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ABSTRACT. The paper deals with boundary value problems associated to first-order differential

inclusions in Banach spaces. The solvability is investigated in the (strong) Carathéodory sense on

compact intervals. To this aim, we develop a general method that relies on degree arguments.

This method is still combined with a bound sets technique for checking the behavior of trajectories

in the neighborhood of a suitable parametric set of candidate solutions. On this basis, we obtain

effective criteria for the existence of solutions of Floquet problems. The existence of entirely bounded

solutions is also established by means of a sequence of solutions on compact increasing intervals.
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1. INTRODUCTION

Consider the first-order multivalued boundary value problem (b.v.p.)

(1.1)

{

x′ + A(t)x ∈ F (t, x), for a.a. t ∈ [a, b],

x(b) = Mx(a),

usually called Floquet b.v.p. We take x in a not necessarily separable or reflexive

Banach space E satisfying the Radon–Nikodym property, and we denote by L(E) the

space of all linear, bounded transformations L : E → E. Throughout the paper, we

always assume the following conditions:

(A1) A : [a, b] → L(E) is Bochner integrable;
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(F1) F : [a, b] × E ⊸ E is an upper-Carathéodory (shortly, u-Carathéodory) multi-

valued map (see Definition 2.1 in Section 2 below) with nonempty, compact and

convex values;

(M) M ∈ L(E) is an invertible operator.

The notion of a solution is understood in a strong Carathéodory sense. Namely,

by a solution of (1.1), we mean an absolutely continuous function x : [a, b] → E such

that its derivative exists almost everywhere (a.e.) and is Bochner integrable.

Although the general theory of ordinary differential equations and inclusions in

Banach spaces has been developed at a satisfactory level (cf. [22]), there are not many

contributions to b.v.p.’s in infinite dimensional spaces (cf. [18], [19], [21] and [28]).

The papers concerning multivalued problems are still more rare (cf. [1], [3], [14] and

[20]).

Hence, in this paper, using degree arguments, we develop a general method for

attacking such problems. In the particular case of semilinear problems (1.1), we are

able to get effective criteria for their solvability. We will also prove the existence of en-

tirely bounded solutions of a general class of differential inclusions. As a consequence

of our approach, we obtain the localization of solutions in a given set.

One of conditions to be satisfied requires a fixed point free boundary of a set of

candidate solutions w.r.t. the related representing operators. This will be checked

by means of (Liapunov-type) bounding functions. Unfortunately, in the case of a

u-Carathéodory right-hand side (r.h.s.), we are only able to guarantee the positive

invariance of a convex parametric set of candidate solutions. On the other hand, if the

r.h.s. is globally upper-semicontinuous (u.s.c.), then the bound sets approach enables

us to consider also situations when some trajectories can escape from the mentioned

set of parameters (candidate solutions).

The paper is organized as follows. We start with Preliminaries, where we recall

suitable definitions and useful statements. Then, in Section 3, we develop, by means

of topological degree arguments, a general method for the solvability of multivalued

b.v.p.’s in E, in the form of a continuation principle (see Theorem 3.1 below). Section

4 is devoted to a bound sets technique. In Section 5, the general method is applied,

jointly with a bound sets technique, for the investigation of Floquet problems (1.1)

(see Theorem 5.2 below). The existence of entirely bounded solutions of differential

inclusions is proved, in Section 6, by means of a sequence of solutions on compact

increasing intervals. Finally, we supply concluding remarks.

2. PRELIMINARIES

In the entire text, all topological spaces will be at least metric and all multivalued

maps ϕ : X ⊸ Y will have at least nonempty values, i.e. ϕ : X → 2Y \ {∅}.
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Let E be an arbitrary Banach space with the norm | · | and L(E) be the Banach

space of all linear bounded transformations L : E → E endowed with the sup-norm

‖ · ‖, i.e. ‖L‖ = sup{|Lx| : |x| = 1}. Given C ⊂ E and ǫ > 0, by Bǫ
C we mean

Bǫ
C = C + ǫB, where B is the standard open unit ball, i.e. B = {x ∈ E : |x| < 1} and

B its closure. When C = {x} is a singleton, we simply put Bǫ
x.

A countably valued function x : [a, b] → E with (no more than a countable number

of nonzero) values xk, and Lebesgue measurable sets Ek = {t ∈ [a, b] : x(t) = xk},

k = 1, 2, . . ., is said to be Bochner integrable in [a, b] (see e.g. [13]) if the function |x|

is Lebesgue integrable on [a, b]. The Bochner integral is defined as

∫ b

a

x(t) dt :=
+∞
∑

k=1

xkλ(Ek),

where λ(Ek) denotes the Lebesgue measure of Ek.

A function x : [a, b] → E is said to be Bochner integrable on [a, b] if x is the limit,

on this interval, of an almost everywhere convergent sequence of countably valued

functions xn(t) and |x| is Lebesgue integrable on [a, b]. In this case,

∫ b

a

x(t) dt := lim
n→+∞

∫ b

a

xn(t) dt.

It can be proved that the integral is independent of the choice of the sequence {xn}n

and enjoys all the usual properties of standard integrals. The space L1([a, b], E) will

denote the set of all Bochner integrable functions x : [a, b] → E.

Let A : [a, b] → L(E) and f : [a, b] → E be Bochner integrable. For all t, s ∈ [a, b],

it is possible to define an operator U = U(t, s) such that the unique solution of the

linear initial value problem

(2.1) x′ + A(t)x = f(t), x(s) = xs ∈ E,

is given (by definition) by

(2.2) x(t) = U(t, s)xs +

∫ t

s

U(t, τ)f(τ) dτ ;

U is said to be the evolution operator associated to the Cauchy problem (2.1) (see

[13]). Moreover, for all t, s ∈ [a, b], U(t, s) ∈ L(E) and it satisfies:

(i) U(t, t) = Id;

(ii) U(t, s)U(s, τ) = U(t, τ), for all t, s, τ ∈ [a, b];

(iii) ‖U(t, s)‖ ≤ e
R

t

s
‖A(τ)‖ dτ , for all t, s ∈ [a, b], with s < t.

In the special case, when A(t) ≡ A ∈ L(E), U(t, s) reduces to the exponential

operator e−A(t−s). We recall that, given A ∈ L(E) and t ∈ R, eAt :=
∑+∞

k=0
Aktk

k!
, and

since the numerical series
∑+∞

k=0
‖A‖k

k!
converges, the definition is correct.



278 J. ANDRES, L. MALAGUTI, AND V. TADDEI

We say that a multivalued mapping F̃ : [a, b] ⊸ E with closed values is a

step multivalued map if there is a finite family of disjoint measurable subsets Ij ,

j = 1, . . . , n, such that [a, b] = ∪Ij and F̃ is constant (in the multivalued sense), on

every Ij .

A multivalued mapping F : [a, b] ⊸ E with closed values is called strongly

measurable if there exists a sequence {Fn}n of step multivalued maps such that

dH

(

Fn(t), F (t)
)

→ 0 as n → +∞, for a.a. t ∈ [a, b], where dH stands for the Hausdorff

metric on bounded subsets of E.

Let X and Y be topological spaces. A multivalued mapping F : X ⊸ Y is said to

be upper-semicontinuous (u.s.c.) if, for every open U ⊂ Y , the set {x ∈ X : F (X) ⊂

U} is open in X.

Definition 2.1. Let J ⊆ R be an interval. A multivalued map F : J ×E ⊸ E with

nonempty, compact, convex values is called an upper-Carathéodory map (shortly, u-

Carathéodory) if:

(i) F (·, x) is strongly measurable, for every x ∈ E;

(ii) F (t, ·) is u.s.c., for a.a. t ∈ J ;

(iii) |y| ≤ r(t)(1 + |x|), for every (t, x) ∈ J × E and y ∈ F (t, x), where r ∈ L1
loc(J, R).

The symbol AC([a, b], E) will be reserved to denote the set of all absolutely

continuous functions x : [a, b] → E having a derivative x′(t), for a.a. t ∈ [a, b] with

x′ ∈ L1([a, b], E). As it is known, an absolutely continuous function x(t) with t ∈ [a, b]

need not admit, in general, a derivative x′ ∈ L1([a, b], E) (see e.g. [12, Example 4.2]).

It is so if the space E satisfies the Radon–Nikodym property; in particular, if E is

reflexive. Let us note that, for all x ∈ AC([a, b], E), the fundamental theorem of

integral calculus is satisfied, i.e.

x(t) = x(τ) +

∫ t

τ

x′(s) ds, t, τ ∈ [a, b].

