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ABSTRACT. In this paper we examine the solvability of a nonlinear quadratic Hammerstein

integral equation. This equation is considered in the Banach space of real functions which are defined,

bounded and continuous on the real half-line. Using the idea of measures of noncompactness with

the classical Schauder fixed point theorem we show that the equation has solutions which vanish at

infinity.
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1. INTRODUCTION

The object of this paper is to study the nonlinear quadratic Hammerstein integral

equation

(1.1) x(t) = p(t) + f(t, x(t))

∞
∫

0

g(t, τ)h(τ, x(τ))dτ , t ≥ 0 .

Notice that Eq. (1.1) is a generalization of the classical Hammerstein integral equation

on bounded interval having the form

(1.2) x(t) = p(t) +

b
∫

a

g(x, τ)h(τ, x(τ))dτ
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and its quadratic counterpart which has the form

(1.3) x(t) = p(t) + f(t, x(t))

b
∫

a

g(t, τ)h(τ, x(τ))dτ .

It is worthwhile mentioning that the integral equations (1.2) and (1.3) arise in sev-

eral applications in real world problems. For example, some problems considered in

vehicular traffic theory, biology, queuing theory, the theory of radiative transfer and

kinetic theory of gases lead to the quadratic integral equations of the form (1.3) (see

[7-10, 12]) while many problems considered in mechanics can be described with help

of the classical Hammerstein integral equation of the form (1.2).

The quadratic integral equation (1.1) will be considered here in the Banach space

of real functions which are defined, bounded and continuous on the real half-line

R+ = [0,∞). Our analysis uses the idea of measures of noncompactness with the

classical Schauder fixed point theorem. Such an approach enables us to prove an

existence result concerning Eq. (1.1) under rather general conditions which are easy

to verify in concrete situations. The existence result obtained in this paper generalizes

several ones in the literature [1, 2, 9, 10, 13, 14, 16, 17] and in the last section of this

paper we compare our results with those obtained in [6].

Also we note that the approach presented in this paper allows us to prove that

Eq. (1.1) has solutions vanishing at infinity.

2. NOTATION AND AUXILIARY FACTS

In this section we present some facts concerning measures of noncompactness. Let

(E, || · ||) be an infinite dimensional Banach space with the zero element θ. Denote

by B(x, r) the closed ball centered at x and with radius r. The symbol Br stands

for the ball B(θ, r). For a subset X of E we write X, ConvX in order to denote

the closure and convex closure of X, respectively. The family of all nonempty and

bounded subsets of E is denoted by ME and its subfamily consisting of all relatively

compact sets is denoted by NE .

Definition 2.1. A mapping µ : ME → R+ is said to be a measure of noncompactness

in E if it satisfies the following conditions:

1o The family ker µ = {X ∈ ME : µ(X) = 0} is nonempty and ker µ ⊂ E.

2o X ⊂ Y ⇒ µ(X) ≤ µ(Y ).

3o µ(X) = µ(X).

4o µ(ConvX) = µ(X).

5o µ(λX + (1 − λ)Y ) ≤ λµ(X) + (1 − λ)µ(Y ) for λ ∈ [0, 1].

6o If (Xn) is a sequence of closed sets from ME such that Xn+1 ⊂ Xn (n = 1, 2, . . . )

and if lim
n→∞

µ(Xn) = 0 then the intersection X∞ =
⋂

∞

n=1 Xn is nonempty.
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The family ker µ described in 1o is called the kernel of the measure of noncompact-

ness µ. Let us observe that the intersection set X∞ from 6o belongs to ker µ. Indeed,

since µ(X∞) ≤ µ(Xn) for every n then we have that µ(X∞) = 0. This simple ob-

servation will be crucial later. Further facts concerning measures of noncompactness

and its properties may be found in [5].

In what follows we will work in the Banach space BC(R+) consisting of all real

functions defined, bounded and continuous on R+ = [0,∞). The space BC(R+) is

furnished with the standard norm

||x|| = sup{|x(t)| : t ≥ 0} .

