖ε‖2 − αṙ‖ε‖2 + r(F1(y, M) + k1)‖ε‖

2

+r(F2(y) + k2)‖η‖
2 + 2(C4 + C5)y

2) − 1
4
r2‖η‖2 − αṙ‖η‖2 + 2C7y

2

+k3(M)r‖η‖2 + k4(M)r‖ε‖2 + (C8 + C9)y
2 + (−My2 + (C2 + C3)y

2)

≤ (−M + C2 + C3 + 8(C1 + C6)(C4 + C5) + 2C7 + C8 + C9)y
2

+4r(C1 + C6)(−
1
4
r − α ṙ

r
+ F1(y, M) + k4(M)

4(C1+C6)
+ k1)‖ε‖

2

+r(−1
4
r − α ṙ

r
+ 4(C1 + C6)(F2(y) + k2) + k3(M))‖η‖2

(23)

Now we can find a constant M , such that

M > δ1 + C2 + C3 + 8(C1 + C6)(C4 + C5) + 2C7 + C8 + C9), (24)

where δ1 is any positive constant, and then we can find a smooth function ̟(·) such

that, for any s, the following inequities hold, simultaneously,

̟(s) ≥ δ2 + F1(s, M) + k4(M)
4(C1+C6)

+ k1,

̟(s) ≥ δ3 + 4(C1 + C6)(F2(s) + k2) + k3(M)),
(25)

where δ2 and δ3 are any positive constants.

By means of (23) and (7), we have

V̇ |(12)(13)(14) ≤ −δ1y
2 − 4r(C1 + C6)δ2‖ε‖

2 − rδ3‖η‖
2. (26)

Remark 3 The choice of M and ̟(·) is very important for our controller design.

M should be specified firstly, then based on the choice of M , ̟(·) is specified.
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2.3. Boundedness of the closed-loop system and convergence of the states

(y, ε, η). Next we shall prove that all states of the closed-loop system(5), (12), (13)

and (14) are bounded. To this end, defining

V̄ =
∫ V

0
S (τ) dτ,

where S(·) is a nondecreasing function satisfying S(τ) > 0, ∀ τ ≥ 0, we have

˙̄V |(12)(13)(14) ≤ S(V )V̇

≤ S (V ) (−δ1y
2 − 4r(C1 + C6)δ2‖ε‖

2 − rδ3‖η‖
2)

≤ S (V ) (−δ1y
2)

≤ −δ1S
(

y2

2

)

y2.

(27)

On the other hand, let r∗ = 4̟(0), and

Vr(r) = α
[

r − r∗ − r∗ ln
(

r
r∗

)]

,

which is continuously differentiable, proper, and nonnegative in (0, +∞), see [3] or

[4]. As in [4], we can prove that

V̇r(r) ≤ [̟(y)− ̟(0)]2. (28)

From (27) and (28), we obtain that

d{V̄ +Vr(r)}
dt

≤ −δ1S
(

y2

2

)

y2 + [̟(y)− ̟(0)]2 ≤ 0

by appropriate choice of S(·). As a result, r(t) is bounded, hence all states of the

closed-loop system (5), (12), (13) and (14) are bounded.

From (26), we can conclude that the closed-loop (12), (13), (14) is asymptotically

stable at (y, ε, η) = (0, 0, 0), and hence the closed-loop (1) and (3) with

u = −rn(b2η2 + b3η3 + · · ·+ bnηn)

= −rn(b2(
z2+My

r
+ a2y) + b3(

z3

r3−1 + a3y) + · · · + bn( zn

rn−1 + any))

= −rn
(

( b2M
r

+
∑n

i=2(biai))y + b2
z2

r
+ b3

z3

r2 + · · ·+ bn
zn

rn−1

)

,

for any observer gain function r(t) generated by (5), is GAS at (x, z) = (0, 0). There-

fore, we can conclude that the system (3), (4), (5) is the linear output feedback

controller of the system (1). Thus completing the proof of Theorem 1.

Remark 4 It is easy to see that (y(t), ε(t), η(t), r(t)) ≡ (0, 0, 0, r̂) for t ∈

[−d, +∞) satisfies the equations (5)(12)(13)(14), where constant r̂ ≥ r∗ = 4̟(0).

Hence, it is impossible to prove that the closed-loop (5), (12), (13), (14) is asymptot-

ically stable at solution (ε(t), z̄(t), r(t)) ≡ (0, 0, r∗). But from the analysis above, the

boundedness of states of the closed-loop (5), (12), (13), (14) could be verified. Then,

based on (26) and the the boundedness of states of the closed-loop (5), (12), (13),

(14), the asymptotical stability of parts of states (i.e. y, ε and η) could be derived.
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Remark 5 The time delay d ≥ 0 of the system (1) could be any known or

unknown constant, and it it is not difficult to verified that Theorem 1 is also hold for

the system (1) with a known time-varying time delay in the state.

3. AN EXAMPLE

Consider a nonlinear time-delay system of the form:

ẋ1 = x2 + µ1 ln(1 + x2
1(t − d)),

ẋ2 = u + µ2e
x1x2

2(t − d),

y = x1,

(29)

where − 1
10

≤ µ1 ≤
1
10

, −1
6
≤ µ2 ≤

1
6
, d = 0.5.

It is easy to verified that Assumption 1 holds for the system (29). We can get

the linear output feedback controller for the system (29)

u = −
r2

2

(

z + 1.7781y

r
+

1

2
y

)

, (30)

where z and r(t) are the state of the system

ż = −r2

2

(

z+1.7781y

r
+ 1

2
y
)

− 1
2
ṙy − 1

2
r(z + r

2
y)

= −rz − 0.8891ry − 1
2
r2y − 1

2
ṙy

ṙ = r max
{

20ey + 30 − r
4
, 0

}

r(t) = 10, for t ∈ [−0.5, 0].

(31)

Fig. 1-Fig. 2 show the state response of the closed-loop system (29), (30) and (31)

with µ1 = 1
10

and µ2 = 1
6
, for the initial condition, for t ∈ [−0.5, 0],

[x1(t), x2(t), z(t), r(t)] = [−5, 40, −3, 10].

−0.5 0 0.5 1 1.5
−20

−10

0

10

20

30

40

50

60

70

80

 time [s]

x1
x2
z

Fig.1: Trajectories of x1, x2 and z.
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−0.5 0 0.5 1 1.5

0

50

100

150

200

250

 time [s]

r(t)

Fig.2: Trajectory of r(t).

4. CONCLUSION

In this paper, a high gain linear output feedback control is proposed for nonlinear

time-delay systems in lower triangular form with outputs dependent incremental rate.

It is well known that, for the feedback (lower triangular form) systems, the gains of

stabilizing controller are, in general, very high, see [2, 3, 4], and the high gains

may make the system cause a undesirable transient behavior. Hence, one always

wishes to get small gains when designing stabilizing controller for feedback systems.

Our bi, i = 2, 3, . . . , n in u = −rn(b2η2 + b3η3 + · · · + bnηn), are constants given

by Lemma 1. While the bi in [2, 4] are determined by iterative procedure of the

backstepping method. Hence, the gains of our controllers are much lower than those

in [2, 4]. The method introduced here is maybe feasible for the feedforward (upper

triangular form) nonlinear systems.
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