Moreover, a (mild) solution x in (2.2) becomes a (strong, i.e. x ∈ AC([a, b], E))

Carathéodory solution of (2.1). For more details concerning the relationship between

mild and strong (Caratheódory) solutions, see e.g. [23, Theorem 8.5]. The following

convergence criterion in the space AC([a, b], E) will be useful for us.

Lemma 2.2 (see e.g. [4, Lemma 1.30]). Assume that a sequence {xn}n ⊂ AC([a, b], E)

satisfies the following conditions:

(i) {xn(t)}n is relatively compact, for each t ∈ [a, b];

(ii) there exists α ∈ L1([a, b], E) such that |x′
n(t)| ≤ α(t), for a.a. t ∈ [a, b];

(iii) {x′
n(t)}n is weakly relatively compact, for a.a. t ∈ [a, b].
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Then there exist a function x ∈ AC([a, b], E) and a subsequence, again denoted by

{xn}n, such that xn → x, in C([a, b], E), and x′
n → x′, weakly in L1([a, b], E), as

n → +∞.

Given U ⊆ E, a function f : U → R is said to be Lipschitzian with constant

L > 0 if |f(x1) − f(x2)| ≤ L|x1 − x2|, for each x1, x2 ∈ U ; f is said to be locally

Lipschitzian if, for every x ∈ U , there is ǫ > 0 such that f |Bǫ
x
, i.e. f restricted to Bǫ

x,

is Lipschitzian. Observe that, for all x ∈ U and w ∈ E, the following limits

lim inf
h→0±

f(x + hw) − f(x)

h
, lim sup

h→0±

f(x + hw) − f(x)

h

are real values.

Let P(X) denote the family of all nonempty subsets of an arbitrary set X.

Definition 2.3. Given a partially ordered set N , a function β : P(E) → N is said

to be a measure of non-compactness (m.n.c.) in E if β(coΩ) = β(Ω), for all Ω ⊂ E,

where coΩ denotes the closed convex hull of Ω. A m.n.c. β is called:

(i) monotone if β(Ω0) ≤ β(Ω1), for all Ω0 ⊂ Ω1 ⊂ E;

(ii) nonsingular if β({x} ∪ Ω) = β(Ω), for every x ∈ E and Ω ⊂ E;

(iii) regular when β(Ω) = 0 if and only if Ω is relatively compact;

(iv) algebraically semiadditive if β(Ω0 + Ω1) ≤ β(Ω0) + β(Ω1), for all Ω0, Ω1 ⊂ E.

The Hausdorff measure of non-compactness, defined as

γ(Ω) := inf{ǫ > 0 : ∃x1, . . . xn ∈ E : Ω ⊂ ∪n
i=1B

ǫ
xi
},

is a typical example of monotone, nonsingular, regular and algebraically semiadditive

m.n.c. There are also useful properties combining the Hausdorff m.n.c. and linearity

of an operator. In particular, if L ∈ L(E) and Ω ⊂ E, then (see e.g. [16, p. 35])

(2.3) γ(LΩ) ≤ ||L||L(E)γ(Ω).

Moreover, letting {fn}n ⊂ L1([a, b], E), if there exist ν, c ∈ L1[a, b] such that

|fn(t)| ≤ ν(t), for a.a. t ∈ [a, b], and n ∈ N and γ({fn(t)}n) ≤ c(t), for a.a. t ∈ [a, b],

then (see [16, Corollary 4.2.5])

(2.4) γ
({

∫ b

a

fn(t)dt
}

n

)

≤ 2

∫ b

a

c(t)dt.

Finally, according to the definition of γ, it is easy to show that

(2.5) γ(∪λ∈[0,1]λΩ) = γ(Ω),

for all subsets Ω of E.
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Another important example of monotone, nonsingular, semiadditive m.n.c. is the

Kuratowski measure of non-compactness:

α(Ω) := inf{d > 0 : Ω has a partition into a finite number of sets

of diameter less than d},

where Ω ⊂ E is bounded.

In the sequel, we shall always employ the Hausdorff m.n.c., but since the following

relation

γ(Ω) ≤ α(Ω) ≤ 2γ(Ω)

holds, for each bounded Ω ⊂ E, the Hausdorff m.n.c. can be everywhere replaced by

the Kuratowski m.n.c.

In a space of continuous functions, a further important example of monotone,

nonsingular and algebraically semiadditive m.n.c. is the modulus of equicontinuity :

modC(Λ) := lim
δ→0

sup
x∈Λ

max
|t1−t2|≤δ

|x(t1) − x(t2)|.

It is easy to see that the modulus of equicontinuity of a subset Λ ⊂ E is equal to zero

if and only if all the elements x ∈ Λ of the set Λ are equicontinuous.

Given X ⊆ E, a multivalued mapping F : X ⊸ E with compact values (a family

of multivalued maps G : X × [0, 1] ⊸ E with compact values) is called condensing

with respect to a m.n.c. β (shortly, β-condensing) if, for every Ω ⊆ X such that

β
(

F (Ω)
)

≥ β(Ω) (β
(

G(Ω × [0, 1])
)

≥ β(Ω)),

Ω is relatively compact.

Let X ⊆ E be closed and convex. Let F : X 7→ X be a multivalued mapping

with nonempty convex, compact values. Assume that F is β-condensing with respect

to a monotone, nonsingular m.n.c. β. Let D ⊂ X be open and the boundary ∂D be

fixed point free for F . In this case, both the index: ind(F, X, D) (cf. [4]) as well as

the topological degree: degE(Id − F, D) (cf. [16]), satisfying usual properties, can be

defined. Let Fix(F ) denote the set of all fixed points of F , i.e.

(2.6) Fix(F ) := {x ∈ X : x ∈ F (x)}.

In the following proposition, the main properties of the above mentioned index are

stated. Since the degree can be defined here by the formula (cf. [4, p. 197])

(2.7) degE(Id − F, D) = ind(F, X, D),

provided {x ∈ D : 0 ∈ x − F (x)} ∩ ∂D = ∅, analogous properties are valid for the

degree.

Proposition 2.4 (see e.g. [2, Proposition 3.2]). Under the above conditions imposed

on X, F , β and D, it is possible to define ind(F, X, D) ∈ Z in such a way that it

satisfies the following properties:
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(i) (Existence) If ind(F, X, D) 6= 0, then Fix(F ) 6= ∅.

(ii) (Localization) If D1 ⊂ D are open subsets of X such that Fix(F ) ⊂ D1 ⊂ D, then

ind(F, X, D) = ind(F, X, D1).

(iii) (Additivity) If Dj, j = 1, . . . , n are open disjoint subsets of D and all fixed points

of F |D are located in ∪m
j=1Dj, then ind(F, X, Dj), j = 1, . . . , n, are well-defined

and satisfy

ind(F, X, D) =
n

∑

j=1

ind(F, X, Dj).

(iv) (Homotopy) If there is a β-condensing homotopy χ : X× [0, 1] ⊸ X with χ(·, 0) =

F , χ(·, 1) = G and the boundary ∂D of D is fixed point free w.r.t. χ, then

ind(F, X, D) = ind(G, X, D).

(v) (Normalization) If F ≡ {a} 6⊂ ∂D, then

ind(F, X, D) =

{

1, for a ∈ D,

0, for a /∈ D.

3. GENERAL METHOD

In this section, we shall develop a continuation principle (see Theorem 3.1) for

the investigation of the following multivalued b.v.p.:

(3.1)







x′ ∈ P (t, x), for a.a. t ∈ [a, b],

x ∈ S,

where P : [a, b] × E ⊸ E is an upper-Carathéodory map and S ⊆ AC([a, b], E).

We embed (3.1) into a family of related b.v.p.’s and we introduce a set Q ⊆

C([a, b], E) of candidate solutions of (3.1). We denote by T : Q×[0, 1] ⊸ AC([a, b], E)

the multivalued solution operator of this suitably given family. As usual in this

context, we define these parameterized b.v.p.’s in such a way that all the fixed points

of T (·, 1) are solutions of (3.1). For each λ ∈ [0, 1], we put Tλ := T (·, λ), and we

denote by Fix(Tλ) the set of fixed points of Tλ, as defined in (2.6). We impose suitable

condensity conditions on the solution operator T , given in terms of a monotone and

nonsingular m.n.c. In order to study the fixed points set of T (·, 1), we can employ

either the topological degree for condensing multivalued vector-fields in [16] or the

fixed point index proposed in [4] (see also [2]). In fact, in a Banach space, the so

called pushing condition (see e.g. condition (AH) in [2, p. 25]) can be reduced to the

assumption that the boundary is fixed point free.

