
Dynamic Systems and Applications 18 (2009) 457-468

A STABILITY RESULT IN A MEMORY-TYPE
TIMOSHENKO SYSTEM

SALIM A. MESSAOUDI AND MUHAMMAD I. MUSTAFA

King Fahd University of Petroleum and Minerals, Department of Mathematics

and Statistics, Dhahran 31261, Saudi Arabia

ABSTRACT. In this paper we consider the following Timoshenko system

ϕtt − (ϕx + ψ)x = 0, (0, 1) × IR+

ψtt − ψxx + ϕx + ψ +

∫

t

0

g(t− τ)ψxx(τ)dτ = 0, (0, 1) × IR+

with Dirichlet boundary conditions where g is a positive nonincreasing function. We establish a

generalized stability result for this system.
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1. INTRODUCTION

Timoshenko [1] gave the following system of coupled hyperbolic equations

ρutt = (K(ux − ϕ))x, in (0, L) × (0,+∞)

Iρϕtt = (EIϕx)x +K(ux − ϕ), in (0, L) × (0,+∞),(1.1)

as a simple model describing the transverse vibration of a beam, where t denotes the

time variable and x is the space variable along the beam of length L, in its equilibrium

configuration, u is the transverse displacement of the beam and ϕ is the rotation angle

of the filament of the beam. The coefficients ρ, Iρ, E, I and K are respectively the

density (the mass per unit length), the polar moment of inertia of a cross section,

Young’s modulus of elasticity, the moment of inertia of a cross section, and the shear

modulus.

System (1.1) has been studied by many mathematicians and results concern-

ing existence and asymptotic behavior have been established. Kim and Renardy [2]

considered (1.1) together with two linear boundary conditions of the form

Kϕ(L, t) −K
∂u

∂x
(L, t) = α

∂u

∂t
(L, t), ∀t ≥ 0

EI
∂ϕ

∂x
(L, t) = −β

∂ϕ

∂t
(L, t), ∀t ≥ 0
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and used the multiplier techniques to establish an exponential decay result for the

energy of (1.1). They also provided numerical estimates to the eigenvalues of the

operator associated with system (1.1). An analogous result was also established

by Feng et al. [3], where the stabilization of vibrations in a Timoshenko system

was studied. Raposo et al. [4] studied (1.1) with homogeneous Dirichlet boundary

conditions and two linear frictional dampings. Precisely, they looked into the following

system

(1.2)

ρ1utt −K(ux − ϕ)x + ut = 0, in (0, L) × (0,+∞)

ρ2ϕtt − bϕxx +K(ux − ϕ) + ϕt = 0, in (0, L) × (0,+∞)

u(0, t) = u(L, t) = ϕ(0, t) = ϕ(L, t) = 0, ∀t > 0

and proved that the energy associated with (1.2) decays exponentially. To obtain

their result, they used a method developed by Liu and Zheng [5]. This method is

different from the usual ones such as the classical energy method. It mainly uses

the semigroup theory. Soufyane and Wehbe [6] showed that it is possible to stabilize

uniformly (1.1) by using a unique locally distributed feedback. So, they considered

(1.3)

ρutt = (K(ux − ϕ))x, in (0, L) × (0,+∞)

Iρϕtt = (EIϕx)x +K(ux − ϕ) − bϕt, in (0, L) × (0,+∞)

u(0, t) = u(L, t) = ϕ(0, t) = ϕ(L, t) = 0, ∀t > 0,

where b is a positive and continuous function, which satisfies

b(x) ≥ b0 > 0, ∀ x ∈ [a0, a1] ⊂ [0, L].

In fact, they proved that the uniform stability of (1.3) holds if and only if the wave

speeds are equal
(

K
ρ

= EI
Iρ

)

; otherwise only the asymptotic stability has been proved.