Let us describe the measure of noncompactness in BC(R+) which will be used in

further investigations. This measure was introduced in [5] (cf. also [4]).

Let us fix a nonempty bounded subset X of BC(R+) and a positive number T .

For x ∈ X and ε ≥ 0 denote by ωT (x, ε) the modulus of continuity of the function x

on the interval [0, T ], i.e.

ωT (x, ε) = sup{|x(t) − x(s)| : t, s ∈ [0, T ], |t − s| ≤ ε} .

Further, let us put:

ωT (X, ε) = sup{ωT (x, ε) : x ∈ T} ,

ωT
0 (X) = lim

ε→0
ωT (X, ε) ,

ω0(X) = lim
T→∞

ωT
0 (X) .

Moreover, let us consider the quantity:

β(X) = lim
T→∞

{sup
x∈X

{sup{|x(t)| : t ≥ T}}} .

Finally, define the function µ on the family MBC(R+) by the formula

(2.1) µ(X) = ω0(X) + β(X) .

We know [4, 5] that the function µ is a measure of noncompactness in the space

BC(R+). The kernel ker µ of this measure contains nonempty and bounded sets X

such that functions from X are locally equicontinuous on R+ and vanish at infinity

uniformly with respect to the set X, i.e. for any ε > 0 there exists T > 0 such that

|x(t)| ≤ ε for t ≥ T and x ∈ X. This property permits us to characterize solutions of

Eq. (1.1) considered in the next section.
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3. MAIN RESULT

In this section let us consider the existence and asymptotic behaviour of solutions

of the quadratic Hammerstein integral equation (1.1).

We will investigate Eq. (1.1) under the following assumptions:

(i) p : R+ → R is continuous and p(t) → 0 as t → ∞.

(ii) f : R+ ×R → R is continuous and there exists a continuous function m : R+ →
R+ such that

|f(t, x) − f(t, y)| ≤ m(t)|x − y|
for all x, y ∈ R and for any t ∈ R+.

(iii) g : R+ × R+ → R is a continuous function.

(iv) h : R+×R → R is continuous and there exist a continuous function a : R+ → R+

and a continuous and nondecreasing function b : R+ → R+ such that

|h(t, x)| ≤ a(t)b(|x|)

for t ∈ R+ and x ∈ R.

(v) The function τ → a(τ)|g(t, τ)| is integrable over R+ for any fixed t ∈ R+.

(vi) The functions G, F, M : R+ → R+ defined by the formulas

G(t) =

∞
∫

0

a(τ)|g(t, τ)|dτ ,

F (t) = |f(t, 0)|
∞

∫

0

a(τ)|g(t, τ)|dτ ,

M(t) = m(t)

∞
∫

0

a(τ)|g(t, τ)|dτ

are bounded on R+ and the function F (t) vanishes at infinity i.e. lim
t→∞

F (t) = 0.

(vii) The following equalities hold:

lim
T→∞







sup







|f(t, 0)|
∞

∫

T

a(τ)|g(t, τ)|dτ : t ∈ R+













= 0 .

lim
T→∞







sup







m(t)

∞
∫

T

a(τ)|g(t, τ)|dτ : t ∈ R+













= 0 ,

Now, keeping in mind assumption (vi) we may define the following finite con-

stants:

G = sup{G(t) : t ∈ R+} ,

F = sup{F (t) : t ∈ R+} ,

M = sup{M(t) : t ∈ R+} .
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We will also assume the following hypothesis:

(viii) There exists a positive solution r0 of the inequality

||p|| + Mrb(r) + Fb(r) ≤ r

such that Mb(r0) < 1.

Remark 3.1. Let us observe that the inequality Mb(r0) < 1 from assumption (viii)

is satisfied provided Eq. (1.1) is not trivial. Indeed, let r0 be a positive solution of

the first inequality from (viii), i.e.

||p|| + Mr0b(r0) + Fb(r0) ≤ r0 .