We refer to [3] (see also [2, Theorem 4.4]) for a similar continuation principle,

when t takes values in an unbounded interval, implying the set Q of candidate solu-

tions to be a subset of a Fréchet space.
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Theorem 3.1. Consider problem (3.1), where P : [a, b] × E ⊸ E is an upper-

Carathéodory map and S is a subset of absolutely continuous functions x : [a, b] → E.

Let H : [a, b] × E × E × [0, 1] ⊸ E be an upper-Carathéodory map such that

(3.2) H(t, c, c, 1) ⊂ P (t, c), for all (t, c) ∈ [a, b] × E.

Furthermore, assume that

(i) there exists a closed and convex subset Q ⊆ C([a, b], E), with Q \ ∂Q 6= ∅, and a

closed subset S1 of S such that the problem






x′(t) ∈ H(t, x(t), q(t), λ), for a.a. t ∈ [a, b],

x ∈ S1

is solvable with a convex set T (q, λ) of solutions, for each (q, λ) ∈ Q × [0, 1];

(ii) the solution operator T is quasi-compact (i.e. it maps compact subsets onto rel-

atively compact subsets) and µ-condensing with respect to a monotone and non-

singular m.n.c. µ defined on C([a, b], E);

(iii) T (Q × {0}) ⊂ Q;

(iv) the map Tλ has no fixed points on the boundary ∂Q of Q, for every λ ∈ [0, 1).

Then problem (3.1) has a solution in Q.

Proof. According to (3.2), every fixed point x ∈ Q of the multivalued operator T1, is

a solution of (3.1). Thus, the proof reduces to the investigation of the fixed points of

T1. If Fix(T1)∩∂Q 6= ∅, there is nothing to prove; otherwise, (iv) can be reformulated

as

(3.3) Fix(Tλ) ∩ ∂Q = ∅, for every λ ∈ [0, 1].

Firstly, we show that T has a closed graph ΓT in the space Q× [0, 1]×C([a, b], E).

Let {qn, λn, xn}n be a sequence in the graph ΓT of T converging to (q0, λ0, x0) ∈

Q × [0, 1] × C([a, b], E) as n → +∞. Since qn and xn are uniformly convergent on

[a, b], there exists a positive constant M such that

(3.4) ‖xn(t)‖ ≤ M and ‖qn(t)‖ ≤ M for all t ∈ [a, b] and n ∈ N.

Observe that xn(t) → x(t), as n → +∞, implies that {xn(t)}n is relatively compact

in E, for all t ∈ [a, b]. Since H is u-Carathéodory and

(3.5) x′
n(t) ∈ H(t, xn(t), qn(t), λn),

for a.a. t ∈ [a, b], according to (3.4), there exists k ∈ L1([a, b], E) satisfying

‖x′
n(t)‖ ≤ k(t), for a.a. t ∈ [a, b] and n ∈ N.

Thus, the sequence {x′
n}n is bounded and uniformly integrable in L1([a, b], E).
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Now, we show that {x′
n(t)}n is also relatively compact, for a.e. t ∈ [a, b]. In fact,

take t ∈ [a, b] satisfying the inclusion (3.5), for all n. Since H(t, ·) is u.s.c. in E ×E ×

[0, 1], given ǫ > 0, we can find δ > 0 such that H(t, x, y, λ) ⊆ H(t, x0(t), q0(t), λ0)+ǫB,

for all (x, y, λ) ∈ E × E × [0, 1] satisfying ‖(x, y, λ) − (x0(t), q0(t), λ0)‖ ≤ δ. Since

(xn(t), qn(t), λn) → (x0(t), q0(t), λ0), as n → +∞, this implies the existence of n0 =

n0(ǫ) ∈ N such that

H(t, xn(t), qn(t), λn) ⊆ H(t, x0(t), q0(t), λ0) + ǫB, for all n > n0.

Consequently,

{x′
n(t)}n ⊆

n0
⋃

n=1

H(t, xn(t), qn(t), λn) ∪
(

H(t, x0(t), q0(t), λ0) + ǫB
)

and since H is compact valued, the sequence {x′
n(t)}n is relatively compact in E.

According to Lemma 2.2, we can extract a subsequence, again denoted by {xn}n,

that converges to an absolutely continuous function x : [a, b] → E in the following

sense: xn → x in C([a, b], E) and x′
n → x′, weakly in L1([a, b], E). Since xn → x0 in

C([a, b], E), as n → +∞, the uniqueness of the limit implies that x = x0. Applying

a classical closure theorem (see e.g. [2, Lemma 4.3] or [16, Lemma 5.1.1]), we can

conclude that

x′
0(t) ∈ H(t, x0(t), q0(t), λ0), for a.a. t ∈ [a, b].

Moreover, since S1 is closed, then x0 ∈ S1, and consequently T has a closed graph.

Since, in particular, the set T (q, λ) is closed, for all (q, λ) ∈ Q × [0, 1], and

since T is quasi-compact, T has also compact values. This implies (see e.g. [16,

Theorem 1.1.12]) that T is u.s.c. We can conclude that T is u.s.c. map with convex,

compact values which is condensing on the closed set Q. These properties of the

multivalued map T allow us to define both the topological degree (see e.g. [16]) as

well as the fixed point index (see e.g. [2] or [4]) on open subsets of a Banach space,

provided their boundaries are fixed point free. Moreover, both the degree and the

index satisfy the standard properties (see Proposition 2.4 and cf. (2.7)). In particular,

we obtain that the multivalued vector-fields Φ0 := Id − T0 and Φ1 := Id − T1 are

homotopic and, according to (3.3), that T is an admissible homotopy. Consequently,

degC([a,b],E)(Φ1, Q) = degC([a,b],E)(Φ0, Q). Since T0(Q) ⊆ Q and Fix(T0 ∩ ∂Q) = ∅,

applying the localization property of the degree, (see [16, Property 3.2.2]), we obtain

that degC([a,b],E)(Φ0, Q) = degQ(Φ0, Q) = 1. Therefore, by the existence property,

∅ 6= Fix(T1) ⊆
(

Q \ ∂Q
)

, which completes the proof.

4. BOUND SETS APPROACH

The continuation principle proposed in Theorem 3.1 involves, in particular, a

suitable set Q ⊆ C([a, b], E) of candidate solutions which must satisfy the transver-

sality condition (iv) in the quoted result. A quite natural way to construct Q is to
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assign the subset of E, where the functions q ∈ Q take values. In this paper, we

always assume Q = C([a, b], K), where K is nonempty and open in E and K denotes

its closure. In this way, we overcome the delicate point of checking the transversality

condition by assuming that K is a bound set. We recall that a nonempty and open

K ⊆ E is a bound set for (3.1) (see e.g. [4, Definition 8.2]) if the trajectory of any

solution of this problem entirely contained in K remains all the time inside K.

The theory of bound sets was initiated by Gaines and Mawhin [15] for the inves-

tigation of b.v.p.’s associated to differential equations. We refer to [4, 5, 6, 7] for its

adoption in a multivalued setting and for several applications of this theory in the

study of multivalued b.v.p.’s.

As already pointed out in [9] and [11], the theory of typical (global) guiding

functions in arbitrary Banach spaces is not possible. Our approach here is, however,

local. This explains why we are able to construct a bound set K ⊂ E by means of a

Liapunov-like function V , usually called a bounding function, as demonstrated below.

Proposition 4.1. Let P : [a, b] × E ⊸ E be a u-Carathéodory map and K be

a nonempty open subset of E. Assume that there is a locally Lipschitzian function

V : E → R and an ǫ > 0 such that

(B1) V/∂K = 0, V/Bǫ

∂K
∩K ≤ 0;

(B2) for a.a. t ∈ (a, b), x ∈ Bǫ
∂K ∩ K, w ∈ P (t, x), we have

lim inf
h→0−

V (x + hw) − V (x)

h
< 0.

Let x(t) be a solution of x′ ∈ P (t, x) satisfying x(t) ∈ K, for all t ∈ [a, b]. Then

x(t) ∈ K, for all t ∈ (a, b].

Proof. Let x : [a, b] → E be a solution of x′ ∈ P (t, x) satisfying x(t) ∈ K, for

all t ∈ [a, b], and assume, by contradiction, the existence of t0 ∈ (a, b] such that

x0 := x(t0) ∈ ∂K.