This result improves earlier ones by Soufyane [7] and Shi and Feng [8], where an ex-

ponential decay of the solution energy of (1.1) together, with two locally distributed

feedbacks, had been proved. Xu and Yung [9] studied a system of Timoshenko beams

with pointwise feedback controls, sought information about the eigenvalues and eigen-

functions of the system, and used this information to examine the stability of the

system. Ammar-Khodja et al. [10] considered a linear Timoshenko-type system with

memory of the form

(1.4)
ρ1ϕtt −K(ϕx + ψ)x = 0

ρ2ψtt − bψxx +
∫ t

0
g(t− s)ψxx(s)ds+K(ϕx + ψ) = 0

in (0, L)× (0,+∞), together with homogeneous boundary conditions. They used the

multiplier techniques and proved that the system is uniformly stable if and only if the

wave speeds are equal
(

K
ρ1

= b
ρ2

)

and g decays uniformly. Precisely, they proved an

exponential decay if g decays in an exponential rate and polynomially if g decays in a

polynomial rate. They also required some extra technical conditions on both g′ and g′′

to obtain their result. The feedback of memory type has also been used by Santos [11].
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He considered a Timoshenko system and showed that the presence of two feedbacks

of memory type at a portion of the boundary stabilizes the system uniformly. He also

obtained the rate of decay of the energy, which is exactly the rate of decay of the

relaxation functions. Shi and Feng [12] investigated a nonuniform Timoshenko beam

and showed that, under some locally distributed controls, the vibration of the beam

decays exponentially. We refer the reader to [13], [14], and [15] for more results.

In the present work we are concerned with

(1.5)































ϕtt − (ϕx + ψ)x = 0, (0, 1) × IR+

ψtt − ψxx + ϕx + ψ +
∫ t

0
g(t− τ)ψxx(τ)dτ = 0, (0, 1) × IR+

ϕ(0, t) = ϕ(1, t) = ψ(0, t) = ψ(1, t) = 0, t ≥ 0

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), x ∈ (0, 1)

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x), x ∈ (0, 1).

Our aim in this work is to establish a generalized stability result for system (1.5). We

should note here that we do not loose the generality by taking ρ1, ρ2, K, b, appeared

in (1.4), to be equal to one and our argument also works for ρ1/ρ2 = K/b. The paper

is organized as follows. In section 2, we present some notations and material needed

for our work. In section 3, we prove several technical lemmas. The statement and the

proof of our main result will be given in section 4. Finally, we give some comments

and remarks.

2. PRELIMINARIES

In this section we present some material needed in the proof of our main result. We

use the standard Lebesgue space L2(0, 1) and the Sobolev space H1
0 (0, 1) with their

usual scalar products and norms. We will use c, throughout this paper, to denote a

generic positive constant.

For the relaxation function g we assume

(H1) g : IR+ → IR+ is a differentiable function such that

g(0) > 0, 1 −

∞
∫

0

g(s)ds = l > 0.

(H2) There exists a nonincreasing differentiable function ξ : IR+ → IR+ satisfying

g′(t) ≤ −ξ(t)g(t), t ≥ 0

For completeness we state, without proof, an existence and regularity result.

Proposition 2.1. Let (ϕ0, ϕ1), (ψ0, ψ1) ∈ H1
0 (0, 1) × L2(0, 1) be given. Assume that

(H1) and (H2) are satisfied, then problem (1.5) has a unique global (weak) solution

ϕ, ψ ∈ C(IR+;H1
0 (0, 1)) ∩ C1(IR+;L2(0, 1)).
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Moreover, if

(ϕ0, ϕ1), (ψ0, ψ1) ∈ (H2(0, 1) ∩H1
0 (0, 1)) ×H1

0(0, 1)

then the solution satisfies

ϕ, ψ ∈ C(IR+;H2(0, 1) ∩H1
0 (0, 1)) ∩ C1(IR+;H1

0(0, 1)) ∩ C2(IR+;L2(0, 1)).

Remark 2.1. This result can be proved using standard arguments such as the

semigroup method or the Galerkin method.

Now, we introduce the energy functional

(2.1) E(t) :=
1

2

∫ 1

0

(

ϕ2
t + ψ2

t + (1 −

∫ t

0

g(s)ds)ψ2
x + (ϕx + ψ)2

)

dx+
1

2
(g ◦ ψx),

where, for all v ∈ L2(0, 1),

(g ◦ v)(t) =

∫ 1

0

∫ t

0

g(t− s)(v(t) − v(s))2ds dx.