Hence we get

Mr0b(r0) ≤ r0 − ||p|| − Fb(r0)

and consequently

Mb(r0) ≤ 1 − ||p||
r0

− Fb(r0)

r0
.

From the last inequality follows our assertion.

Now, we can formulate our main result.

Theorem 3.2. Under the assumptions (i)-(viii) Eq. (1.1) has at least one solution

x = x(t) in the space BC(R+). Moreover, all solutions of Eq. (1.1) belonging to the

ball Br0
vanish uniformly at infinity, where r0 is a number appearing in assumption

(viii).

Proof. Consider the operator H defined on the space BC(R+) by the formula

(Hx)(t) = p(t) + f(t, x(t))

∞
∫

0

g(t, τ)h(τ, x(τ))dτ, t ∈ R+ .

Notice that assumptions (i)-(v) imply that the function Hx is well defined and con-

tinuous on R+ for any function x ∈ BC(R+).

Further, utilizing our assumptions, for an arbitrary fixed t ∈ R+ we obtain

|(Hx)(t)| ≤ |p(t)| + |f(t, x(t))|
∞

∫

0

|g(t, τ)||h(τ, x(τ))|dτ

≤ |p(t)| + [|f(t, x(t)) − f(t, 0)| + |f(t, 0)|]
∞

∫

0

|g(t, τ)|a(τ)b(|x(τ)|)dτ

≤ |p(t)| + [m(t)|x(t)| + |f(t, 0)|]
∞

∫

0

a(τ)|g(t, τ)|b(||x||)dτ = |p(t)|
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+ b(||x||)|x(t)|m(t)

∞
∫

0

a(τ)|g(t, τ)|dτ + b(||x||)|f(t, 0)|
∞

∫

0

a(τ)|g(t, τ)|dτ

≤ |p(t)| + b(||x||)|x(t)|M(t) + b(||x||)F (t) .(3.1)

Hence we obtain

|(Hx)(t)| ≤ ||p|| + M ||x||b(||x||) + Fb(||x||) .

The above estimate permits us to infer that the function Hx is bounded on the

interval R+. Thus, we deduce that the operator H transforms the space BC(R+) into

itself. Moreover, from this estimate we obtain the following inequality

||Hx|| ≤ ||p||+ M ||x||b(||x||) + Fb(||x||) .

This inequality in conjunction with assumption (viii) ensures the existence of a pos-

itive number r0 such that Mb(r0) < 1 and the operator H transforms the ball Br0

into itself.

Further, let us take a nonempty subset X of the ball Br0
. Next, fix arbitrarily

T > 0 and ε > 0. Choose a function x ∈ X and take t, s ∈ [0, T ] such that |t−s| ≤ ε.

Then, keeping in mind the assumptions, we get:

|(Hx)(t) − (Hx)(s)| ≤ |p(t) − p(s)|

+

∣

∣

∣

∣

∣

∣

f(t, x(t))

∞
∫

0

g(t, τ)h(τ, x(τ))dτ − f(s, x(s))

∞
∫

0

g(t, τ)h(τ, x(τ))dτ

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

f(s, x(s))

∞
∫

0

g(t, τ)h(τ, x(τ))dτ − f(s, x(s))

∞
∫

0

g(s, τ)h(τ, x(τ))dτ

∣

∣

∣

∣

∣

∣

≤ ωT (p, ε) + |f(t, x(t)) − f(s, x(s))|
∞

∫

0

|g(t, τ)||h(τ, x(τ))|dτ

+ |f(s, x(s))|
∞

∫

0

|g(t, τ) − g(s, τ)||h(τ, x(τ))|dτ ≤ ωT (p, ε)