Since V is locally Lipschitzian, there exists an open U ⊆ E with x0 ∈ U and

L > 0 such that V |U is Lipschitzian with constant L. Let k ∈ (0, t0 − a] satisfying

x(t) ∈ U ∩ Bǫ
∂K , for all t ∈ [t0 − k, t0]. It is easy to see that g(t) := V (x(t)) is

absolutely continuous in [t0 − k, t0]. Thus, g′(t) exists, for a.a. t ∈ [t0 − k, t0]. If we

prove that

(4.1) g′(t) < 0, for a.a. t ∈ [t0 − k, t0],

according to (B1), (B2), we obtain the following contradictory inequality

0 ≤ −V (x(t0 − k)) = g(t0) − g(t0 − k) =

∫ t0

t0−k

g′(s) ds < 0.
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So, it remains to prove (4.1). For this purpose, notice that such x′(t) exists and

satisfies x′(t) ∈ P (t, x(t)), for a.a. t ∈ [t0 − k, t0]; so take such a t. For a sufficiently

small h < 0, put

ϕ(h) := x(t + h) − x(t) − x′(t)h,

∆(h) :=
V (x(t) + x′(t)h + ϕ(h)) − V (x(t) + x′(t)h)

h
.

According to the Lipschitzianity of V and the definition of ϕ(h), we have

|∆(h)| ≤
L|ϕ(h)|

|h|
→ 0, as h → 0.

Consequently, since

g(t + h) − g(t)

h
=

V (x(t) + x′(t)h) − V (x(t))

h
+ ∆(h),

we obtain

lim inf
h→0−

g(t + h) − g(t)

h
= lim inf

h→0−

V (x(t) + x′(t)h) − V (x(t))

h
< 0

implying the validity of (4.1).

Remark 4.2. If we replace in the previous proposition condition (B2) by

(B2′) lim sup
h→0+

V (x + hw) − V (x)

h
> 0,

for a.a. t ∈ (a, b), x ∈ Bǫ
∂K ∩ K, w ∈ P (t, x) then, under all the other assumptions,

every solution x(t) of (3.1) such that x(t) ∈ K, for all t ∈ [a, b], satisfies x(t) ∈ K,

for all t ∈ [a, b).

Now, we are able to construct a bound set for the Cauchy as well as the Flo-

quet problems. The proof of the following corollary is an immediate consequence of

Proposition 4.1, so, it is left to the reader.

Corollary 4.3. Let P : [a, b] × E ⊸ E be a u-Carathéodory map, K ⊆ E be a

nonempty open set and V : E → R be a locally Lipschitzian function satisfying (B1),

for some ǫ > 0.

If (B2) holds, then K is a bound set for the initial (Cauchy) problem

(4.2)

{

x′ ∈ P (t, x), for a.a. t ∈ [a, b],

x(a) = x0,

provided x0 ∈ K.

If (B2 ′) holds, then K is a bound set for the terminal problem

(4.3)

{

x′ ∈ P (t, x), for a.a. t ∈ [a, b],

x(b) = x1,

provided x1 ∈ K.
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Finally, if M ∈ L(E), M∂K = ∂K and either (B2) or (B2 ′) holds, then K is a

bound set for the Floquet b.v.p.

(4.4)

{

x′ ∈ P (t, x), for a.a. t ∈ [a, b],

x(b) = Mx(a).

Notice that assumption (B2) in fact guarantees that K is also a positively in-

variant set for the inclusion x′ ∈ P (t, x), i.e. each trajectory x(t) of this inclusion

satisfying x(a) ∈ K remains always inside K. We refer to [24] and [26] for an inves-

tigation of the positive invariance of given sets performed in a similar way by means

of Liapunov-like functions.

On the other hand, the existence of an open positively invariant set K, for x′ ∈

P (t, x), is not enough in order to guarantee the absence of solutions of this inclusion

on the boundary of C([a, b], K). Hence, additional restrictions must be imposed on

these solutions which take values in ∂K.

At last, if P : [a, b] × E ⊸ E is globally u.s.c. in (t, x), the transversality con-

dition can be localized only on the boundary ∂K of K, as showed by the following

proposition.

Proposition 4.4. Let P : [a, b]×E ⊸ E be a u.s.c. multivalued map with nonempty,

convex, compact values. Let K ⊆ E be nonempty and open and V : E → R be a

locally Lipschitzian function satisfying (B1), for some ǫ > 0. Assume that, for all

t ∈ (a, b), x ∈ ∂K, w1, w2 ∈ P (t, x),

(4.5) 0 /∈
[

lim inf
h→0+

V (x + hw1)

h
, lim sup

h→0−

V (x + hw2)

h

]

.

Let x(t) be a solution of x′ ∈ P (t, x) such that x(t) ∈ K, for all t ∈ [a, b]. Then

x(t) ∈ K, for all t ∈ (a, b).

Proof. Let x(t) be a solution of x′ ∈ P (t, x) such that x(t) ∈ K, for all t ∈ [a, b].

Assume, by contradiction, the existence of t0 ∈ (a, b) such that x0 := x(t0) ∈ ∂K.

Take a sequence {hn}n of positive real values satisfying hn → 0+ as n → +∞.

Given δ > 0, since P is globally u.s.c. and x is continuous, it is possible to find

σ = σ(δ) > 0 such that

(4.6) P (t, x(t)) ⊂ P (t0, x0) + δB,

whenever |t− t0| ≤ σ. Therefore, since P (t0, x0) is convex, for all sufficiently large n,

(4.7)
x(t0 + hn) − x(t0)

hn

=
1

hn

∫ t0+hn

t0

x′(s) ds ∈ P (t0, x0) + δB.

Since δ was taken in an arbitrary way and since P (t0, x0) is compact, this implies

that
{x(t0 + hn) − x(t0)

hn

, n ∈ N

}
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is a relatively compact subset of E. Hence, by passing to a subsequence, again denoted

as the sequence, we have

x(t0 + hn) − x(t0)

hn

→ y1, as n → +∞,

for some y1 ∈ E. Condition (4.7) and the compactness of P (t0, x0) then imply

y1 ∈ P (t0, x0).

Now, let {δn}n be such that δn → 0 as n → +∞ and x(t0+hn) = x0+hn(y1+δn),

for all n. Let U ⊂ E be open with x0 ∈ U and L > 0 be such that V |U is Lipschitzian

with constant L. We can take, without any loss of generality, x(t0 + hn) ∈ U , for all

n. According to (B1),

0 ≥
V (x(t0 + hn))

hn

=
V (x0 + hn(y1 + δn))

hn

=
V (x0 + hny1)

hn

+ ∆n,

where

∆n =
V (x0 + hn(y1 + δn)) − V (x0 + hny1)

hn

,

and according to the Lipschitzianity of V in U , we have |∆n| ≤ L|δn| → 0 as n → +∞.

Consequently,

0 ≥ lim inf
n→+∞

V (x(t0 + hn))

hn

= lim inf
n→+∞

V (x0 + hny1)

hn

+ ∆n

≥ lim inf
h→0+

V (x0 + hy1)

h
.(4.8)

By a similar reasoning, it is also possible to get y2 ∈ P (t0, x0) such that, by

passing to a subsequence,

x(t0) − x(t0 − hn)

hn

→ y2 as n → +∞.

Therefore, by the same argument as above, it is possible to find Ωn → 0 as n → +∞

so that

0 ≤ lim sup
n→+∞

V (x(t0 − hn))

−hn

= lim sup
n→+∞

V (x0 − hny2)

−hn

+ Ωn

≤ lim sup
h→0−

V (x0 + hy2)

h
.(4.9)

It can be easily seen that (4.8) and (4.9) are in contradiction with (4.5). This com-

pletes the proof.

We are now able to obtain a bound set for (4.2), (4.3) and (4.4), when P is

globally u.s.c.
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Corollary 4.5. Let P : [a, b] × E ⊸ E be u.s.c. with nonempty, convex, compact

values and K ⊆ E be nonempty and open. Let V : E → R be a locally Lipschitzian

function satisfying (B1), for some ǫ > 0, and (4.5). If

(4.10) lim sup
h→0−

V (x + hw)

h
< 0, for x ∈ ∂K and w ∈ P (b, x),

then K is a bound set for the initial value problem (4.2), provided x0 ∈ K. If

(4.11) lim inf
h→0+

V (x + hw)

h
> 0, for x ∈ ∂K and w ∈ P (a, x),

then K is a bound set for the terminal value problem (4.3), provided x0 ∈ K. Finally,

let M ∈ L(E) with M∂K = ∂K and assume

(4.12) 0 /∈
[

lim inf
h→0+

V (x + hw1)

h
, lim sup

h→0−

V (x + hw2)

h

]

,

for all x ∈ ∂K, w1 ∈ P (a, x) and w2 ∈ P (b, Mx). Then K is a bound set for (4.4).

