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1. PRELIMINARIES

The purpose of the paper is to prove the existence of strong solutions for the

following Stratonovich type stochastic inclusion with maximal monotone A and upper

separated set-valued functions F and G:

x(t) ∈ x(0) +

∫ t

0

F (x(s)) ◦ dz(s) +

∫ t

0

G(x(s))da(s) −

∫ t

0

A(x(s))d[m, m](s),

where z is a continuous semimartingale, [m, m] is a quadratic variation process of

a local continuous martingale part of a semimartingale z and a is a continuous fi-

nite variation process. Let us notice that classical existence results dealing with the

Stratonovich type stochastic equation require C2-regularity of coefficients (see e.g.,

[6]). J. San Martin in [7] considered the single dimensional Stratonovich equation

with coefficients taken from the class of uniformly antiderivative functions (UAD).

M. Michta and J. Motyl in [3] introduced the concept of upper separated set-valued

functions and proved the existence of solutions to the following inclusion:

x(t) ∈ x(0) +

∫ t

0

F (x(s)) ◦ dz(s) +

∫ t

0

G(x(s))da(s)

with set-valued functions F, G taking their values in CompR, the space of nonempty,

compact and convex subsets of reals. On the other hand, R. Pettersson in [4] proved

the existence of solutions to the inclusion of the type:

x(t) ∈ x(0) +

∫ t

0

b(s, x(s))ds +

∫ t

0

σ(s, x(s))dB(s) −

∫ t

0

A(x(s))ds
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with b, σ being Lipschitz and single valued functions and A-maximal monotone set-

valued operator. The inclusion considered in the paper generalizes results obtained

in [7] and [3] in the direction inspired by [4].

2. UPPER SEPARATED SET-VALUED FUNCTIONS

The paper is devoted the investigation of the existence of strong solutions of the

Stratonovich stochastic inclusion. To this end, it is essential to define first a set-valued

Stratonovich integral. We describe the class of upper separated set-valued functions

for which a set-valued Stratonovich integral is well defined

Definition 2.1. Let F be a set-valued function from R into nonempty subsets of R.

We define upper and lower bounds of F by the following formulas

UF : X → R, UF (x) = sup{b1 : b1 ∈ F (x)}

LF : X → R, LF (x) = inf{b2 : b2 ∈ F (x)}.

We say that F is upper separated if for every x and ǫ > 0 there exists a hyperplane

Hx,ǫ strongly separating a point (x, LF (x) − ǫ) from the set Epi(UF ) = {(x, b) ∈

X × R : UF (x) ≤ b}.

Let CompR denote a space of all nonempty compact and convex subsets of R.

Proposition 2.2. The upper separated set-valued function F : R → CompR admits

a convex and locally Lipschitz selection.

Proof. By Proposition 3.4 of [3] the upper separated set-valued function F admits a

convex selection f : R → R. Let us notice that such f is continuous ([5] Proposition

1.19). By Proposition 1.6 of [5] it follows that a convex and continuous function is

locally Lipschitz.

We will give one more useful property of a convex selection of an upper separated

set-valued function. In order to do that we define the following class of functions.

Definition 2.3. ([2]) A function f : R → R belongs to the antiderivative class (AD)

if f is absolutely continuous and f ′ admits a cádlág version, that is f ′ = h dx− a.e.,

for some

h ∈ D = {h : R → R : h is right continuous with left limits}.

Proposition 2.4. Let F : R → CompR be an upper separated set-valued function.

Then it admits a selection f ∈ AD.

Proof. By Lemma 2.2 of [7] it suffices to show that f is continuous and its right

derivative is cádlág. The upper separated set-valued function F admits a convex and

continuous selection f . Convexity of the selection f provides that the right derivative

of f is cádlág by [5, Th. 1.16].
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3. SET-VALUED INTEGRALS

Let I = [0, T ] and let (Ω,F, {Ft}t∈I , P ) be a complete filtered probability space

satisfying the usual hypothesis, i.e., {Ft}t∈I is an increasing and right continuous

family of σ-subalgebras of F and F0 contains all P -null sets. The stochastic process

x is {Ft}t∈I-adapted or shortly adapted if x(t) is Ft-measurable for each t ∈ I. A

stochastic process x is called cádlág if its almost all sample paths are right continuous,

with left limits. A stochastic adapted and cádlág process x is called a continuous

semimartingale, if it can be decomposed into a sum x = m+v, where m is a continuous

local martingale with respect to {Ft}t∈I while v is a continuous FV -process, i.e., an

adapted process with paths of a finite variation.