+ [|f(t, x(t)) − f(t, x(s))| + |f(t, x(s)) − f(s, x(s))|]
∞

∫

0

|g(t, τ)|a(τ)b(||x||)dτ

+ [|f(s, x(s)) − f(s, 0)| + |f(s, 0)|]
∞

∫

0

|g(t, τ) − g(s, τ)|a(τ)b(||x||)dτ

≤ ωT (p, ε) + [m(t)|x(t) − x(s)| + ωT
r0

(f, ε)]b(r0)

∞
∫

0

a(τ)|g(t, τ)|dτ
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+ [m(s)|x(s)| + |f(s, 0)|]b(r0)

∞
∫

0

|g(t, τ) − g(s, τ)|a(τ)dτ

≤ ωT (p, ε) + b(r0)ω
T (x, ε)m(t)

∞
∫

0

a(τ)|g(t, τ)|dτ

+ b(r0)ω
T
r0

(f, ε)

∞
∫

0

a(τ)|g(t, τ)|dτ

+ [m(s)r0 + |f(s, 0)|]b(r0)





T
∫

0

a(τ)|g(t, τ) − g(s, τ)|dτ

+

∞
∫

T

a(τ)|g(t, τ) − g(s, τ)|dτ



 ≤ ωT (p, ε) + b(r0)M(t)ωT (x, ε)

+ b(r0)G(t)ωT
r0

(f, ε) + r0b(r0)m(s)

T
∫

0

a(τ)ωT
1 (g, ε)dτ

+ b(r0)|f(s, 0)|
T

∫

0

a(τ)ωT
1 (g, ε)dτ

+ r0b(r0)m(s)

∞
∫

T

a(τ)[|g(t, τ)| + |g(s, τ)|]dτ

+ b(r0)|f(s, 0)|
∞

∫

T

a(τ)[|g(t, τ)| + |g(s, τ)|]dτ

≤ ωT (p, ε) + Mb(r0)ω
T (x, ε) + Gb(r0)ω

T
r0

(f, ε)

+ (r0mT + FT )b(r0)ω
T
1 (g, ε)

T
∫

0

a(τ)dτ

+ r0b(r0)m(s)

∞
∫

T

a(τ)|g(s, τ)|dτ + r0b(r0)m(s)

∞
∫

T

a(τ)|g(t, τ)|dτ

+ b(r0)|f(s, 0)|
∞

∫

T

a(τ)|g(s, τ)|dτ + b(r0)|f(s, 0)|
∞

∫

T

a(τ)|g(t, τ)|dτ ,(3.2)

where we denoted

ωT
r0

(f, r0) = sup{|f(t, x) − f(s, x)| : t, s ∈ [0, T ], |t − s| ≤ ε, x ∈ [−r0, r0]} ,

ωT
1 (g, ε) = sup{|g(t, τ) − g(s, τ)| : t, s, τ ∈ [0, T ], |t − s| ≤ ε} ,
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mT = sup{m(t) : t ∈ [0, T ]} ,

FT = sup{|f(t, 0)| : t ∈ [0, T ]} .

Now, we have the following estimate:

m(s)

∞
∫

T

a(τ)|g(t, τ)|dτ ≤ [|m(s) − m(t)| + |m(t)|]
∞

∫

T

a(τ)|g(t, τ)|dτ

≤ ωT (m, ε)

∞
∫

T

a(τ)|g(t, τ)|dτ + m(t)

∞
∫

T

a(τ)|g(t, τ)|dτ

≤ ωT (m, ε)

∞
∫

0

a(τ)|g(t, τ)|dτ + m(t)

∞
∫

T

a(τ)|g(t, τ)|dτ

≤ GωT (m, ε) + m(t)

∞
∫

T

a(τ)|g(t, τ)|dτ .(3.3)

Similarly, we get:

|f(s, 0)|
∞

∫

T

a(τ)|g(t, τ)|dτ ≤ [|f(s, 0) − f(t, 0)| + |f(t, 0)|]
∞

∫

T

a(τ)|g(t, τ)|dτ

ωT (f, ε)

∞
∫

T

a(τ)|g(t, τ)|dτ + |f(t, 0)|
∞

∫

T

a(τ)|g(t, τ)|dτ

≤ GωT (f, ε) + |f(t, 0)|
∞

∫

T

a(τ)|g(t, τ)|dτ ,(3.4)

where we denoted

ωT (f, ε) = sup{|f(t, 0) − f(s, 0)| : t, s ∈ [0, T ], |t − s| ≤ ε} .