Proof. Let x : [a, b] → K be a solution of (4.4). Proposition 4.4 implies that x(t) ∈ K,

for all t ∈ (a, b). Reasoning as in the proof of the quoted proposition, it is also easy

to see that, when (4.10) (respectively (4.11)) is satisfied, then K is a bound set for

(4.2) (respectively (4.3)), provided that x0 ∈ K.

Now, consider b.v.p. (4.4) and assume, by contradiction, that x(a) ∈ ∂K or

x(b) ∈ ∂K. Since M is invertible and M∂K = ∂K, then both x(a) and x(b) belong

to ∂K. Therefore, reasoning as in the proof of Proposition 4.4, it is possible to find

w1 ∈ P (a, x(a)) and w2 ∈ P (b, Mx(a)) such that

lim inf
h→0+

V (x + hw1)

h
≤ 0 ≤ lim sup

h→0−

V (x + hw2)

h

which is a contradiction to (4.12). The proof is complete.

Assume now that V is a C1-function and let V ′
x denote its derivative at the point

x ∈ E. Condition (B2) ((B2′)) reduces to V ′
x(w) < 0 (respectively V ′

x(w) > 0), for

a.a. t ∈ (a, b)), x ∈ Bǫ
∂K ∩ K and w ∈ P (t, x).

Let us consider P to be u.s.c. Since P is convex valued, it is easy to see that

(4.5) reduces to

(4.13) V ′
x(w) 6= 0, for t ∈ (a, b), x ∈ ∂K and w ∈ P (t, x),

whereas condition (4.12) becomes

(4.14) 0 6∈
[

V ′
x(w1), V

′
x(w2)

]

, for x ∈ ∂K, w1 ∈ P (a, x), w2 ∈ P (b, Mx).

Let us note that conditions (4.5) and (4.12) guarantee neither positive nor nega-

tive invariance of the bound set K as the following simple example shows.

Example 1. For t ∈ [0, 1], consider the b.v.p. x′ = 1 and x(1) = ±x(0) with x ∈ R.

Take K = (−1, 1). It is easy to see that K is neither a positive invariant set for the
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problem nor a negative one. On the other hand, V (x) = x2−1 is a bounding function

for the problem, satisfying both (4.13) and (4.14). Thus, K is a bound set.

Example 2. Let H be a real Hilbert space with the inner product 〈·, ·〉. Given r > 0,

put K = rB and take V (x) = |x|2 − r2. It is easy to see that V (x) ≤ 0, for all x ∈ K,

and V (x) = 0 if and only if x ∈ ∂K. Hence, V is a suitable candidate for a bounding

function for K.

Moreover, V is Fréchet differentiable, for all x, and V ′
x : w → 2 〈x, w〉; so, V is

a C1-map. Indeed, for a fixed x ∈ H , the Fréchet derivative V ′
x is namely a linear

operator V ′
x : H → R defined by

lim
|h|→0

V (x + h) − V ′
x(h) − V (x)

|h|
= 0.

Hence, because of

V (x + h) − V ′
x(h) − V (x)

|h|
=

|x + h|2 − r2 − V ′
x(h) − |x|2 + r2

|h|

=
〈x + h, x + h〉 − V ′

x(h) − 〈x, x〉

|h|
=

2〈x, h〉 + 〈h, h〉 − V ′
x(h)

|h|
,

and since 〈h,h〉
|h|

= |h| → 0, we really obtain that V ′
x : h → 2 〈x, h〉, for all h ∈ H and,

in particular, that V ′
x : w → 2 〈x, w〉.

Assume M∂K = ∂K and consider the b.v.p. (4.4). Let P be a u-Carathéodory

r.h.s. If there exists r0 ∈ (0, r) such that one of the following two conditions is satisfied

〈x, w〉 < 0,

for a.a. t ∈ (a, b), r0 < |x| ≤ r and w ∈ P (t, x),(4.15)

or

〈x, w〉 > 0,

for a.a. t ∈ (a, b), r0 < |x| ≤ r and w ∈ P (t, x),(4.16)

then, according to Corollary 4.3, K is a bound set for (4.4).

On the other hand, if P is globally u.s.c. and the following conditions are both

satisfied

(4.17) 〈x, w〉 6= 0, for all t ∈ (a, b), |x| = r and w ∈ P (t, x),

0 /∈
[

〈x, w1〉, 〈x, w2〉
]

,

for all |x| = r, w1 ∈ P (a, x) and w2 ∈ P (b, Mx),(4.18)

then, according to Corollary 2, K is a bound set for (4.4).
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5. APPLICATION TO FLOQUET PROBLEMS

Combining the continuation principle in the form of Theorem 3.1 with the bound

sets approach developed in Proposition 4.1, we are now able to give an effective

criterium (see Theorem 5.2) for the solvability of the Floquet b.v.p. (1.1) in a Banach

space E satisfying the Radon–Nikodym property. For this purpose, we need the

following preliminary result.

Lemma 5.1. Given f ∈ L1([a, b], E), consider the Floquet b.v.p.

(5.1)

{

x′ + A(t)x = f(t), for a.a. t ∈ [a, b],

x(b) = Mx(a)

with A(t) and M respectively satisfying (A1) and (M). Let U(t, s) be the associated

evolution operator, for t, s ∈ [a, b]. Then (5.1) has a unique solution if and only if

the map M −U(b, a) is invertible. In this case, the linear operator G : L1([a, b], E) →

AC([a, b], E) which associates to every f the unique solution of (5.1) is defined as

follows

Gf(t) := U(t, a)
(

M − U(b, a)
)−1

∫ b

a

U(b, s)f(s) ds +

∫ t

a

U(t, s)f(s) ds.

Proof. Let us consider the linear operator

L : {x ∈ AC([a, b], E) : x(b) = Mx(a)} → L1([a, b], E)

defined by Lx = x′ + A(t)x. It is easy to see that (5.1) is uniquely solvable, for every

f ∈ L1([a, b], E), if and only if L is invertible and, in this case, G = L−1. According

to (A1), it is well known (see e.g. [13]) that, for each f ∈ L1([a, b], E), the linear

equation x′ + A(t)x = f(t) has a one-parameter family of solutions x ∈ AC([a, b], E)

given by xc(t) = U(t, a)c +
∫ t

a
U(t, s)f(s)ds with c = x(a) varying in E. Notice that

L is invertible if and only if, for each f , there is exactly one c ∈ E such that xc(b) =

Mxc(a), i.e. satisfying U(b, a)c +
∫ b

a
U(b, s)f(s) ds = Mc. For this is equivalent to

require that, for each f ∈ L1([a, b], E), the equation
(

M−U(b, a)
)

c =
∫ b

a
U(b, s)f(s) ds

is solvable, for a unique c. The conclusion follows when observing that the linear

operator f →
∫ b

a
U(b, s)f(s) ds is surjective in E.

We are now able to state our main result concerning the solvability of the b.v.p.

(1.1) in a Banach space E satisfying the Radon–Nikodym property.

Theorem 5.2. Let us consider the b.v.p. (1.1) under conditions (A1), (F1) and (M).

Assume, moreover, that

(A2) the map M − U(b, a) is invertible;

(F2) γ(F (t, Ω)) ≤ g(t)γ(Ω), for a.a. t ∈ [a, b] and each bounded Ω ⊂ E, where g is a

non-negative function in L1[a, b] and γ is the Hausdorff m.n.c. in E.
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Suppose that

(5.2) ‖g‖L1([a,b],E)

( e
R

b

a
‖A(s)‖ ds

‖M − U(b, a)‖
+ 1

)

e
R

b

a
‖A(s)‖ ds < 1.

Finally, assume there exist a nonempty, open, bounded and convex K ⊂ E, a

locally Lipschitzian function V : E → R and an ǫ > 0 such that M∂K = ∂K, 0 ∈ K,

(B1) holds and, for all λ ∈ (0, 1), (B2) is satisfied with P (t, x) = λF (t, x) − A(t)x.

Then (1.1) admits a solution with values in K.

Proof. Consider the subset of absolutely continuous functions S = {x ∈ AC([a, b], E) :

x(b) = Mx(a)}. Since M is continuous, S is closed. Take

(5.3)
H : [a, b] × E × E × [0, 1] ⊸ E

(t, x, y, λ) ⊸ −A(t)x + λF (t, y).