We define set-valued integrals, which will be used in the next Section.

Definition 3.1. Let a set-valued function G : R → CompR be given. For a given

semimartingale x and an FV -process a we denote by S(G◦x, da) the set of a-integrable

selections of G ◦ x, i.e.,

S(G ◦ x, da) := {h : h(s) ∈ G(x(s)), s ∈ I, a.s.,

and

∫ T

0

|h(s)||da(s)| < ∞}.

If the set S(G ◦ x, da) is nonempty, we define the set-valued integral
∫ t

0

G(x(s))da(s) =

{∫ t

0

h(s)da(s) : h ∈ S(G ◦ x, da)

}
.

Remark 3.2. If a set-valued function G is upper separated, x is a continuous semi-

martingale and a is a continuous FV-process, it follows from Proposition 2.2 that the

set S(G ◦ x, da) is nonempty.

Definition 3.3. A set-valued function A : R → 2R is maximal monotone if

∀s, t ∈ I ∀u ∈ A(s), v ∈ A(t) (u − v)(s − t) ≥ 0 and Range(Id + A) = R,

where Id denotes the identity operator. By A0(x) we denote the minimal norm

element from the set A(x).

Let x = m + v be a continuous semimartingale.

Remark 3.4. Since h(s) = A0(x(s)) is a composition of a nondecreasing function

A0(·) and continuous function x(·, ω) on I we deduce that the set

S(A ◦ x, d[m, m]) := {h : h(s) ∈ A(x(s)), s ∈ I, a.s.,

and

∫ t

0

|h(s)|d[m, m](s) < ∞ for each t ∈ I}

is nonempty.
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The single valued Stratonovich integral of a semimartingale h with respect to a

continuous semimartingale z is meant as
∫ t

0

h(s) ◦ dz(s) =

∫ t

0

h(s)−dz(s) +
1

2
[h, z]c(t),

where [h, z]c(t) denotes the path by path continuous part of [h, z]. Now we are able

to define a set-valued Stratonovich integral.

Definition 3.5. Let a set-valued function F : R → ConvR be given. For a continuous

semimartingale x we denote by S(F◦x, dz) the set of Stratonovich integrable selections

of F ◦ x, i.e.,

S(F ◦ x, dz) = {h : h(s) ∈ F (x(s)), s ∈ I, a.s.,

and

∫ t

0

h(s) ◦ dz(s) < ∞ for each t ∈ I}.

If the set S(F ◦ x, dz) is nonempty, we define the set-valued integral
∫ t

0

F (x(s)) ◦ dz(s) = {

∫ t

0

h(s) ◦ dz(s) : h ∈ S(F ◦ x, dz)}.

Remark 3.6. Let us notice that an upper separated set-valued function F admits a

convex selection f by Proposition 2.2. Since convex functions preserve semimartin-

gales (e.g., [6, Th. IV.47]), then h(s) = f(x(s)) is a semimartingale, too. Therefore,

the set S(F ◦ x, dz) is nonempty and
∫ t

0
F (x(s)) ◦ dz(s) is well defined.

4. STOCHASTIC STRATONOVICH INCLUSION

We prove the existence of strong solutions to the Stratonovich stochastic inclusion

related to set-valued stochastic integrals defined in the previous section.

Let set-valued functions F, G : R → CompR and A : R → ConvR, continuous

semimartingales x and z, a continuous FV-process a and x0 ∈ R be given. Let [m, m]

denote a quadratic variation process of a local martingale part of z.