3. TECHNICAL LEMMAS

In this section we establish several lemmas needed to prove our main result.

Lemma 3.1. Let (ϕ, ψ) be the solution of (1.5). Then the energy functional satisfies

(3.1) E ′(t) = −
1

2
g(t)

∫ 1

0

ψ2
xdx+

1

2
(g′ ◦ ψx) ≤ 0.

Proof. By multiplying equations in (1.5) by ϕt and ψt respectively and integrating

over (0, 1), using integration by parts, hypotheses (H1)-(H2) and some manipulations,

we obtain (3.1) for any regular solution. This equality remains valid for weak solutions

by a simple density argument.

Using Cauchy-Schwartz and Poincaré’s inequalities, the proof of the following

lemma is immediate.

Lemma 3.2. There exists c > 0 such that, for all u ∈ H1
0 (0, 1),

∫ 1

0

(
∫ t

0

g(t− s)(u(t) − u(s))ds

)2

dx ≤ c(g ◦ ux)(t).

Now we are going to construct a Lyapunov functional L equivalent to E. For this,

we define several functionals which allow us to obtain the needed estimates.

Lemma 3.3. Under the assumptions (H1) and (H2), the functional I defined by

I(t) := −

∫ 1

0

ψt

∫ t

0

g(t− s)(ψ(t) − ψ(s))ds dx

satisfies, along the solution, the estimate

(3.2) I ′(t) ≤ −(

∫ t

0

g(s)ds− δ)

∫ 1

0

ψ2
t dx+ δ

∫ 1

0

(ϕx + ψ)2dx
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+cδ

∫ 1

0

ψ2
xdx+ c(δ +

1

δ
)(g ◦ ψx)(t) −

c

δ
g′ ◦ ψx

for all δ > 0.

Proof. Direct computations, using (1.5), yield

I ′(t) = −

∫ 1

0

ψt

∫ t

0

g′(t− s)(ψ(t) − ψ(s))ds dx− (

∫ t

0

g(s)ds)

∫ 1

0

ψ2
t dx

−

∫ 1

0

[ψxx −

∫ t

0

g(t− s)ψxx(s)ds− ϕx − ψ]

∫ t

0

g(t− s)(ψ(t) − ψ(s))ds dx

= −

∫ 1

0

ψt

∫ t

0

g′(t− s)(ψ(t) − ψ(s))ds dx− (

∫ t

0

g(s)ds)

∫ 1

0

ψ2
t dx

+

∫ 1

0

ψx

∫ t

0

g(t− s)(ψx(t) − ψx(s))ds dx

+

∫ 1

0

(ϕx + ψ)

∫ t

0

g(t− s)(ψ(t) − ψ(s))ds dx

−

∫ 1

0

(

∫ t

0

g(t− s)ψx(s)ds)(

∫ t

0

g(t− s)(ψx(t) − ψx(s))ds)dx

We now estimate the terms in the right side of the above equality as follows.

By using Young’s inequality and Lemma 3.2 [for (−g′) ] we obtain, for all δ > 0,

−

∫ 1

0

ψt

∫ t

0

g′(t− s)(ψ(t) − ψ(s))ds dx ≤ δ

∫ 1

0

ψ2
t dx−

c

δ
(g′ ◦ ψx).

Similarly, we have
∫ 1

0

ψx

∫ t

0

g(t− s)(ψx(t) − ψx(s))ds dx ≤ δ

∫ 1

0

ψ2
xdx+

c

δ
g ◦ ψx,

∫ 1

0

(ϕx + ψ)

∫ t

0

g(t− s)(ψ(t) − ψ(s))ds dx ≤ δ

∫ 1

0

(ϕx + ψ)2dx+
c

δ
g ◦ ψx,

and

−

∫ 1

0

(

∫ t

0

g(t− s)ψx(s)ds)(

∫ t

0

g(t− s)(ψx(t) − ψx(s))ds)dx

≤ δ

∫ 1

0

(
∫ t

0

g(t− s)(ψx(s) − ψx(t) + ψx(t))ds

)2

dx

+
c

δ

∫ 1

0

(
∫ t

0

g(t− s)(ψx(t) − ψx(s))ds

)2

dx

≤ 2δ

∫ 1

0

ψ2
x

(
∫ t

0

g(s)ds

)2

dx+ (2δ +
c

δ
)