According to (A1) and (F1), H is a u-Carathéodory map. Since K is convex, the set

Q = C([a, b], K) is closed and convex. For each q ∈ Q and λ ∈ [0, 1], let us denote by

T (q, λ) the solution set of the fully linearized problem

(5.4)

{

x′ + A(t)x ∈ λF (t, q), for a.a. t ∈ [a, b],

x(b) = Mx(a).

We show that (5.4) satisfies all the assumptions of the continuation principle, i.e. of

Theorem 3.1, where now P (t, x) = −A(t)x + F (t, x); this implies that (1.1) has a

solution.

Firstly, we note that condition (3.2) is satisfied. As in Section 2, for all λ ∈ [0, 1]

and q ∈ Q, we denote by T (q, λ) the set of all solutions of (5.4). Since 0 ∈ K, from

Lemma 5.1, we obtain that T (Q × {0}) = {0} ⊂ int Q, by which condition (iii) is

satisfied. Let us assume that x ∈ Q is a fixed point of T (·, λ), for some λ ∈ (0, 1), i.e.

x(t) is a solution of

(5.5)

{

x′ + A(t)x ∈ λF (t, x), for a.a. t ∈ [a, b],

x(b) = Mx(a).

According to (B1) and (B2) (see Corollary 4.3), K is a bound set for each problem

(5.5) with λ ∈ (0, 1). This implies that x 6∈ ∂Q, so also condition (iv) of Theorem 3.1

is satisfied.

We now prove that the multivalued map T has convex values. Given x1 and

x2 ∈ T (q, λ), there exist f1 and f2 ∈ λF (·, q(·)) such that x′
i + A(t)xi = fi(t), for

i = 1, 2, and the convexity of T (q, λ) follows from (F1). Thus, also condition (i) of

Theorem 3.1 is verified.

Now, we prove that T is quasi-compact. Since C([a, b], E) is a metric space, it

is sufficient to prove the sequential quasi-compactness of T . Therefore, consider the
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sequences λn → λ in [0, 1] and qn → q in Q as n → +∞ and, for each n ∈ N, take

xn ∈ T (qn, λn). There exists fn ∈ F (·, qn(·)) such that

(5.6) x′
n(t) + A(t)xn(t) = λnfn(t), for a.a. t ∈ [a, b],

and xn(b) = Mxn(a). Denote by Λ : E → E the bounded, linear operator

Λ :=
(

M − U(b, a)
)−1

.

According to Lemma 5.1,

(5.7) xn(t) = λn

(

U(t, a)Λ

∫ b

a

U(b, s)fn(s) ds +

∫ t

a

U(t, s)fn(s) ds
)

.

Define L := 1 + maxx∈K |x| and D := e
R

b

a
‖A(s)‖ ds. Let us recall (see Section 2) that

(5.8) ‖U(t, s)‖ ≤ D, for all t, s ∈ [a, b].

Due to (F1), we have

|fn(t)| ≤ r(t)
(

1 + |qn(t)|
)

≤ Lr(t),

for a.a. t ∈ [a, b] and all n ∈ N. Therefore, {fn}n is bounded and uniformly integrable

in L1([a, b], E). As a consequence, the sequence {U(t, s)fn(s)}n, with t given in (a, b],

is also bounded and uniformly integrable on the interval [a, t]. In fact,

(5.9) |U(t, s)fn(s)| ≤ ‖U(t, s)‖|fn(s)| ≤ LDr(s),

for a.a. s ∈ [a, t] and all n ∈ N. By virtue of (5.7), we have

|xn(t)| ≤ LD2‖Λ‖
∫ b

a
r(s) ds + LD

∫ t

a
r(s) ds

≤ LD
(

D‖Λ‖ + 1
)

‖r‖1 := J,

for all t ∈ [a, b]. Thus, the sequence {xn}n is bounded in C([a, b], E). Consequently,

(5.10) |x′
n(t)| ≤ | − A(t)xn(t)| + |fn(t)| ≤ J‖A(t)‖ + Lr(t),

whence {x′
n}n is also bounded and uniformly integrable in L1([a, b], E).

Since the sequence {qn}n is converging, according to (F2), we have

γ({fn(t)}n) ≤ g(t)γ({qn(t)}n) = 0, for a.a. t ∈ [a, b],

implying that {fn(t)}n is relatively compact. Therefore, given t ∈ (a, b], we also obtain

the relative compactness of {U(t, s)fn(s)}n, for a.a. s ∈ [a, t]. In fact, according to

(2.3),

(5.11) γ({U(t, s)fn(s)}n) ≤ ‖U(t, s)‖γ({fn(s)}n) = 0.
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We can now prove that {xn(t)}n is a relatively compact sequence, for all t ∈ [a, b].

Indeed, due to (2.5), (5.7) and the monotonicity of the Hausdorff m.n.c., for all

t ∈ [a, b], we have

γ({xn(t)}n)

≤ γ
(

⋃

λ∈[0,1]

λ
{

U(t, a)Λ

∫ b

a

U(b, s)fn(s) ds +

∫ t

a

U(t, s)fn(s) ds
}

n

)

= γ
({

U(t, a)Λ

∫ b

a

U(b, s)fn(s) ds +

∫ t

a

U(t, s)fn(s) ds
}

n

)

.

Therefore, according to (2.4), (5.9) and (5.11), we have

γ({xn(t)}n) ≤ ‖U(t, a)‖‖Λ‖ γ
(

∫ b

a

U(b, s)fn(s) ds
)

+ γ
(

∫ t

a

U(t, s)fn(s) ds
)

= 0.

This demonstrates that {xn(t)}n is relatively compact, for all t, and w.r.t. (5.6) we

also have that {x′
n(t)}n is relatively compact, for a.a. t ∈ [a, b].

In view of (5.10), we can apply Lemma 2.2. Hence, we find x ∈ AC([a, b], E) and

a subsequence, again denoted as the sequence, such that xn → x in C([a, b], E) and

x′
n → x′, weakly in L1([a, b], E), as n → +∞. Applying, as in Theorem 3.1, a classical

closure principle, we obtain that x′(t) + A(t)x(t) ∈ λF (t, q(t)), for a.a. t ∈ [a, b]. We

have so proved the quasi-compactness of T .

Now, it remains to show that T is condensing with respect to a monotone and

nonsingular m.n.c. For this purpose, consider the monotone and nonsingular m.n.c.

(see e.g. [16, Example 2.1.4]) defined for a bounded set Ω ⊂ C([a, b], E) as

(5.12) µ(Ω) := max
{wn}n⊂Ω

(

sup
t∈[a,b]

γ({wn(t)}n), modC({wn}n)

)

,

where the ordering is induced by the positive cone in R
2. Take Θ ⊂ Q such that

(5.13) µ(T (Θ × [0, 1])) ≥ µ(Θ)

and let {xn}n ⊂ T (Θ × [0, 1]) be a sequence which realizes the maximum in (5.12),

i.e. such that

µ(T (Θ × [0, 1])) =

(

sup
t∈[a,b]

γ({xn(t)}n), modC({xn}n)

)

.

Define, for a bounded Ω ⊂ C([a, b], E),

(5.14) ν(Ω) := max
{wn}n⊂Ω

sup
t∈[a,b]

γ({wn(t)}n).

According to (5.13), it follows that

(5.15) sup
t∈[a,b]

γ({xn(t)}n) ≥ ν(Θ)
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and

(5.16) modC({xn}n)) ≥ max
{yn}n⊂Θ

modC({yn}n).

Since {xn}n ⊂ T (Θ× [0, 1]), there exist {qn}n ⊂ Θ, fn ∈ F (·, qn(·)) and {λn}n ⊂ [0, 1]

such that xn(·) satisfies (5.7) in [a, b], for all n. Thus, according to (F2), by a similar

reasoning as before, it is possible to prove that

γ({U(t, s)fn(s)}n) ≤ ‖U(t, s)‖g(s)γ({qn(s)}n) ≤ Dν(Θ)g(s),

for all t ∈ (a, b] and a.a. s ∈ [a, t]. Consequently, by means of (2.3), (2.4) and (5.7),

for all t ∈ [a, b], it follows that

γ({xn(t)}n)

≤ ‖U(t, a)‖ ‖Λ‖γ

(

{

∫ b

a

U(b, s)fn(s) ds
}

n

)

+ γ

(

{

∫ t

a

U(t, s)fn(s) ds
}

n

)

≤ Dν(Θ)

[

D‖Λ‖

∫ b

a

g(s) ds +

∫ t

a

g(s) ds

]

≤ Dν(Θ)
(

D‖Λ‖ + 1
)

‖g‖L1([a,b],E).

