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ABSTRACT. In this paper, an existence theorem for the periodic boundary value problems of first

order quadratic functional integro-differential equations is proved via a fixed point theorem in Banach

algebras and under some mixed generalized Lipschitz and Carathéodory conditions. The existence

theorems for extremal positive solutions are also proved under certain monotonicity conditions.
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1. INTRODUCTION

First order ordinary functional differential equations (ODE) with periodic bound-

ary value conditions are considered in many works. See Bernfeld and Lakshmikantham

[1], Ladde et al. [17], Omari and Zanolin [20] and the references therein. The study

of periodic boundary value problems of nonlinear first order functional differential

equations with discontinuous nonlinearity has been exploited in the works of Heikkilä

and Lakshmikantham [16]. But the study of periodic boundary value problems of

quadratic ordinary functional integro-differential equations involving Carathódory as

well as discontinuous nonlinearity has not been made so far in the literature. The

study of initial value problems of nonlinear quadratic functional differential and in-

tegral equations is initiated in the works of Dhage [2] and Dhage and O’Regan [10]

and discussed the existence theory for first order functional differential and integral

equations. The study of such equations has been further exploited in the works of

Dhage [3, 4, 5, 7] and Dhage et al. [11] for various aspects of the solutions. In this

paper, we deal with the periodic boundary value problems of nonlinear first order qua-

dratic functional differential equations and discuss the existence as well as existence

results for extremal solutions under mixed Lipschitz, Carathéodory and monotonic

conditions. The main tools used in the study are the hybrid fixed point theorems of

Dhage [3, 4, 6, 7]. We claim that the nonlinear functional equation as well as the

existence results of this paper are new to the literature on the theory of nonlinear

ordinary functional equations.
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Let R denote the real line. Given a closed and bounded interval J = [0, T ] in

R, consider the periodic boundary value problems (in short PBVP) of first order

ordinary functional integro-differential equations

(1.1)

d

dt

[ x(t)

f(t, x(t), x(µ(t)))

]

= g
(

t, x(θ(t)),

∫ σ(t)

0

k(t, s, x(η(t))) ds
)

a.e. t ∈ J

x(0) = x(T ),















where f : J × R × R → R − {0}, g : J × R × R → R and µ, θ, σ, η : J → J .

By a solution of the PBVP (1.1) we mean a function x ∈ AC(J,R) that satisfies

(i) the function t 7→
( x(t)

f(t, x(t), x(µ(t)))

)

is absolutely continuous on J , and

(ii) x satisfies the equations in (1.1),

where AC(J,R) is the space of continuous functions whose first derivative exists and

is absolutely continuous real-valued functions on J .

The periodic boundary value problem (1.1) is quite general in the sense that it

includes several known classes of periodic boundary value problems as special cases.

For example, if f(t, x, y) = 1 on J × R × R, then PBVP (1.1) reduces to the PBVP

(1.2)
x′(t) = g

(

t, x(θ(t)),

∫ σ(t)

0

k(t, s, x(η(t))) ds
)

a. e. t ∈ J

x(0) = x(T ),















which further, when g(t, x, y) = g(t, x) onJ × R × R, and θ is identity map on J ,

includes the following PBVP studied in Nieto [18, 19],

(1.3)
x′(t) = g(t, x(t)) a. e. t ∈ J

x(0) = x(T ).







There is good deal of literature on the PBVP (1.3) for different aspects of the

solutions. In this paper,we discuss the PBVP (1.1) for existence theory only under

suitable conditions on the nonlinearities f and g involved in it.

Our method of study is to convert the PBVP (1.1) into an equivalent integral

equation and apply the fixed point theorems of Dhage [3, 4, 6, 7] under suitable

conditions on the nonlinearities f and g involved in it. In the following section 2, we

prove the main existence theorem and the existence theorems for extremal solutions

are presented in section 3. Finally, an illustrative example is given at the end of the

paper.

2. EXISTENCE THEORY

Let B(J,R) denote the space of bounded real-valued functions on J. Let C(J,R),

denote the space of all continuous real-valued functions on J. Define a norm ‖ · ‖ and
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a multiplication “ · ” in C(J,R) by

‖x‖ = sup
t∈J

|x(t)| and (x.y)(t) = x(t)y(t) for t ∈ J.

Clearly C(J,R) becomes a Banach algebra with respect to above norm and multipli-

cation. By L1(J,R) we denote the set of Lebesgue integrable functions on J and the

norm ‖ · ‖L1 in L1(J,R) is defined by

‖x‖L1 =

∫ T

0

|x(t)| ds.

We employ a hybrid fixed point theorem of Dhage [7] for proving the existence result

for the IVP (1.1). Before stating this fixed point theorem, we give some preliminaries.

Let X be a Banach algebra with norm ‖ · ‖. A mapping A : X → X is called D-

Lipschitz if there exists a continuous nondecreasing function ψ : R
+ → R

+ satisfying

(2.1) ‖Ax−Ay‖ ≤ ψ(‖x− y‖)

for all x, y ∈ X with ψ(0) = 0. In the special case when ψ(r) = αr (α > 0), A is

called a Lipschitz with a Lipschitz constant α. In particular, if α < 1, A is called

a contraction with a contraction constant α. Further, if ψ(r) < r for all r > 0, then

A is called a nonlinear D-contraction on X. Sometimes we call the function ψ a

D-function for convenience.