In what follows let us observe that linking (3.2), (3.3), (3.4) and taking into

account the uniform continuity of the functions p(t), m(t) on the interval [0, T ] and

the uniform continuity of the functions f(t, x), g(t, τ) on the sets [0, T ] × [−r0, r0],

[0, T ] × [0, T ], respectively, we obtain the following inequality

ωT
0 (HX) ≤ Mb(r0)ω

T
0 (X)

+ r0b(r0)







m(s)

∞
∫

T

a(τ)|g(s, τ)|dτ + m(t)

∞
∫

T

a(τ)|g(t, τ)|dτ







+ b(r0)







|f(s, 0)|
∞

∫

T

a(τ)|g(s, τ)|dτ + |f(t, 0)|
∞

∫

T

a(τ)|g(t, τ)|dτ







.
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The above inequality with assumption (vii) implies

(3.5) ω0(HX) ≤ Mb(r0)ω0(X) .

Now, take an arbitrary function x ∈ X and a number T > 0. Then, from estimate

(3.1) we obtain

sup{|(Hx)(t)| : t ≥ T} ≤ sup{|p(t)| : t ≥ T}
+ b(||x||)M sup{|x(t)| : t ≥ T} + b(||x||) sup{F (t) : t ≥ T} .

Hence, in view of assumptions (i) and (vi) we get

(3.6) β(HX) ≤ Mb(r0)β(X) ,

where the function β was defined in Section 2.

Further, linking (3.5), (3.6) and keeping in mind the definition of the measure of

noncompactness given by formula (2.1), we obtain

(3.7) µ(HX) ≤ Mb(r0)µ(X) .

In the sequel let us consider the sequence of sets (Bn
r0

), where B1
r0

= ConvH(Br0
),

B2
r0

= ConvH(B1
r0

) and so on. Observe that this sequence is decreasing i.e. Bn+1
r0

⊂
Bn

r0
for n = 1, 2, . . . . Moreover, B1

r0
⊂ Br0

. In addition we have that the sets of this

sequence are closed, convex and nonempty. On the other hand, in view of (3.7) we

get

µ(Bn
r0

) ≤ knµ(Br0
) ,

for any n = 1, 2, . . . , where k = Mb(r0). Taking into account that k < 1 (cf.

assumption (viii)), from the above estimate we infer that

lim
n→∞

µ(Bn
r0

) = 0 .

Hence, taking into account Definition 2.1 we deduce that the set Y =
⋂

∞

n=1 Bn
r0

is

nonempty, bounded, closed and convex. Moreover, the set Y is a member of the kernel

ker µ of the measure of noncompactness µ (cf. remark made after Definition 2.1). Let

us also observe that the operator H transforms the set Y into itself.

In what follows we show that H is continuous on the set Y . To do this let us

fix a number ε > 0 and take arbitrary functions x, y ∈ Y such that ||x − y|| ≤ ε.