Definition 4.1. By the Stratonovich stochastic inclusion we denote the following

relation

(SI) x(t) ∈ x0 +
∫ t

0
F (x(s)) ◦ dz(s) +

∫ t

0
G(x(s))da(s) −

∫ t

0
A(x(s))d[m, m](s)

and we say that process x is a strong solution to the inclusion (SI) up to explosion

time T̃ ≤ T if there exist f ∈ S(F ◦ x, dz), g ∈ S(G ◦ x, da), h ∈ S(A ◦ x, d[m, m])

and x is a continuous semimartingale satisfying

x(t) = x0 +

∫ t

0

f(s)dz(s) +
1

2
[f, z](t) +

∫ t

0

g(s)da(s) −

∫ t

0

h(s)d[m, m](s)

for every t ∈ [0, T̃ ] a.s.
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Let us mention that upper separated set-valued functions need not satisfy the

linear growth condition. Therefore, one can expect that solutions of inclusion (SI)

may have explosions. Recall, a stopping time T̃ is an explosion time for a solution

process x if x is a solution to inclusion (SI) on [0, T̃ ), x(T̃ ) = +∞ P.1 on {T̃ ≤ T} and

T̃ = limn→∞ Tn, where Tn := inf{t ∈ [0, T ] : |x(t)| > n}, for n ≥ 1. If P (T̃ > T ) = 1,

then a process x is a nonexploding solution of a Stratonovich inclusion.

For convenience of the reader we recall definitions and lemmas, which will be

used in the proof of our main result.

Definition 4.2 ([1]). Let f, g : R → R be arbitrary functions. We denote f <∗ g if

for all x there exists δ > 0 such that if |x− y| < δ and |x− y′| < δ, then f(y) ≤ g(y′).

Lemma 4.3 ([7, Lemma 4.6]). Let m be a continuous local martingale and let a be a

continuous, FV-process. Assume f : R → R is locally bounded and satisfies

∀Λ ⊆ R compact sup
(x,y)∈Λ×Λ, x 6=y

|f(x) − f(y)|

|x − y|
< ∞.

Let h1 and h2 be locally bounded and satisfy h1 <∗ h2. If xi(t), i = 1, 2 are solutions

of

xi(t) = x0 +

∫ t

0

f(xi(s))dm(s) +

∫ t

0

hi(xi(s))da(s),

then x1(t) ≤ x2(t) for all t ∈ I a.s.

Definition 4.4. Process x is called a minimal solution of a stochastic equation, if

any other solution y of the equation satisfies x(t) ≤ y(t) for all t ∈ I a.s.

Lemma 4.5 ([7, Lemma 4.12]). Let h : R → R be a lower semicontinuous function

bounded by M . Then if hn(x) = infy{h(y) + n|x − y|} − 1
2n , we have the following:

1◦ ∀x, n |hn(x)| ≤ M + 1.

2◦ hn(x) ր h(x).

3◦ ∀x, y |hn(x) − hn(y)| ≤ n|x − y|.

4◦ hn <∗ hn+1

5◦ If h is continuous at x and xn → x, then hn(xn) → h(x).

Now, we are ready to prove the main result of the paper.

Theorem 4.6. Let z be a continuous adapted semimartingale, [m, m] be a quadratic

variation process of a local martingale part of z and let “a” be a continuous, FV-

process. Let F, G : R → CompR1 be upper separated set-valued functions and let

A : R → ConvR be a maximal monotone set-valued function. Then, there exists a

strong solution up to explosion time to Stratonovich stochastic inclusion (SI).
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Proof. Step 1: By Proposition 2.2 there exist convex and continuous selections f and

g for set-valued functions F and G respectively. Additionally, by Proposition 2.4 we

know that f ∈ AD . From properties of a maximal monotone set-valued function it

follows that a set A(x) is closed and convex for each x. Hence there exists the unique

minimal norm element A0(x) in the set A(x). This implies that a cádlág version of a

nondecreasing function A0(·) (denoted also by A0) is also a selection of a set-valued

function A. For the existence of solutions we need the Lipschitz and boundedness

property. Let

fk(u) :=






f(u), u ∈ [−k, k]

f(k), u > k

f(−k), u < −k

and

(A0)k(u) :=






A0(u), u ∈ [−k, k]

A0(k), u > k

A0(−k), u < −k

,

for k ≥ 1. Similarly, a function gk is defined. By Proposition 2.2 functions f and g are

convex and locally Lipschitz. Therefore, functions fk and gk are globally Lipschitz.