An operator T : X → X is called compact if T (S) is a compact subset of X for

any S ⊂ X. Similarly T : X → X is called totally bounded if T maps a bounded

subset of X into the relatively compact subset of X. Finally T : X → X is called

completely continuous operator if it is continuous and totally bounded operator

on X. It is clear that every compact operator is totally bounded, but the converse

may not be true. The nonlinear alternative of Schaefer type recently proved by Dhage

[7] is embodied in the following theorem. Also see Dhage and Ntouyas [8], Dhage et

al. [9] and the references therein.

Theorem 2.1 (Dhage [7]). Let Br(0) and Br(0) be respectively open and closed balls

in a Banach algebra X centered at origin 0 and of radius r. Let A,B : Br(0) → X be

two operators satisfying

(a) A is Lipschitz with the Lipschitz constant α,

(b) B is compact and continuous, and

(c) αM < 1 , where M = ‖B(Br(0))‖ := sup{‖Bx‖ : x ∈ Br(0)}.

Then either

(i) the equation λ[AxBx] = x has a solution for λ = 1, or

(ii) there exists an u ∈ X such that ‖u‖ = r satisfying λ[AuBu] = u for some

0 < λ < 1.
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The following useful lemma is obvious and the details may be found in Nieto [19].

Lemma 2.2. For any h ∈ L1(J,R+) and σ ∈ L1(J,R), x is a solution to the func-

tional equation

(2.2)
x′ + h(t)x(t) = σ(t) a. e. t ∈ J

x(0) = x(T ),

}

if and only if it is a solution of the integral equation

(2.3) x(t) =

∫ T

0

Gh(t, s)σ(s) ds

where

(2.4) Gh(t, s) =























eH(s)−H(t)

1 − e−H(T )
, 0 ≤ s ≤ t ≤ T,

eH(s)−H(t)−H(T )

1 − e−H(T )
, 0 ≤ t < s ≤ T,

where H(t) =

∫ t

0

h(s) ds.

Notice that the Green’s function Gk is nonnegative on J × J and the number

Mh := max { |Gh(t, s)| : t, s ∈ [0, T ] }

exists for all h ∈ L1(J,R+). Note also that H(t) > 0 for all t > 0.

We need the following definitions in the sequel.

Definition 2.3. A function ψ : R
+ → R

+ is called a D-function if it satisfies

(i) ψ is continuous,

(ii) ψ is nondecreasing , and

(iii) ψ is scalarly submultiplicative, that is, ψ(λr) ≤ λψ(r) for all λ > 0 and r ∈ R
+.

The class of all D-functions on R
+ is denoted by Ψ. There do exist D-functions

on R. Indeed, the function ψ : R
+ → R

+ defined by ψ(r) = ℓr, ℓ > 0 satisfies the

conditions (i) − (iii) mentioned above and hence a D-function on R
+. Note that if

ψ ∈ Ψ then ψ(0) = 0.

Definition 2.4. A mapping β : J × R × R → R is said to be Carathéodory if

(i) t 7→ β(t, x, y) is measurable for each x, y ∈ R, and

(ii) (x, y) 7→ β(t, x, y) is continuous almost everywhere for t ∈ J.

Again a Carathéodory function β(t, x, y) is called L1-Carathéodory if
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(iii) for each real number r > 0 there exists a function qr ∈ L1(J,R) such that

|β(t, x, y)| ≤ qr(t), a.e. t ∈ J

for all x, y ∈ R with |x| ≤ r and |y| ≤ r.

Finally a Carathéodory function β(t, x, y) is called L1
X -Carathéodory if

(iv) there exists a function q ∈ L1(J,R) such that

|β(t, x, y)| ≤ q(t), a.e. t ∈ J

for all x, y ∈ R.

For convenience, the function q is referred to as a bound function of β.

We will use the following hypotheses in the sequel.

(A0) The functions θ, η : J → J are measurable and the functions µ, σ : J → J are

continuous with µ(0) = 0 and µ(T ) = T .

(A1) The function t 7→ f(t, x, y) is periodic of period T for all x, y ∈ R.

(A2) The function x 7→
x

f(0, x, x)
is injective in R.

(A3) The function f is continuous on J ×R×R and there exists a bounded function

l : J → R
+ with bound L such that

|f(t, x1, x2) − f(t, y1, y2)| ≤ l(t) max{|x1 − y1| , |x2 − y2|} a.e. t ∈ J

for all x1, x2, y1, y2 ∈ R.

(A4) The function k is continuous on J × R × R and there exists a function α ∈

L1(J,R+) such that

|k(t, s, x)| ≤ α(s)|x|

for all t, s ∈ J and x ∈ R.

(A5) The function g is Carathéodory on J × R × R.

Note that hypotheses (A0) through (A3) are much common in the literature on the

theory of nonlinear functional equations. Actually the function f : J × R × R → R

defined by f(t, x, y) = α+ β(x+ y) for some α, β ∈ R, α+ β(x+ y) 6= 0 satisfies the

hypotheses (A0)-(A3).

Now consider the PBVP

(2.5)

( x(t)

f(t, x(t), x(µ(t)))

)′

+h(t)
( x(t)

f(t, x(t), x(µ(t)))

)

= gh

(

t, x(θ(t)),

∫ σ(t)

0

k(t, s, x(η(t))) ds
)

a.e. t ∈ J

x(0) = x(T )






























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where h ∈ L1(J,R+) is bounded and the function gh : J × R × R → R is defined by

(2.6) gh(t, x, y) = g(t, x, y) + h(t)
( x

f(t, x, x(µ))

)

.

Remark 2.5. Note that the PBVP (1.1) is equivalent to the PBVP (2.5) and a

solution of the PBVP (1.1) is the solution for the PBVP (2.5) on J and vice versa.