According to (5.15), we have that

ν(Θ) ≤ sup
t∈[a,b]

γ({xn(t)}n) ≤ Dν(Θ)
(

D‖Λ‖ + 1
)

‖g‖L1([a,b],E)

= ‖g‖L1([a,b],E)

( e
R

b

a
‖A(s)‖ ds

‖M − U(b, a)‖
+ 1

)

e
R

b

a
‖A(s)‖ dsν(Θ).

So condition (5.2) implies that ν(Θ) = 0. Consequently, γ({yn(t)}n) = 0, for each

{yn}n ⊂ Θ and t ∈ [a, b], i.e. {yn(t)}n is relatively compact in E.

Let us note that condition (5.10) does not depend on whether or not {qn}n con-

verges in Q; it simply holds for the sequence {xn}n satisfying (5.15) and (5.16). Since

(5.10) implies the equicontinuity of {xn}n, then modC({xn}n) = 0 (see Section 2).

It follows from (5.16) that max{yn}n⊂Θ modC({yn}n) = 0. Therefore, any sequence

{yn}n ⊂ Θ is equicontinuous and the Ascoli-Arzelà lemma yields the relative com-

pactness of Θ, which completes the proof.

For M = Id, the Floquet b.v.p. reduces to the investigation of periodic solutions.

If in addition A(t) ≡ A and [a, b] = [0, T ], condition (A2) is equivalent to assuming

that

(5.17) 1 ∈ ρ(e−AT ),

where ρ denotes the resolvent of the operator e−AT . This is, furthermore, equivalent

to requiring that the only periodic solution of the homogeneous equation x′ +Ax = 0

is the trivial one. According to the spectral mapping theorem (see e.g. [13]), inclusion

(5.17) is the same as requiring that A is invertible.

Assume A : [a, b] → L(E) to be continuous on [a, b] and F globally u.s.c. in its

variables (t, x) on all [a, b]×E and satisfying the growth condition (iii) in Definition
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2.1. In view of Corollary 4.5, the transversality condition can be localized on the

boundary ∂K of the set K. More precisely, in this case, the previous result is valid

when (B2) is replaced by (4.5) and (4.12), and all the other conditions are satisfied.

Example 3. Let H be a real reflexive Hilbert space with the inner product 〈·, ·〉.

Consider problem (1.1) in H and assume that conditions (A1), (A2), (M), (F1),

(F2) and (5.2) are satisfied. Let, for a given r > 0, either (4.15) or (4.16) hold,

where P (t, x) := λF (t, x) − A(t)x, λ ∈ (0, 1). If F is globally u.s.c., then instead of

(4.15) or (4.16), assume only (4.17) and (4.18). Then, as in Example 2, conditions

(B1) and (B2)(resp. (4.5) and (4.12)) are satisfied, by means of a bounding function

V (x) = |x|2 − r2, with K = rB, and Theorem 5.2 (resp. its modification by means

of Corollary 4.5) implies the existence of a solution of (1.1) with values in K.

6. ENTIRELY BOUNDED SOLUTIONS

Given the u-Carathéodory map P : R × E ⊸ E, where E is a Banach space

satisfying the Radon–Nikodym property, let us consider again the differential inclusion

(6.1) x′ ∈ P (t, x), for a.a. t ∈ R.

As a final application of our method which combines the continuation principle in

the form of Theorem 3.1 with a bound sets approach (see Section 4), we discuss the

existence of entirely bounded solution of (6.1) (see Corollary 6.6). Our technique

enables us to localize the bounded set K ⊂ E, where the solution values are located.

If P satisfies condition (F2), for all t ∈ R with g ∈ L1
loc(R), it is well known that

the initial value problem associated to (6.1), i.e.

(6.2)

{

x′ ∈ P (t, x), for a.a. t ∈ [−m, m], m ∈ N,

x(0) = x0,

is solvable, for each x0 ∈ E and m ∈ N (see e.g. [12, Theorem 9.2 and Remark

9.5.4]). Under similar conditions, the existence of a mild solution to (6.2) was given

in [16, Theorem 5.2.2] (see also [16, Proposition 5.2.1]) when a linear term, which is

the infinitesimal generator of a C0-semigroup, is added to the r.h.s. Denote by xm a

solution of (6.2) on [−m, m]. It was proved in [2, Proposition 4.4 and Remark 4.6]

that, whenever E is reflexive or separable and there exists a bounded closed D ⊂ E

satisfying xm(t) ∈ D, for all t ∈ [−m, m] and m ∈ N, then (6.1) has a bounded

solution with values in D. Unfortunately, in both the quoted results, the estimate of

the norm of the solution depends on the interval [−m, m], where it is defined. On the

contrary, when assuming the existence of a bound set K, then we are able to localize

each xm in K by means of the following lemma.

Lemma 6.1. Let us consider the initial value problem (4.2), under conditions (F1)

and (F2) (with P instead of F ). Assume that there exist an open bounded K ⊂ E, a
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locally Lipschitzian function V : E → R and an ǫ > 0 such that (B1) holds and (B2)

is satisfied. Then all solutions x of (4.2) such that x(a) = x0 ∈ K satisfy x(t) ∈ K,

for all t ∈ [a, b].

Proof. It is well known that the Cauchy problem (4.2) is solvable (see e.g. [12, Theo-

rem 9.2 and Remark 9.5.4]). Let x(t) be a solution of (4.2). According to Corollary

4.3, there does not exist any t0 ∈ (a, b] such that x(t0) ∈ ∂K. Therefore, x(a) ∈ K

implies x(t) ∈ K, for all t ∈ [a, b].

If P is u.s.c., Lemma 6.1 can be reformulated as follows.

Lemma 6.2. Let us consider the initial value problem (4.2), where P is u.s.c. with

nonempty, compact, convex values, satisfying (iii) in Definition 2.1 and (F2) (with P

instead of F ). Assume that there exist an open, bounded and convex K ⊂ E, a locally

Lipschitzian function V : E → R and ǫ > 0 satisfying, (B1), (4.5) and (4.10). Then,

for all x0 ∈ K, (4.2) has a solution x with x(t) ∈ K, for all t ∈ [a, b].

Proof. Let

S = {x ∈ AC([a, b], E) : x(a) = x0}, H(t, x, y, λ) = λP (t, y)

and Q = C([a, b], K). It is easy to see that (3.2) is satisfied. Moreover, S is closed

and, for each (q, λ) ∈ Q × [0, 1], the problem

(6.3)

{

x′ ∈ λP (t, q(t)), for a.a. t ∈ [a, b],

x(a) = x0

is solvable with a convex set T (q, λ) of solutions. So condition (i) in Theorem 3.1 is

valid. Since x0 ∈ K, and according to (4.5) and (4.10), also conditions (iii) and (iv)

in Theorem 3.1 are satisfied.

In order to apply Theorem 3.1, it remains to prove that T is quasi-compact and

µ-condensing. For this purpose, take a positive constant L such that

(6.4) l := max
t∈[a,b]

∫ t

a

e−L(t−s)g(s)ds < 1,

and consider the monotone, nonsingular and regular m.n.c. (see e.g. [16, Example

2.1.4])

µ(Ω) := max
{wn}n⊂Ω

(

sup
t∈[a,b]

e−Ltγ({wn}n), modC{wn}n

)

,

where the ordering is induced by the positive cone in R
2. Consider Θ ⊆ Q and take

{xn}n ⊆ T (Θ × [0, 1]). There exist {qn}n ⊆ Θ, {λn}n ⊂ [0, 1] and fn ∈ P (·, qn(·))

such that

xn(t) = x0 + λn

∫ t

a

fn(s) ds, t ∈ [a, b].
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Since K is bounded, according to (F1), (F2), {xn}n is equicontinuous. Thus, modCT (Θ×

[0, 1]) = 0. Moreover, defining for Ω ⊂ C([a, b], E) bounded

ν(Ω) := max
{wn}n⊂Ω

sup
t∈[a,b]

e−Ltγ({wn(t)}n),

it follows that

e−Ltγ({xn(t)}n) ≤ e−Ltγ

(

{

∫ t

a

fn(s) ds
}

n

)

≤ e−Lt

∫ t

a

eLsg(s)e−Lsγ({qn(s)}n)ds ≤ ν(Θ)

∫ t

a

e−L(t−s)g(s) ds ≤ lν(Θ),

which implies ν(T (Θ × [0, 1])) ≤ lν(Θ). Hence,

µ(T (Θ × [0, 1])) ≤ lµ(Θ),

for all Θ ⊆ Q, and since l < 1 and µ is regular, this yields both the quasi-compactness

and the condensity of T .