Since f ∈ AD , the derivative of f admits a cádlág version. We denote by f ′
k the

following function

f ′
k(u) :=

{
f ′(u), u ∈ [−k, k)

0, u < −k lub u ≥ k

Since the derivative f ′
k coincides on the interval [−k, k) with the right derivative

of a function f , by the proof of Proposition 2.4 it turns out that f ′
k is a cádlág

function. Additionally, the convexity of a function f implies that its right derivative

is a nondecreasing function. It means that f ′
k is a nondecreasing and right continuous

function on [−k, k). Thus and from the fact that f ′
k is equal to zero outside [−k, k)

we deduce that f ′
k is a globally bounded function. We will prove that for every fixed

k ≥ 1 there exists a unique minimal strong solution xk to the equation

x(t) = x0 +

∫ t

0

fk(x(s))dz(s) +
1

2

∫ t

0

f ′
k(x(s))fk(x(s))d[z, z](s)

+

∫ t

0

gk(x(s))da(s) −

∫ t

0

(A0)k(x(s))d[m, m](s),(4.1)

which is also a solution to the equation

x(t) = x0 +

∫ t

0

fk(x(s))dz(s) +
1

2
[fk(x), z](t)

+

∫ t

0

gk(x(s))da(s) −

∫ t

0

(A0)k(x(s))d[m, m](s).
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Since z = m+v is the canonical decomposition of z into a local continuous martingale

m and a continuous FV-process v, then equation (4.1) can be rewritten as

x(t) = x0 +

∫ t

0

fk(x(s))dm(s) +

∫ t

0

fk(x(s))dv(s) +

∫ t

0

gk(x(s))da(s)

+
1

2

∫ t

0

f ′
k(x(s))fk(x(s))d[m, m](s) +

∫ t

0

−(A0)k(x(s))d[m, m](s).

Since its second and third components have similar properties i.e., ±fk and ±gk are

Lipschitz and bounded while v and a are continuous FV-processes, we will consider

them in the same manner. Therefore, we can restrict our study to the following

equation

x(t) = x0 +

∫ t

0

fk(x(s))dm(s) +
1

2

∫ t

0

f ′
k(x(s))fk(x(s))d[m, m](s)

+

∫ t

0

bk(x(s))du(s) +

∫ t

0

−(A0)k(x(s))d[m, m](s),(4.2)

with a continuous increasing and adapted process u, and Lipschitz and bounded

function bk. Let us notice that coefficients f ′
k(x(s))fk(x(s)) and −(A0)k(x(s)) need not

be Lipschitz. However, using Lemma 4.5 which holds true for lower semicontinuous

and bounded functions we can prove the existence of a unique and strong solution to

equation (4.2). Since f ′
k(x(s))fk(x(s)) are not lower semicontinuous we need to define

the following version of the derivative of fk

f̃ ′
k(x) =

{
f ′

k(x−) ∧ f ′
k(x), if fk(x) ≥ 0

f ′
k(x−) ∨ f ′

k(x), if fk(x) < 0.

Let us denote ρk(x) = 1
2
fk(x)f̃ ′

k(x). The function ρk is lower semicontinuous and

moreover, lim infy→x ρk(y) = ρk(x). The nonincreasing function −(A0)k is also lower

semicontinuous because it is cádlág and moreover,

lim inf
y→x

(−(A0)k(y)) = lim
y↓x

(−(A0)k(y)) = (−(A0)k(x)).

Step 2: We will prove that the equation

x(t) = x0 +

∫ t

0

fk(x(s))dm(s) +
1

2

∫ t

0

f̃ ′
k(x(s))fk(x(s))d[m, m](s)

+

∫ t

0

bk(x(s))du(s) +

∫ t

0

−(A0)k(x(s))d[m, m](s),(4.3)

possesses a unique minimal solution. For this we adapt the method used by J. San

Martin in [7]. Without any loss of generality we assume additionally that [m, m] is

uniformly bounded by some constant C. This condition can be easy relaxed by the

usual localization method. Let us consider the following functions:

ρr
k(x) = inf

y
{ρk(y) + r|x − y|} − 2−r
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br
k(x) = inf

y
{bk(y) + r|x − y|} − 2−r

Ar
k(x) = inf

y
{(−(A0)k(y)) + r|x− y|} − 2−r.