Keeping in mind the fact that Y ∈ ker µ and the structure of sets belonging to ker µ

(cf. Section 2) we can find a number T > 0 such that for each z ∈ Y and t ≥ T we

have that |z(t)| ≤ ε. Since H : Y → Y we have that Hx, Hy ∈ Y . Thus, for t ≥ T

we get

(3.8) |(Hx)(t) − (Hy)(t)| ≤ |(Hx)(t)| + |(Hy)(t)| ≤ 2ε .
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On the other hand, taking an arbitrary number t ∈ [0, T ] and applying the

assumptions, we obtain:

|(Hx)(t) − (Hy)(t)| ≤ |f(t, x(t)) − f(t, y(t))|
∞

∫

0

|g(t, τ)||h(τ, x(τ))|dτ

+ |f(t, y(t))|
∞

∫

0

|g(t, τ)||h(τ, x(τ)) − h(τ, y(τ))|dτ

≤ εm(t)

∞
∫

0

|g(t, τ)|a(τ)b(r0)dτ

+ (m(t)|y(t)| + |f(t, 0)|)
∞

∫

0

|g(t, τ)||h(τ, x(τ)) − h(τ, y(τ))|dτ

≤ εMb(r0) + (r0m(t) + |f(t, 0)|)







T
∫

0

|g(t, τ)||h(τ, x(τ)) − h(τ, y(τ))|dτ

+

∞
∫

T

|g(t, τ)|[|h(τ, x(τ))| + |h(τ, y(τ))|]dτ







≤ εMb(r0) + (r0m(t) + |f(t, 0)|)







T
∫

0

|g(t, τ)|ωT
r0

(h, ε)dτ

+

∞
∫

T

a(τ)|g(t, τ)|2b(r0)dτ







≤ εMb(r0)

+ (r0MT + FT )TgTωT
r0

(h, ε) + 2r0b(r0)m(t)

∞
∫

T

a(τ)|g(t, τ)|dτ

+ 2b(r0)|f(t, 0)|
∞

∫

T

a(τ)|g(t, τ)|dτ ,(3.9)

where we denoted

gT = max{|g(t, τ)| : t, τ ∈ [0, T ]} ,

ωT
r0

(h, ε) = sup{|h(t, x) − h(t, y)| : t ∈ [0, T ], x, y ∈ [−r0, r0], |x − y| ≤ ε} .

Observe that ωT
r0

(h, ε) → 0 as ε → 0 which is a simple consequence of the uniform

continuity of the function h(t, x) on the set [0, T ] × [−r0, r0]. Moreover, in view of

assumption (vii) we can choose T in such a way that two last terms of the estimate

(3.9) are sufficiently small.

Now, let us notice that linking (3.8), (3.9) and the above established facts we

conclude that the operator H is continuous on the set Y .
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Finally taking into account all the above properties of the set Y and the operator

H : Y → Y and using the classical Schauder fixed point theorem we infer that the

operator H has at least one fixed point x in the set Y . Obviously the function x = x(t)

is a solution of Eq. (1.1). Moreover, in view of the fact that Y ∈ ker µ we have that

x(t) → 0 as t → ∞.

On the other hand let us notice that if x is an arbitrary fixed point x of the

operator H such that x ∈ Br0
, then we can easily see that x ∈ Y . This proves the

last assertion of our theorem.

Thus the proof is complete.

4. REMARKS, EXAMPLES AND COMPARISON

WITH OTHER RESULTS

In this section we compare our result with the result proved recently in [6]. First

of all let us notice that in [6] the following restrictive hypothesis was assumed:

(iv′) h : R+ × R → R is uniformly continuous on every rectangle of the form R+ ×
[−q, q].

Obviously in our assumption (iv) we require only the continuity of h on R+ × R.

Let us also observe that another restrictive assumption imposed in [6] is the

following hypothesis concerning the function g = g(t, τ):

(iii′) g : R+ × R+ → R is a continuous function and there exist continuous functions

k, l : R+ → R+ such that the functions l(t) and a(t)l(t) are integrable over R+

and the following inequality

|g(t, s)| ≤ k(t)l(s)

is satisfied for t, s ∈ R+. Moreover, we assume that k(t) → 0 as t → ∞ and the

function m(t)k(t) is bounded on the interval R+.