Remark 2.6. Assume that hypotheses (A2) and (A4) hold. Then the function gh

defined by (2.5) is Carathéodory on J × R × R.

Lemma 2.7. Assume that hypotheses (A0)-(A2) hold. Then for any bounded h ∈

L1(J,R+), x is a solution to the functional equation (2.5) if and only if it is a solution

of the integral equation

(2.7)

x(t) =
[

f(t, x(t), x(µ(t)))
]

(

∫ T

0

Gh(t, s)gh

(

s, x(θ(s)),

∫ σ(s)

0

k(s, τ, x(η(τ))) dτ
)

ds
)

for all t ∈ J , where the Green’s function Gh(t, s) is defined by (2.4).

Proof. Let y(t) =
x(t)

f(t, x(t), x(µ(t)))
. Since f(t, x, y) is periodic in t of period T for

all x, y ∈ R, we have

y(0) =
x(0)

f(0, x(0), x(0))
=

x(T )

f(T, x(T ), x(T ))
= y(T ).

Now an application of Lemma 2.2 yields that the solution to functional differential

equation (2.5) is the solution to integral equation (2.7). Conversely, suppose that x

is any solution to the integral equation (2.7), then

y(0) =
x(0)

f(0, x(0), x(0))
= y(T ) =

x(T )

f(T, x(T ), x(T ))
=

x(T )

f(0, x(T ), x(T ))
.

Since the function x 7→
x

f(0, x, x)
is injective, one has x(0) = x(T ) and so, x is a

solution to PBVP (1.1). The proof of the lemma is complete.

We make use of the following hypothesis in the sequel.

(A6) There exists a function γ ∈ L1(J,R+) and a D-function ψ ∈ Ψ such that

(2.8) |gh(t, x, y)| ≤ γ(t)ψ(|x| + |y|) a.e. t ∈ J

whenever x, y ∈ R.

We frequently make use of the following estimate concerning the function g(t, x, y)

in the sequel.
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If the hypotheses (A4)-(A6) hold, then for any x ∈ C(J,R) with ‖x‖ ≤ r, one has

∣

∣

∣
g
(

t,x(θ(t)),

∫ σ(t)

0

k(t, s, x(η(s))) ds
)
∣

∣

∣

≤ γ(t)ψ
(

|x(θ(t))| +

∫ σ(t)

0

|k(t, s, x(η(s)))| ds
)

≤ γ(t)ψ
(

‖x‖ +

∫ σ(t)

0

α(s)|x(η(s))| ds
)

≤ γ(t)ψ
(

‖x‖ +

∫ T

0

α(s)‖x‖ ds
)

≤ γ(t)ψ
(

[1 + ‖α‖L1] ‖x‖
)

≤ γ(t)(1 + ‖α‖L1)ψ(r)(2.9)

for all t ∈ J .

Theorem 2.8. Assume that the hypotheses (A0)-(A1), (A3)–(A6) hold. Suppose that

there exists a real number r > 0 such that

(2.10) r >
FMh‖γ‖L1(1 + ‖α‖L1)ψ(r)

1 − LMh‖γ‖L1(1 + ‖α‖L1)ψ(r)

where, LMh‖γ‖L1(1+‖α‖L1)ψ(r) < 1, F = supt∈[0,T ] |f(t, 0, 0)| and L = maxt∈J ℓ(t).

Then the PBVP (1.1) has a solution on J.

Proof. Let X = C(J,R). Define an open ball Br(0) centered at origin 0 of radius r,

where the real number r satisfies the inequality (2.10). Define two mappings A and

B on Br(0) by

(2.11) Ax(t) = f(t, x(t), x(µ(t))), t ∈ J,

and

(2.12) Bx(t) =

∫ T

0

Gh(t, s)gh

(

s, x(θ(s)),

∫ σ(s)

0

k(s, τ, x(η(τ))) dτ
)

ds, t ∈ J.

Obviously, A andB define the operatorsA,B : Br(0) → X. Then the integral equation

(2.7) is equivalent to the operator equation

(2.13) Ax(t)Bx(t) = x(t), t ∈ J.

We shall show that the operators A and B satisfy all the hypotheses of Theorem 2.1.

We first show that A is a Lipschitz on X. Let x, y ∈ X. Then by (A3),

|Ax(t) − Ay(t)| = |f(t, x(t), x(µ(t))) − f(t, y(t), y(µ(t)))|

≤ ℓ(t) max{|x(t) − y(t)| , |x(µ(t)) − y(µ(t))|}

≤ L ‖x− y‖
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for all t ∈ J . Taking the supremum over t we obtain

‖Ax−Ay‖ ≤ L‖x− y‖

for all x, y ∈ X. So A is a Lipschitz on X with Lipschitz constant L. Next we show

that B is completely continuous on X. Using the standard arguments as in Granas

et al. [14], it is shown that B is a continuous operator on X. We shall show that

B(Br(0)) is a uniformly bounded and equicontinuous set in X. Let x ∈ Br(0) be

arbitrary. Since g is Carathéodory, we have

|Bx(t)| ≤
∣

∣

∣

∫ T

0

Gh(t, s)gh

(

s, x(θ(s)),

∫ σ(s)

0

k(s, τ, x(η(τ))) dτ
)

ds
∣

∣

∣

≤

∫ T

0

∣

∣

∣
Gh(t, s)gh

(

s, x(θ(s)),

∫ σ(s)

0

k(s, τ, x(η(τ))) dτ
)
∣

∣

∣
ds

≤

∫ T

0

Gh(t, s)γ(t)ψ
(

‖x‖ +

∫ σ(s)

0

α(τ)|x(η(τ))| dτ
)

ds

≤Mh

∫ T

0

γ(s)ψ
(

‖x‖ +

∫ T

0

α(τ)‖x‖ dτ
)

ds

≤Mh

∫ T

0

γ(s)(1 + ‖α‖L1)ψ(r) ds

≤Mh‖γ‖L1(1 + ‖α‖L1)ψ(r).