Since functions fk, bk, and −(A0)k are globally bounded, then there exists a constant

also denoted by C, which bounds all of them. Therefore, ρk ≤ 1
2
C2. Since these

functions are lower semicontinuous, then by Lemma 4.5 we deduce

1◦ ∀x ∈ R |ρr
k(x)| ≤ C1, |br

k(x)| ≤ C1 and |Ar
k(x)| ≤ C1, where C1 = (1

2
C2∨C)+1.

2◦ ρr
k(·) ր ρk(·), br

k(·) ր bk(·), Ar
k(·) ր (−(A0)k(·)), with r → ∞.

3◦ ρr
k, br

k i Ar
k are Lipschitz with constant r.

4◦ ρr
k <∗ ρr+1

k , br
k <∗ br+1

k , Ar
k <∗ Ar+1

k .

5◦ If ρk and −(A0)k are continuous at some point p and xr → p, then ρr
k(xr) → ρk(p)

and Ar
k(xr) → (−(A0)k(p)), as r → ∞, each k = 1, 2, . . . .

For each r = 1, 2, . . . we consider the equation

y(t) = x0 +

∫ t

0

fk(y(s))dm(s) +

∫ t

0

br
k(y(s))du(s)

+

∫ t

0

ρr
k(y(s))d[m, m](s) +

∫ t

0

Ar
k(y(s))d[m, m]s.(4.4)

Since all coefficients of (4.4) are Lipschitz, this equation has a unique, strong solution

yr
k(t). The sequence of solutions to equations (4.4) is increasing in r for every fixed k

and t ∈ [0, T ] a.s. by Lemma 4.3.

Let xk(t) = limr→∞ yr
k(t) ≤ ∞. We claim that xk(t) < ∞. Really, let us take

a process zr
k(t) = yr

k(t) − x0, which for every fixed t ∈ [0, T ] is also increasing in r.

Using the Doob’s inequality and estimating separatelly coefficients of 4.4 we obtain

E

(
sup

t∈[0,T ]

|

∫ t

0

fk(y
r
k(s))dm(s)|2

)
≤ 4E

(∫ T

0

|fk(y
r
k(s))|

2d[m, m](s)

)
≤ 4C3

E

(
sup

t∈[0,T ]

|

∫ t

0

ρr
k(y

r
k(s))d[m, m](s)|2

)
≤ (C1)

2C2,

E

(
sup

t∈[0,T ]

|

∫ t

0

Ar
k(y

r
k(s))d[m, m](s)|2

)
≤ (C1)

2C2

E

(
sup

t∈[0,T ]

|

∫ t

0

br
k(y

r
k(s))da(s)|2

)
≤ (C1)

2|u(T ) − u(0)|2 ≤ (C1)
2C2.

Moreover,

E

(
sup

t∈[0,T ]

|zr
k(t)|

2

)
= E

(
sup

t∈[0,T ]

|

∫ t

0

fk(y
r
k(s))dm(s) +

∫ t

0

br
k(y

r
k(s))du(s)

+

∫ t

0

ρr
k(y

r
k(s))d[m, m](s) +

∫ t

0

Ar
k(y

r
k(s))d[m, m](s)|2

)
≤ C2
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where C2 = 4(4C3+3(C1)
2C2) does not depend on r. By the Dominated Convergence

Theorem we conclude

lim
r→∞

E

(
sup

t∈[0,T ]

|zr
k(t)|

2

)
= E

(
sup

t∈[0,T ]

[(xk(t) − x0) ∨ 0]2

)
≤ C2 < ∞.