Notice that our assumptions (iii), (v), (vi) and (vii) being the counterparts of as-

sumption (iii′) are more general. Indeed, we do not require the boundedness of the

function g = g(t, τ) by the product of two functions with separable variables. On the

other hand it can be shown that assumption (iii′) implies that all the assumptions

(iii), (v), (vi) and (vii) are satisfied. We omit the easy details.

In order to illustrate the result contained in Theorem 3.2 let us consider the

following quadratic Hammerstein integral equation

(4.1) x(t) = te−4t +

(

tx(t) +
t

t2 + 16

)

∞
∫

0

t2e−τ

t2 + 1

√

|x(τ)|dτ .
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Observe that the above equation was considered as an example in [6] (cf. Eq. (12) in

the mentioned paper). Obviously, Eq. (4.1) is a special case of Eq. (1.1) if we put

(similarly as in [6]) p(t) = te−4t, h(t, x) = t
√

|x| and

f(t, x) = tx +
t

t2 + 16
,

g(t, τ) =
te−τ

t2 + 1
.

In [6] the authors overlooked the fact that the function h(t, x) does not satisfy

assumption (iv′) mentioned above. So the result contained in [6] cannot be applied

to Eq. (4.1).

However we show using Theorem 3.2 that Eq. (4.1) has solutions in the space

BC(R+) vanishing at infinity.

Indeed, we have that m(t) = t, a(t) = t, b(r) =
√

r and f(t, 0) = t/(t2 + 16).

Obviously assumptions (i)-(iv) of Theorem 3.2 are satisfied.

In order to show that assumption (v) is satisfied let us notice that

∞
∫

0

a(τ)|g(t, τ)|dτ =

∞
∫

0

τ
te−τ

t2 + 1
dτ =

t

t2 + 1

∞
∫

0

τe−τdτ =
t

t2 + 1
.

This shows that assumption (v) holds and G(t) = t/(t2 + 1). Consequently, G = 1/2.

Further, we get:

F (t) = |f(t, 0)|
∞

∫

0

a(τ)|g(t, τ)|dτ =
t

t2 + 16
· t

t2 + 1
.

Hence we obtain that F (t) → 0 as t → ∞. Moreover, using standard methods of

differential calculus we derive that F = 1/25. Also we have:

M(t) = m(t)

∞
∫

0

a(τ)|g(t, τ)|dτ = t
t

t2 + 1
=

t2

t2 + 1
.

Hence we see that the function M(t) is bounded and M = 1. Further, let us fix

arbitrarily T > 0. Then we obtain:

m(t)

∞
∫

T

a(τ)|g(t, τ)|dτ = t

∞
∫

T

τ
te−τ

t2 + 1
dτ =

t2

t2 + 1

∞
∫

T

τe−τdτ

=
t2

t2 + 1
(Te−T + e−T ) ≤ Te−T + e−T .

Similarly, we get:

|f(t, 0)|
∞

∫

T

a(τ)|g(t, τ)|dτ =
t2

t2 + 16
(Te−T + e−T ) ≤ Te−T + e−T .



QUADRATIC HAMMERSTEIN INTEGRAL EQUATION 263

From the above estimates we infer that assumption (vii) holds.

Finally, let us consider the inequality from assumption (viii) which has the form

(4.2)
1

4e
+ r

√
r +

1

25

√
r ≤ r .

It is easy to check that the number r0 = 1/5 satisfies the above inequality. Moreover,

we have that

Mb(r0) =
√

1/5 < 1 .

This shows that all the assumptions of Theorem 3.2 hold. Hence we deduce that

Eq. (4.1) has solutions in the space BC(R+), belonging to the ball B1/5 and vanishing

at infinity. Moreover, all solutions of Eq. (4.1) belonging to the ball B1/5 vanish at

infinity.

It is worthwhile noticing that also the number r1 = 0.6 satisfies the inequality

(4.2) and Mb(r1) < 1. Hence we conclude that all possible solutions of Eq. (4.1)

belonging to the ball B0.6 vanish at infinity.
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