Taking the supremum over t, we obtain ‖Bx‖ ≤ M for all x ∈ Br(0), where M =

Mh‖γ‖L1(1 + ‖α‖L1)ψ(r) This shows that B(Br(0)) is a uniformly bounded set in X.

Next we show that B(Br(0)) is an equicontinuous set. To finish it is enough to show

that y′ = (Bx)′ is bounded on [0, T ]. Now for any t ∈ [0, T ], one has

|y′(t)| ≤
∣

∣

∣

∫ T

0

∂

∂t
Gh(t, s)gh

(

s, x(θ(s)),

∫ σ(s)

0

k(s, τ, x(η(τ))) dτ
)

ds
∣

∣

∣

=
∣

∣

∣

∫ T

0

|(−h(t))|Gh(t, s)gh

(

s, x(θ(s)),

∫ σ(s)

0

k(s, τ, x(η(τ))) dτ
)

ds
∣

∣

∣

≤ HMh‖γ‖L1(1 + ‖α‖L1)ψ(r)

= c,

where H = maxt∈J h(t). Hence for any t, τ ∈ [0, T ] one has

|Bx(t) − Bx(τ)| ≤ c |t− τ | → 0 as t→ τ

uniformly for all x ∈ Br(0). This shows that B(Br(0)) is a equi-continuous set X.

Now B(Br(0)) is a uniformly bounded and equi-continuous set in X, so it is compact

by Arzelà-Ascoli theorem. As a result B is a compact and continuous operator on

Br(0). Finally, by hypothesis,

αM = LMh‖γ‖L1(1 + ‖α‖L1)ψ(r) < 1,
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and thus all the conditions of Theorem 2.1 are satisfied and a direct application of it

yields that either the conclusion (i) or the conclusion (ii) holds. We show that the

conclusion (ii) is not possible. Let u ∈ X be a solution to PBVP (1.1) such that

‖u‖ = r. Then we have, for any λ ∈ (0, 1),

u(t) = λ
[

f(t, u(t), u(µ(t)))
]

(

∫ T

0

Gh(t, s)gh

(

s, u(θ(s)),

∫ σ(s)

0

k(s, τ, u(η(τ))) dτ
)

ds

)

for t ∈ J . Therefore,

|u(t)| ≤ λ |f(t, u(t), u(µ(t)))|

×

(
∣

∣

∣

∣

∣

∫ T

0

Gh(t, s)gh

(

s, u(θ(s)),

∫ σ(s)

0

k(s, τ, u(η(τ))) dτ
)

ds

∣

∣

∣

∣

∣

)

≤ λ
(

∣

∣f(t, u(t), u(µ(t)))− f(t, 0, 0)
∣

∣+
∣

∣f(t, 0, 0)
∣

∣

)

×

(

∫ T

0

Gh(t, s)
∣

∣

∣
gh

(

s, u(θ(s)),

∫ σ(s)

0

k(s, τ, u(η(τ))) dτ
)
∣

∣

∣
ds

)

≤
[

ℓ(t) max{|u(t)|, |u(µ(t))|}+ F
]

×

(

∫ T

0

Mh

∣

∣

∣
gh

(

s, u(θ(s)),

∫ σ(s)

0

k(s, τ, u(η(τ))) dτ
)
∣

∣

∣
ds

)

≤ LMh ‖u‖

(
∫ T

0

γ(s)(1 + ‖α‖L1)ψ(‖u‖) ds

)

+ FMh

(
∫ T

0

γ(s)(1 + ‖α‖L1)ψ(‖u‖) ds

)

≤ LMh‖γ‖L1(1 + ‖α‖L1)ψ(‖u‖)‖u‖+ FMh‖γ‖L1(1 + ‖α‖L1)ψ(‖u‖).(2.14)

Taking the supremum in the above inequality (2.11) yields

‖u‖ ≤
FMh‖γ‖L1(1 + ‖α‖L1)ψ(‖u‖)

1 − LMh‖γ‖L1(1 + ‖α‖L1)ψ(‖u‖)
.

Substituting ‖u‖ = r in above inequality yields

r ≤
FMh‖γ‖L1(1 + ‖α‖L1)ψ(r)

1 − LMh‖γ‖L1(1 + ‖α‖L1)ψ(r)
.

This is a contradiction to (2.10). Hence the conclusion (ii) of Theorem 2.1 does not

hold. Therefore the operator equation AxBx = x and consequently the PBVP (1.1)

has a solution on J . This completes the proof.

Remark 2.9. We note that in Theorem 2.8, we only require the hypothesis (A2) to

hold in [−r, r].
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3. EXISTENCE OF EXTREMAL SOLUTIONS

A non-empty closed set K in a Banach algebra X is called a cone if (i) K+K ⊆

K, (ii) λK ⊆ K for λ ∈ R, λ ≥ 0 and (iii) {−K} ∩ K = 0, where 0 is the zero

element of X. A cone K is called to be positive if (iv) K ◦K ⊆ K, where ”◦” is a

multiplication composition in X. We introduce an order relation ≤ in X as follows.