Thus xk(t) is finite a.s. for every fixed t ∈ [0, T ]. To show that xk(t) is a solution to

equation (4.3) we have to prove that for each fixed k

(a)
∫ t

0
fk(y

r
k(s))dm(s) →

∫ t

0
fk(xk(s))dm(s)

(b)
∫ t

0
br
k(y

r
k(s))du(s) →

∫ t

0
bk(xk(s))du(s)

(c)
∫ t

0
ρr

k(y
r
k(s))d[m, m](s) →

∫ t

0
ρk(xk(s))d[m, m](s)

(d)
∫ t

0
Ar

k(y
r
k(s))d[m, m](s) →

∫ t

0
(−(A0)k(xk(s)))d[m, m](s),

where the convergence is meant in the sense of ucp as r → ∞. Since fk is uniformly

continuous and for every fixed t ∈ [0, T ] yr
k(t) → xk(t), then by the property 5◦

of Lemma 4.5 we get fk(y
r
k(s)) → fk(xk(s)), as r → ∞. Using again the Doob’s

inequality we obtain

E

(
sup

t∈[0,T ]

|

∫ t

0

fk(y
r
k(s))dm(s) −

∫ t

0

fk(xk(s))dm(s)|2

)

≤ 4E

∫ T

0

|fk(y
r
k(s)) − fk(xk(s))|

2d[m, m](s) →r→∞ 0.

Therefore, for some subsequence of (yr
k(s))r≥1, again denoted by (yr

k(s))r≥1, we get

sup
t∈[0,T ]

|

∫ t

0

fk(y
r
k(s))dm(s) −

∫ t

0

fk(xk(s))dm(s)| →r→∞ 0 a.s.

Similarly, we obtain

sup
t∈[0,T ]

|

∫ t

0

[br
k(y

r
k(s)) − bk(xk(s))]du(s)| →r→∞ 0.

Conditions (c) and (d) are still left to be proved. Thus one should show that

ρr
k(y

r(s)) →r→∞ ρk(xk(s))

Ar
k(y

r
k(s)) →r→∞ (−(A0)k(xk(s)))(4.5)

a.e. relative to the random measure µ associated with [m, m]. The above is clear only

for points of continuity of ρk and −(A0)k respectively. Let us denote

yr
k(t) = x(0) +

∫ t

0

fk(y
r
k(s))dm(s) +

∫ t

0

br
k(y

r
k(s))du(s)

+

∫ t

0

[ρr
k(y

r
k(s)) + Ar

k(y
r
k(s))]d[m, m](s) = x(0) + S1 + S2 + S3
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Since yr
k, S1 and S2 are convergent, so S3 also has to converge. Let us denote its limit

by l(t). Hence for t < t′ we get

|l(t) − l(t′)| ≤ lim
r→∞

(

∫ t′

t

( | ρr
k(y

r
k(s)) | + | Ar

k(y
r
k(s)) | )d[m, m](s) )

≤ 2C1| [m, m](t) − [m, m](t′) |.

Therefore, l(t) is continuous and has paths of finite variation. We have shown that

xk(t) = x0 +

∫ t

0

fk(xk(s))dm(s) +

∫ t

0

bk(xk(s))du(s) + l(t)(4.6)

Thus xk(t) is a continuous semimartingale. Since yr
k(t) and xk(t) are continuous and

yr
k(t) is an increasing in r and convergent to xk(t) for every fixed t, then by the Dini’s

theorem we conclude that for every ω, yr
k(t) →r→∞ xk(t) uniformly on compact sets.

Denote by D1 a set of points, in which a function ρk is discontinuous. Let us notice

that µ(D1) = 0 because D1 (with µ taken as a measure on s) coincides with the set

of points of discontinuity of a cádlág function f ′
k. Let D2 denotes the set of points of

discontinuity of a function (A0)k. Since (A0)k is monotone on [−k, k] and constant

outside this interval, then µ(D2) = 0. Let D = D1 ∪ D2. For α > 0 we define sets

Dα = {x : (ρk(x) or (A0)k(x) are discontinuous) and |fk(x)| ≥ α > 0}.

Let us note that D =
⋃

α>0 Dα is a set of points of discontinuity of functions ρk or

(A0)k, for which fk 6= 0. Since Dα ⊂ D, then µ(Dα) = 0. To verify conditions (4.5)

we will show that P{ω : µ{s : xk(s) ∈ D} = 0} = 1. Let

I = E

(∫ t

0

1Dα(xk(s))d[m, m](s)

)

≤ E

(∫ t

0

1Dα(xk(s))α
−2f 2

k (xk(s))d[m, m](s)

)
.