Therefore, problem (4.2) has a solution x satisfying x(t) ∈ K, for all t ∈ [a, b].

According to Proposition 4.4 and Corollary 4.5, we then obtain x(t) ∈ K, for all

t ∈ [a, b].

Remark 6.3. Let us note that similar results can be stated for the terminal value

problem (4.3). Specifically, when in Lemma 6.1 (B2) is replaced by (B2′) and every

other condition remains unchanged, then all solutions x of the terminal value problem

(4.3) such that x(b) ∈ K, satisfy x(t) ∈ K, for all t ∈ [a, b].

Similarly, in the u.s.c. case, the same conclusion of Lemma 6.2 is true for (4.3),

when (4.10) is replaced by (4.11).

Lemmas 6.1 and 6.2 deal with the well known viability problem for which we refer

to [12] (see also [17] and [27], for some results in different contexts, and the references

therein contained). If the r.h.s. is globally u.s.c. such a problem is usually formulated

in terms of the Bouligand cone

TD(x) :=

{

y ∈ E : lim inf
h→0+

dist(x + hy, D)

h
= 0

}

,

where D is a closed nonempty set in E. More precisely, the following result holds:

Theorem 6.4 ([12, Theorem 9.1 and Remark 9.5.4]). Let D be a closed, nonempty

subset of E with the Radon–Nikodym property. Let, furthermore, P : [a, b] × D ⊸ E

be a u.s.c. map with nonempty, compact, convex values satisfying (F2) (with P instead

of F ),

(6.5) |P (t, x)| ≤ c(t)(1 + |x|), on [a, b] × D, for c ∈ L1([a, b], R),

and

(6.6) P (t, x) ∩ TD(x) 6= ∅, on [a, b] × D.
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Then (4.2) has a solution, for every x0 ∈ D.

Let K ⊂ E be as in Lemmas 6.1 and 6.2. It is easy to see that dist(x, K) is a

Lipschitzian bounding function. In [5], we showed that condition (4.5) reduces to

P (t, x) ∩ TK(x) = ∅ or (−P (t, x)) ∩ TK(x) = ∅,

for (t, x) ∈ (a, b) × ∂K.(6.7)

Indeed, in [5], we proved (6.7), for an autonomous P , where x ∈ R
n, but the same

reasoning repeats in this context. Moreover, it is easy to see that (4.10) becomes

(6.8)
(

−P (b, x)
)

∩ TK(x) = ∅, for each x ∈ ∂K.

Consequently, by means of Lemma 6.2, we are able to find a solution of (4.2) in

K, for all initial conditions x0 in the open set K, when the Bouligand cone has an

empty intersection with P (t, x), on the whole boundary ∂K. In particular, we obtain

the following result which is an immediate consequence of Lemma 6.2 and Theorem

6.4.

Corollary 6.5. Let K ⊂ E be open, bounded and convex. Let P : [a, b] × K ⊸ E

be a u.s.c. map with nonempty, compact and convex values satisfying (F2) (with P

instead of F ) and (6.5). Let one of the following conditions be satisfied:

(i) (6.6) with K instead of D, for all x ∈ ∂K and t ∈ [a, b];

(ii) (6.7), for all x ∈ ∂K and t ∈ (a, b), and (6.8), for all x ∈ ∂K.

Then, for all x0 ∈ K, there exists a solution of (4.2) such that x(t) ∈ K, for all

t ∈ [a, b].

We conclude this part with the investigation of entirely bounded solutions of

inclusions with u-Carathéodory as well as of u.s.c. r.h.s.

Corollary 6.6. Consider the u-Carathéodory multivalued mapping P : R × E ⊸ E

satisfying (F2) (with P instead of F ), for all t ∈ R, with g ∈ L1
loc(R). Suppose that

there exist an open, bounded and convex subset K of E, a locally Lipschitzian function

V : E → R, ǫ > 0 and t0 ∈ R such that (B1) holds and (B2) and (B2 ′) are satisfied

respectively, for all t > t0 and t < t0. Then, for each x0 ∈ K, there exists a solution

x of x′ ∈ P (t, x) such that x(t0) = x0 and x(t) ∈ K, for all t ∈ R.

Proof. Take x0 ∈ K and, for all n ∈ N, consider problem (4.2) with [a, b] = [t0, t0 +n].

Since all the assumptions of Lemma 6.1 are satisfied, we get, for each n ∈ N, the

existence of a solution xn of x′ ∈ P (t, x) such that xn(t) ∈ K, for all t ∈ [t0, t0 + n].

For every n ∈ N, let us denote by x̃n the continuous extension of xn to [t0,∞) which is

constant outside [t0, t0 +n]. Given m ∈ N, consider the sequence {x̃n}n≥m. According

to Definition 2.1, {x̃′
n}n≥m is bounded in L1([t0, t0 + m]), yielding the equicontinuity
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of {x̃n}n≥m in [t0, t0 +m]. Since x̃n(t0) = x0, for all n, [4, Proposition III.1.36] implies

that x̃n → xm ∈ C([t0, t0 + m], K). Reasoning as in the proofs of Theorems 3.1

and 5.2, it is possible to prove firstly that {x̃′
n(t)}n≥m is relatively compact, for a.a.

t ∈ [t0, t0 + m], and then that xm is a solution of the inclusion in [t0, t0 + m]. Since

m is arbitrary, from the uniqueness of the limit, we get the existence of a solution x̃

of x′ ∈ P (t, x) a.e. in [t0,∞) with x̃(t) ∈ K, for all t.

According to Remark 6.3, the hypotheses also assure the existence of a solution

of the terminal value problem (4.3). Therefore, we get the existence of a solution xn

of x′ ∈ P (t, x) in [t0 − n, t0] such that xn(t) ∈ K, for all t. By the same arguments as

above we finally obtain the existence of a solution x̂ of the inclusion in (−∞, t0] with

x̂(t) ∈ K, for all t. Finally, if there is a point t1 ∈ R such that x(t1) ∈ ∂K, then we

would get a contradiction with Corollary 4.3 which completes the proof.

Remark 6.7. Assume that P is u.s.c. in (t, x), on all R×E, and satisfies the growth

condition (iii) in Definition 2.1. Let all the other assumptions of previous corollary

be satisfied, with the exception of (B2) and (B2′) respectively replaced by (4.10), for

x ∈ ∂K, w ∈ P (t, x) and t > t0, and (4.11), for x ∈ ∂K, w ∈ P (t, x) and t < t0. Then

again, for each x0 ∈ K, x′ ∈ P (t, x) has an entirely bounded solution x satisfying

x(t) ∈ K, for all t ∈ R.

7. CONCLUDING REMARKS

For noncompact operators, the degree arguments are usually related to closed

convex subsets in a Banach [2], [16] (or Fréchet [3], [4]) space. For nonconvex subsets,

many difficulties occur (see e.g. [8]). Such difficulties mainly depend on the application

of the normalization property. That is also why our parameter set Q of candidate

solutions was always assumed to be closed and convex.

In the single-valued case, for convex bound sets K such that Q = C([a, b], K),

bounding functions V : E → R can always be taken smooth or even linear, as pointed

out in [15]. Nevertheless, for the sake of a more convenient construction, we decided

to employ locally Lipschitzian functions like those with absolute values, in the finite-

dimensional case. On the other hand, it has not much meaning to consider here less

regular than Lipschitzian bounding functions as in our former papers [5], [6], where

the parameter set Q was not necessarily convex.

In more general than Hilbert spaces, the verification of bound sets conditions

(B1), (B2) can be a difficult task (cf. [24], where positively invariant sets were con-

sidered in a similar way). A nice simple example of a bounding function in a general

Banach space was constructed, for a positively invariant set, in [26].

An alternative approach, in terms of upper and lower solutions, can also be used

(cf. e.g. [10], [25]), but difficulties related to a infinite-dimensional case obviously
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remain. For initial value problems, a discussion of such difficulties can be found e.g.

in [10].
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1–101, 2006

[3] J. Andres and R. Bader, Asymptotic boundary value problems in Banach spaces, J. Math. Anal.

Appl., 247:437–457, 2002.
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