Let x, y ∈ X. Then x ≤ y if and only if y − x ∈ K. A cone K is called to be normal

if the norm ‖ · ‖ is semi-monotone increasing on K, that is, there is a constant N > 0

such that ‖x‖ ≤ N‖y‖ for all x, y ∈ K with x ≤ y. It is known that if the cone K

is normal in X, then every order-bounded set in X is norm-bounded. The details of

cones and their properties appear in Guo and Lakshmikantham [15].

Lemma 3.1 (Dhage [4]). Let K be a positive cone in a real Banach algebra X and

let u1, u2, v1, v2 ∈ K be such that u1 ≤ v1 and u2 ≤ v2. Then u1u2 ≤ v1v2.

For any a, b ∈ X, a ≤ b, the order interval [a, b] is a set in X given by

[a, b] = {x ∈ X : a ≤ x ≤ b}.

Definition 3.2. A mapping T : [a, b] → X is said to be nondecreasing or mono-

tone increasing if x ≤ y implies Tx ≤ Ty for all x, y ∈ [a, b].

We equip the space C(J,R) with the order relation ≤ with the help of the cone

defined by

(3.1) K = {x ∈ C(J,R) : x(t) ≥ 0, ∀t ∈ J}.

It is well known that the cone K is positive and normal in C(J,R). We need the

following definitions in the sequel.

Definition 3.3. A function a ∈ AC(J,R) is called a lower solution of the PBVP

(1.1) on J if the function t 7→
( a(t)

f(t, a(t), a(µ(t)))

)

is absolutely continuous on J and

d

dt

[ a(t)

f(t, a(t), a(µ(t)))

]

≤ g
(

t, a(θ(t)),

∫ σ(t)

0

k(t, s, a(η(s))) ds
)

a.e. t ∈ J

a(0) ≤ a(T ).















Similarly, a function b ∈ AC(J,R) is called an upper solution of the PBVP (1.1) on

J if the function t 7→
( b(t)

f(t, b(t), b(µ(t)))

)

is absolutely continuous on J and

d

dt

[ b(t)

f(t, b(t), b(µ(t)))

]

≥ g
(

t, b(θ(t)),

∫ σ(t)

0

k(t, s, b(η(s))) ds
)

a.e. t ∈ J

b(0) ≥ b(T ).














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Definition 3.4. A solution xM of the PBVP (1.1) is said to be maximal if for any

other solution x to PBVP (1.1) one has x(t) ≤ xM(t), for all t ∈ J. Again a solution

xm of the PBVP (1.1) is said to be minimal if xm(t) ≤ x(t), for all t ∈ J, where x is

any solution of the PBVP (1.1) on J.

Remark 3.5. The upper and lower solutions of the PBVP (1.1) are respectively the

upper and lower solutions of the PBVP (2.5) and vice-versa. Similarly the maxi-

mal and minimal solutions of the PBVP (1.1) are respectively the upper and lower

solutions of the PBVP (2.5) and vice-versa.

3.1. Carathéodory case. We use the following fixed point theorems of Dhage [3]

for proving the existence of extremal solutions for the BVP (1.1) under certain mono-

tonicity conditions.

Theorem 3.6 (Dhage [3]). Let K be a cone in a Banach algebra X and let a, b ∈ X.

Suppose that A,B : [a, b] → K are two nondecreasing operators such that

(a) A is Lipschitz with the Lipschitz constant α,

(b) B is completely continuous, and

(c) AxBx ∈ [a, b] for each x ∈ [a, b].

Further if the cone K is positive and normal, then the operator equation AxBx = x

has the least and the greatest positive solution in [a, b], whenever αM < 1, where

M = ‖B([a, b])‖ := sup{‖Bx‖ : x ∈ [a, b]}.

Remark 3.7. Note that hypothesis (c) of Theorem 3.6 holds if the operators A and

B are positive, monotone increasing and there exist elements a and b in X such that

a ≤ AaBa and AbBb ≤ b.

We need the following definition in the sequel.

Definition 3.8. A function f : R → R is called nondecreasing if f(x) ≤ f(y) for

all x, y ∈ R with x ≤ y. Similarly, f is called increasing in x if f(x) < f(y) for all

x, y ∈ R with x < y.

We consider the following set of assumptions:

(B0) f : J × R × R → R
+ − {0} , gh : J × R × R → R

+.

(B1) The function x 7→
x

f(0, x, x)
is increasing in the interval

[

min
t∈J

a(t),max
t∈J

b(t)
]

.

(B2) The function k(t, s, x) is nondecreasing in x for t, s ∈ J .

(B3) The functions f(t, x, y) and gh(t, x, y) are nondecreasing in x and y almost ev-

erywhere for t ∈ J.

(B4) The PBVP (1.1) has a lower solution a and an upper solution b on J with a ≤ b.
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(B5) The function q : J → R defined by

q(t) = gh

(

t, b(θ(t)),

∫ σ(t)

0

k(t, s, b(η(t))) ds
)

is Lebesgue integrable.

We remark that hypothesis (B5) holds in particular g is L1-Carathéodory on J×R×R.

Remark 3.9. If the hypotheses (B1) -(B4) holds, then the map x 7→
x

f(0, x, x)
is

injective and

a(0)

f(0, a(0), a(0))
≤

a(T )

f(T, a(T ), a(T ))
and

b(0)

f(0, b(0), b(0))
≥

b(T )

f(T, b(T ), b(T ))

which guarantee that a ≤ AaBa and AbBa ≤ b.