By properties of the quadratic covariation process ([6, Th. II.29]Th.II.29) we obtain

[xk, m](s) = [x0 +

∫ ·

0

fk(xk(q))dm(q) +

∫ ·

0

bk(xk(q))du(q) + l(·), m](s)

= [

∫ ·

0

fk(xk(q))dm(q), m](s) =

∫ s

0

fk(xk(q))d[m, m](q).

Hence d[xk, m](s) = fk(xk(s))d[m, m](s). Then

I ≤ α−2E( sup
t∈[0,T ]

∫ t

0

1Dα(xk(s))fk(xk(s))d[xk, m](s)),
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where 1A denotes a characteristic function of the set A. Using the Kunita-Watanabe

inequality ([6, Th. II.25]) we get

I ≤ α−2E

((∫ T

0

d[m, m](s)

) 1

2

(

∫ T

0

1Dα(xk(s))f
2
k (xk(s))d[xk, xk](s))

1

2

)

≤ C
1

2 α−2E

(∫ T

0

1Dα(xk(s))f
2
k (xk(s))d[xk, xk](s)

) 1

2

.

By Corollary 1 to Theorem IV.51 of [6] we obtain

I ≤ C
1

2 α−2E

(∫

R

∫ T

0

1Dα(q)f 2
k (q)L(q, ds)dq

)1

2

,

where L(p, s) = Lp
s(xk) is the local time of the process xk. Considering a global

boundedness of a function fk we get

I ≤ C
3

2 α−2E

(∫

R

∫ T

0

1Dα(q)L(q, ds)dq

)1

2

≤ C
3

2 α−2E

(∫

R

∫ T

0

1D(q)L(q, ds)dq

)1

2

.

Since the set µ(D) = 0, then

∫

R

∫ T

0

1D(q)L(q, ds)dq = 0 a.s.

Therefore, I = 0 a.e. In particular P{ω : µ{s : xk(s) ∈ Dα} = 0} = 1. Thus

P{ω : µ{s : xk(s) ∈ D} = 0} = 1. Let us denote by Dc a complement of the set

D. The functions ρk and −(A0)k are continuous on Dc. Therefore, there exists a set

B ∈ F , P (B) = 1 such that for every ω ∈ B

ρr
k(y

r
k(s)) →r→∞ ρk(xk(s)) dµ(s)-a.e.

and

Ar(yr
k(s)) →r→∞ (−(A0)k(xk(s))) dµ(s)-a.e.

By the Dominated Convergence Theorem we obtain the convergence property of in-

tegrals ∫ t

0

ρr
k(y

r(s))d[m, m](s) →

∫ t

0

ρk(xk(s))d[m, m](s)

∫ t

0

Ar
k(y

r(s))d[m, m](s) →

∫ t

0

(−(A0)k(xk(s)))d[m, m](s).

Then we have proved that xk is a solution to equation (4.3).

Step 3: Now we will prove that xk is a unique minimal solution to equation (4.2).

Let us claim that

J(t) = |

∫ t

0

fk(xk(s))f̃
′
k(xk(s)) − fk(xk(s))f

′
k(xk(s))d[m, m](s)| = 0 a.s.
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Really, similarly as in the step 2 we get

J(t) = |

∫ t

0

f̃ ′
k(xk(s)) − f ′

k(xk(s))d[xk, m](s)|

≤

(∫ t

0

d[m, m](s)

) 1

2
(∫ t

0

(f̃ ′
k(xk(s)) − f ′

k(xk(s)))
2d[xk, xk](s)

) 1

2

.

Using again Corollary 1 to Theorem IV.51 of [6] we obtain

J(t) ≤ ([m, m](t))
1

2

(∫

R

∫ t

0

1D(q)|f̃ ′
k(q) − f ′

k(q)|
2L(q, ds)dq

) 1

2

≤ 2C([m, m](t))
1

2

(∫

R

∫ t

0

1D(q)L(q, ds)dq

)1

2

= 0 a.s.

Therefore, xk is a solution to (4.2) which is in fact equation (4.1). We will prove that

xk is a unique minimal solution. Let yk be any other solution to (4.2). Such an yk is

also a solution to (4.3). By Lemma 4.5 yr
k(t) ≤ yk(t) for every t ∈ [0, T ], from which

we deduce that xk(t) = limr→∞ yr
k ≤ yk(t) for every t ∈ [0, T ]. Then the minimal

solution xk is unique.