Remark 3.10. Assume that hypotheses (B0) through (B5) hold. Then the function

t 7→ gh

(

t, x(θ(t)),
∫ σ(t)

0
k(t, s, x(η(s))) ds

)

is Lebesgue integrable on J and

∣

∣

∣
gh

(

t, x(θ(t)),

∫ σ(t)

0

k(t, s, x(η(s))) ds
)
∣

∣

∣
≤ q(t), a.e. t ∈ J,

for all x ∈ [a, b].

Theorem 3.11. Suppose that the assumptions (A0)-(A1), (A3), (A5) and (B0)-(B5

) hold. Furthermore, if LT‖q‖L1 < 1, where L = maxt∈J ℓ(t), then PBVP (1.1) has

a minimal and a maximal positive solution defined on J.

Proof. Now PBVP (1.1) is equivalent to integral equation (2.7) on J. LetX = C(J,R).

Define two operators A and B on X by (2.11) and (2.12) respectively. Then inte-

gral equation (2.7) is transformed into an operator equation Ax(t)Bx(t) = x(t) in a

Banach algebra X. Notice that (B0) implies A,B : [a, b] → K. Since the cone K in

X is normal, [a, b] is a norm bounded set in X. Now it is shown, as in the proof of

Theorem 2.8, that A is a Lipschitz with a Lipschitz constant L and B is completely

continuous operator on [a, b]. Again the hypothesis (B2)-(B3) implies that A and B

are nondecreasing on [a, b]. To see this, let x, y ∈ [a, b] be such that x ≤ y. Then by

(B3),

Ax(t) = f(t, x(t), x(µ(t))) ≤ f(t, y(t), y(µ(t))) = Ay(t)

for all t ∈ J. Similarly, we have

Bx(t) =

∫ T

0

Gh(t, s)gh

(

s, x(θ(s)),

∫ σ(s)

0

k(s, τ, x(η(τ))) dτ
)

ds

≤

∫ T

0

Gh(t, s)gh

(

s, y(θ(s)),

∫ σ(s)

0

k(s, τ, y(η(τ))) dτ
)

ds

= By(t)
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for all t ∈ J . So A and B are nondecreasing operators on [a, b]. Again Lemma 2.1,

Remark 3.9 and hypothesis (B4) together imply that

a(t) ≤ [f(t, a(t), a(µ(t)))]

(

∫ T

0

Gh(t, s)gh

(

s, a(θ(s)),

∫ σ(s)

0

k(s, τ, a(η(τ))) dτ
)

ds

)

≤ [f(t, x(t), x(µ(t)))]

×

(

∫ T

0

Gh(t, s)gh

(

s, x(θ(s)),

∫ σ(s)

0

k(s, τ, x(η(τ))) dτ
)

ds

)

≤ [f(t, b(t), b(µ(t)))]

(

∫ T

0

Gh(t, s)gh

(

s, b(θ(s)),

∫ σ(s)

0

k(s, τ, b(η(τ))) dτ
)

ds

)

≤ b(t),

for all t ∈ J and x ∈ [a, b]. As a result a(t) ≤ Ax(t)Bx(t) ≤ b(t), for all t ∈ J and

x ∈ [a, b]. Hence AxBx ∈ [a, b] for all x ∈ [a, b]. Again,

M = ‖B([a, b])‖

= sup{‖Bx‖ : x ∈ [a, b]}

≤ sup

{

sup
t∈J

∫ T

0

Gh(t, s)
∣

∣

∣
gh

(

s, x(θ(s)),

∫ σ(s)

0

k(s, τ, x(η(τ))) dτ
)
∣

∣

∣
ds
∣

∣ x ∈ [a, b]

}

≤Mh

∫ T

0

q(s) ds

= Mh‖q‖L1.

Since αM ≤ LMh‖q‖L1 < 1, we apply Theorem 3.6 to the operator equation

AxBx = x to yield that the PBVP (1.1) has a minimal and a maximal positive

solution defined on J. This completes the proof.

3.2. Discontinuous case. We use the following fixed point theorems of Dhage [6]

for proving the existence of extremal solutions for the BVP (1.1) when the right hand

side function g is discontinuous on J × R × R.

Theorem 3.12 (Dhage [6]). Let K be a cone in a Banach algebra X and let a, b ∈ X.

Suppose that A,B : [a, b] → K are two nondecreasing operators such that

(a) A is completely continuous,

(b) B is totally bounded, and

(c) AxBy ∈ [a, b] for each x, y ∈ [a, b].

Further if the cone K is positive and normal, then the operator equation AxBx = x

has the least and the greatest positive solution in [a, b].
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Theorem 3.13. (Dhage [6]). Let K be a cone in a Banach algebra X and let a, b ∈ X.

Suppose that A,B : [a, b] → K are two nondecreasing operators such that

(a) A is Lipschitz with the Lipschitz constant α,

(b) B is totally bounded, and

(c) AxBy ∈ [a, b] for each x, y ∈ [a, b].

Further if the cone K is positive and normal, then the operator equation AxBx = x

has the least and the greatest positive solution in [a, b], whenever αM < 1, where

M = ‖B([a, b])‖ := sup{‖Bx‖ : x ∈ [a, b]}.

Remark 3.14. Note that hypothesis (c) of Theorems 3.12, and 3.13 holds if the

operators A and B are positive, monotone increasing and there exist elements a and

b in X such that a ≤ AaBa and AbBb ≤ b.

We need the following definition in the sequel.

Definition 3.15. A mapping β : J × R → R is said to be Chandrabhan if

(i) t 7→ β(t, x, y) is measurable for each x, y ∈ C(J,R), and

(ii) β(t, x, y) is nondecreasing in x and y almost everywhere for t ∈ J.

Again a Chandrabhan function β(t, x, y) is called L1-Chandrabhan if

(iii) for each real number r > 0 there exists a function qr ∈ L1(J,R) such that

|β(t, x, y)| ≤ qr(t), a.e. t ∈ J

for all x, y ∈ R with |x| ≤ r and |y| ≤ r.

Finally a Chandrabhan function β(t, x, y) is called L1
X -Chandrabhan if

(iv) there exists a function q ∈ L1(J,R) such that

|β(t, x, y)| ≤ q(t), a.e. t ∈ I

for all x, y ∈ R.

For convenience, the function h is referred to as a bound function of β.

We consider the following hypotheses in the sequel.

(C1) The function f(t, x, y) is nondecreasing in x and y almost everywhere for t ∈ J.

(C2) The function gh defined by (2.6) is Chandrabhan.

Theorem 3.16. Suppose that the assumptions (A0)-(A1), (B0)-(B2), (B4)-(B5)and

(C1)-(C2) hold. Then PBVP (1.1) has a minimal and a maximal positive solution

defined on J.
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Proof. Now PBVP (1.1) is equivalent to integral equation (2.7) on J. LetX = C(J,R).

Define two operators A and B on X by (2.11) and (2.12) respectively. Then integral

equation (2.7) is transformed into an operator equation Ax(t)Bx(t) = x(t) in a

Banach algebraX.Notice that (B0) implies A,B : [a, b] → K.Note that the conditions

(B1) and (B1) provides a ≤ AaBa and AbBb ≤ b. Since the cone K in X is normal,

[a, b] is a norm bounded set in X.

Step I : First we show that A is completely continuous on [a, b]. Now the cone

K in X is normal, so the order interval [a, b] is norm-bounded in X. Hence there

exists a constant r > 0 such that ‖x‖ ≤ r for all x ∈ [a, b]. As f is continuous on

compact J× [−r, r]× [−r, r], it attains its maximum, say M . Therefore for any subset

S of [a, b], we have:

‖A(S)‖P = sup{‖Ax‖ : x ∈ S}

= sup
{

sup
t∈J

|f(t, x(t), x(µ(t)))| : x ∈ S
}

≤ sup
{

sup
t∈J

|f(t, x, y)| : x, y ∈ [−r, r]
}

≤M.

This shows that A(S) is a uniformly bounded subset of X.

Next we note that the function f(t, x, y) is uniformly continuous on [0, T ] ×

[−r, r] × [−r, r]. Therefore for any t, τ ∈ [0, T ], we have:

|f(t, x, y)− f(τ, x, y)| → 0 as t→ τ

for all x, y ∈ [−r, r]. Similarly for any x1, x2, y1, y2 ∈ [−r, r]

|f(t, x1, x2) − f(t, y1, y2)| → 0 as (x1 → y1), (x2 → y2)

for all t ∈ [0, T ]. Hence any t, τ ∈ [0, T ] and for any x ∈ S one has

|Ax(t) − Ax(τ)| = |f(t, x(t), x(µ(t))) − f(τ, x(τ), x(µ(τ)))|

≤ |f(t, x(t), x(µ(t))) − f(τ, x(t), x(µ(t))|

+ |f(τ, x(t), x(µ(t)) − f(τ, x(τ), x(µ(τ)))|

→ 0 as t→ τ

uniformly for all x ∈ S. This shows that A(S) is an equi-continuous set in X. Now an

application of Arzelà-Ascoli theorem yields that A is a completely continuous operator

on [a, b].

Step II : Next we show that B is totally bounded operator on [a, b]. To finish, we

shall show that B(S) is uniformly bounded ad equi-continuous set in X for any subset

S of [a, b]. Since the cone K in X is normal, the order interval [a, b] is norm-bounded.
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Let y ∈ B(S) be arbitrary. Then,

y(t) =

∫ T

0

Gh(t, s)gh

(

s, x(θ(s)),

∫ σ(s)

0

k(s, τ, x(η(τ))) dτ
)

ds

for some x ∈ S. By hypothesis (B2), one has

|y(t)| =

∫ T

0

Gh(t, s)
∣

∣

∣
gh

(

s, x(θ(s)),

∫ σ(s)

0

k(s, τ, x(η(τ))) dτ
)
∣

∣

∣
ds

≤Mh

∫ T

0

q(s) ds

≤Mh‖q‖L1 .

Taking the supremum over t,

‖y‖ ≤Mh‖q‖L1,

which shows that B(S) is a uniformly bounded set in X. Similarly let t, τ ∈ J . To

finish it is enough to show that y′ is bounded on [0, T ]. Now for any t ∈ [0, T ],

|y′(t)| ≤
∣

∣

∣

∫ T

0

∂

∂t
Gh(t, s)

∣

∣

∣
gh

(

s, x(θ(s)),

∫ σ(s)

0

k(s, τ, x(η(τ))) dτ
)
∣

∣

∣
ds
∣

∣

∣

=
∣

∣

∣

∫ T

0

|(−h(t))|Gh(t, s)
∣

∣

∣
gh

(

s, x(θ(s)),

∫ σ(s)

0

k(s, τ, x(η(τ))) dτ
)
∣

∣

∣
ds
∣

∣

∣

≤ HMh‖q‖L1

= c.

where H = maxt∈J |h(t)|. Hence for any t, τ ∈ [0, T ] one has

|y(t) − y(τ)| ≤ c |t− τ | → 0 as t→ τ

uniformly for all y ∈ B(S). This shows that B(S) is a equi-continuous set of functions

in [a, b]. for all S ⊂ [a, b]. Now B(S) is a uniformly bounded and equi-continuous, so

it is totally bounded by Arzelà-Ascoli theorem. Thus all the conditions of Theorem

3.12 are satisfied and hence an application of it yields that the PBVP (1.1) has a

maximal and a minimal positive solution on J .