Step 4: We will prove that x = limk→∞ xk is a solution to the equation

x(t) = x0 +

∫ t

0

f(x(s))dz(s) +

∫ t

0

g(x(s))da(s)

+
1

2
[f(x), z](t) +

∫ t

0

−A0(x(s))d[m, m](s),(4.7)

Let us define stopping times Sk := inf{t ∈ [0, T ] : |xk(t)| > k}. Then for k and k + 1

solutions xk and xk+1 satisfy equations

xk(t ∧ Sk) = x0 +

∫ t∧Sk

0

fk(xk(s))dz(s) +
1

2

∫ t∧Sk

0

fk(xk(s))f
′
k(xk(s))d[m, m](s)

+

∫ t∧Sk

0

gk(xk(s))da(s) −

∫ t∧Sk

0

(A0)k(xk(s))d[m, m](s)

and

xk+1(t ∧ Sk+1) = x0 +

∫ t∧Sk+1

0

fk+1(xk+1(s))dz(s)

+
1

2

∫ t∧Sk+1

0

fk+1(xk+1(s))f
′
k+1(xk+1(s))d[m, m]s

+

∫ t∧Sk+1

0

gk+1(xk+1(s))da(s)

−

∫ t∧Sk+1

0

(A0)k+1(xk+1(s))d[m, m](s).

Let us note that f(u) = fk(u) = fk+1(u) for |u| ≤ k and k = 1, 2, dots. A similar

property holds for functions g, gk, gk+1, A0, (A0)k, (A0)k+1, and multiplications f ′f ,
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f ′
kfk, f ′

k+1fk+1. Since |xk(t ∧ Sk)| ≤ k, then

xk(t ∧ Sk) = x0 +

∫ t∧Sk

0

f(xk(s))dz(s) +
1

2

∫ t∧Sk

0

f(xk(s))f
′(xk(s))d[m, m](s)

+

∫ t∧Sk

0

g(xk(s))da(s) −

∫ t∧Sk

0

A0(xk(s))d[m, m](s)

= x0 +

∫ t∧Sk

0

fk+1(xk(s))dz(s) +
1

2

∫ t∧Sk

0

fk+1(xk(s))f
′
k+1(xk(s))d[m, m](s)

+

∫ t∧Sk

0

gk+1(xk(s))da(s) −

∫ t∧Sk

0

(A0)k+1(xk(s))d[m, m](s).

By the uniqueness of minimal, strong solution we deduce that xk = xk+1 on

[0, Sk]. Moreover, Sk < Sk+1 on {Sk < T}. Since a sequence of stopping times is

increasing, we can define a predictable stopping time S := limk→∞ Sk and the process

x on the interval [0, S] such that x = xk on [0, Sk]. The process x satisfies equation

(4.1) on [0, Sk] for k = 1, 2, . . . , so x satisfies also equation (4.6) on [0, S). The

stopping time S is the explosion time, which was mentioned in the statement of the

Theorem. If P (S > T ) = 1, then we have a nonexploding solution. Since f, g and

A0 are selectors of F, G and A, respectively, we deduce that f ◦x, g ◦x and A0 ◦x are

selections desired in Definition 4.1 and that means that x is a solution to inclusion

(SI).

Example 4.7. Let A be a subset of the interval [0, 1] such that µ(A) = 1/2 and for

every interval [a, b] ⊂ [0, 1] 0 < µ(A ∩ [a, b]) < b − a. Then the measure of the set

A′ = [0, 1]\A equals 1/2 and 0 < µ(A′∩ [a, b]) < b−a also. Let us notice that sets A

and A′ should be dense in [0, 1]. Define a set-valued function F : [0, 1] → 2R by the

formula

F (x) =

{
[1, e|x| + 3], x ∈ A

[2, e|x| + 4], x ∈ ([0, 1] \ A)

It is clear that the set-valued function F is not Lipschitz continuous, nor lower semi-

continuous, nor upper semicontinuous in any point. It does not satisfy any of mono-

tone type conditions either. However, F is upper separated.
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