Theorem 3.17. Suppose that the assumptions (A0)-(A1), (A3), (B0)-(B2), (B4)-(B5)

and (C1)-(C2) hold. Furthermore, if

LMh‖q‖L1 < 1,

where q is given in Remark 3.5 and L = maxt∈J ℓ(t), then the PBVP (1.1) has a

minimal and a maximal positive solution on J.

Proof. Now PBVP (1.1) is equivalent to integral equation (2.7) on J. LetX = C(J,R).

Define two operators A and B on X by (2.11) and (2.12) respectively. Then integral

equation (2.7) is transformed into an operator equation Ax(t)Bx(t) = x(t) in a Ba-

nach algebra X. Notice that (B0) implies A,B : [a, b] → K. Note that the conditions
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(B1), (B2) and (B3) provides a ≤ AaBa and AbBb ≤ b. Since the cone K in X is

normal, [a, b] is a norm bounded set in X. Now it can be shown as in the proofs of

Theorem 3.11 and Theorem 3.16 that the operator A is a Lipschitz with the Lips-

chitz constant α = L and B is totally bounded with M = ‖B([a, b])‖ = Mh‖q‖L1 on

[a, b]. Since αM = LMh‖q‖L1 < 1, the desired conclusion follows by an application

of Theorem 3.13.

4. AN EXAMPLE

Given the closed and bounded interval J = [0, π] in R, consider the first order

periodic boundary value problem of FBVP,

(4.1)
d

dt

[

x(t)

1 + sin t
12

(|x(t)| + |x(t2/π)|)

]

= −

(

x(t)

1 + sin t
12

(|x(t)| + |x(t2/π)|)

)

+ g
(

t, x(t/2),

∫ π−t

0

k(t, s, x(s/3)) ds
)

a.e. t ∈ J

x(0) = x(π)



































where, the functions k : J × J × R → R, g : J × R × R → R, θ, µ, σ, η : J → J are

given by

g(t, x, y) =
p(t)x

1 + |x|
+ |y|,

and

k(t, s, x) =
x

4π(1 + |x|)

where p ∈ L1(J,R). Here,

µ(t) = t2/π, θ(t) = t/2, σ(t) = π − t, and η(t) = t/3

for t ∈ J . Clearly the functions k : J × J × R → R and θ, µ, σ, η : J → J are

continuous with µ(0) = 0 and µ(π) = π.

Here, the function f : J × R × R → R − {0} is defined by

f(t, x, y) = 1 +
sin t

12
(|x| + |y|).

Obviously, f : J × R × R → R
+ − {0}. It is easy to verify that f is continuous and

satisfies the hypotheses (A0)-(A3) on J × R × R with ℓ(t) = 1
6

for all t ∈ J . To see
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this, let x, y ∈ R, then we have

|f(t, x1, x2) − f(t, y1, y2)| =

∣

∣

∣

∣

[

1 +
sin t

12
(|x1| + |x2|)

]

−
[

1 +
sin t

12
(|y1| + |y2|)

]

∣

∣

∣

∣

≤
1

12

∣

∣( |x1| − |y1| + |x2| − |y2| )
∣

∣

≤
1

12

(

|x1 − y1| + |x2 − y2|
)

≤
1

6
max{|x1 − y1| , |x2 − y2|}.

Again the function g(t, x, y) is measurable in t for all x, y ∈ R and continuous in

x and y almost everywhere for t ∈ J , and so g defines a Carathéodory mapping

g : J × R × R → R. Furthermore, g1(= g) is also Carathéodory on J × R × R, and

|g1(t, x, y)| =

∣

∣

∣

∣

p(t) x(t)

1 + |x(t)|
+

∫ π−t

0

x(s/3)

4π(1 + |x(s/2)|)
ds

∣

∣

∣

∣

≤

∣

∣

∣

∣

p(t) x(t)

1 + |x(t)|

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ π−t

0

x(s/3)

4π(1 + |x(s/2)|)
ds

∣

∣

∣

∣

≤ |p(t)| +
1

4

Hence, the function g1 is L1
R
-Carathéodory and satisfies all the hypotheses (A5) and

(A6) on J×R×R with γ(t) = |p(t)|+ 1
4

on J and ψ(r) = 1 for all r ∈ R
+. Therefore,

if ‖p‖L1 < 5 and r = 2, then by Theorem 3.6, then the FBVP (4.1) has a solution in

B2(0) defined on J .

Remark 4.1. While concluding this paper, we mention that our existence results of

this paper can be extended to the infinite dimensional Banach algebras with appro-

priate modifications. Also existence results of this paper, include the existence results

for the functional nonlinear quadratic differential equations with periodic boundary

conditions, viz.,

(4.2)

d

dt

[

x(t)

f(t, x(µ(t)))

]

= g(t, x(η(t))) a.e. t ∈ J,

x(0) = x(T ).















which is again new to the literature. A special case of the PBVP (4.2) with µ(t) =

t = η(t) has been discussed in Dhage et al [12]. In a nutshell, our problem as well

as the established results are quite general in the theory of periodic boundary value

problems of ordinary nonlinear differential equations.
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