∫ 1

0

(
∫ t

0

g(t− s)(ψx(t) − ψx(s))ds

)2

dx

≤ cδ

∫ 1

0

ψ2
xdx+ c(δ +

1

δ
)g ◦ ψx

By combining all the above estimates, the assertion of Lemma 3.3 is proved.
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Lemma 3.4. Under the assumptions (H1) and (H2), the functional K1 defined by

K1(t) := −

∫ 1

0

(ψψt + ϕϕt)dx

satisfies, along the solution, the estimate

(3.3) K ′

1(t) ≤ −

∫ 1

0

(ψ2
t + ϕ2

t )dx+

∫ 1

0

(ψ + ϕx)
2dx+ c

∫ 1

0

ψ2
xdx+ cg ◦ ψx

Proof. By exploiting equations (1.5) and repeating the same procedure as in above,

we have

K ′

1(t) = −

∫ 1

0

(ψ2
t + ϕ2

t )dx−

∫ 1

0

ϕ(ψx + ϕxx)dx

−

∫ 1

0

ψ[ψxx −

∫ t

0

g(t− s)(ψx(s))xds− ϕx − ψ]dx

= −

∫ 1

0

(ψ2
t + ϕ2

t )dx+

∫ 1

0

ψ2
xdx−

∫ 1

0

ψx

[
∫ t

0

g(t− s)ψx(s)ds

]

dx

+

∫ 1

0

(ψ + ϕx)
2dx

≤ −

∫ 1

0

(ψ2
t + ϕ2

t )dx+

∫ 1

0

(ψ + ϕx)
2dx+ c

∫ 1

0

ψ2
xdx+ cg ◦ ψx

This completes the proof.

Lemma 3.5. Assume that (H1) and (H2) hold. Then, for any 0 < ε < 1, the

functional K2 defined by

K2(t) :=

∫ 1

0

ψt(ψ + ϕx)dx+

∫ 1

0

ψxϕtdx−

∫ 1

0

ϕt

∫ t

0

g(t− s)ψx(s)ds dx

satisfies, along the solution, the estimate

K ′

2(t) ≤

[(

ψx −

∫ t

0

g(t− s)ψx(s)ds

)

ϕx

]x=1

x=0

+ εc

∫ 1

0

ϕ2
tdx

−

∫ 1

0

(ψ + ϕx)
2dx+

c

ε

∫ 1

0

ψ2
xdx+

∫ 1

0

ψ2
t dx−

c

ε
g′ ◦ ψx.(3.4)

Proof. Using equations (1.5) and integrating by parts yield

K ′

2(t) =

∫ 1

0

(ϕx + ψ)[ψxx −

∫ t

0

g(t− s)ψxx(s)ds− ϕx − ψ]dx

+

∫ 1

0

(ϕxt + ψt)ψtdx+

∫ 1

0

ψxtϕtdx+

∫ 1

0

ψx(ϕx + ψ)xdx

−

∫ 1

0

(ϕx + ψ)x

∫ t

0

g(t− s)ψx(s)ds dx

−

∫ 1

0

ϕt

(

g(0)ψx +

∫ t

0

g′(t− s)ψx(s)ds

)

dx
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=

[(

ψx −

∫ t

0

g(t− s)ψx(s)ds

)

ϕx

]x=1

x=0

−

∫ 1

0

(ψ + ϕx)
2dx+

∫ 1

0

ψ2
t dx

− g(t)

∫ 1

0

ψxϕtdx−

∫ 1

0

ϕt

∫ t

0

g′(t− s)(ψx(s) − ψx(t))ds dx

By using Young’s inequality, (3.4) is established.

Lemma 3.6. Assume that (H1) and (H2) hold. Let m ∈ C1([0, 1]) be a function

satisfying m(0) = −m(1) = 2. Then there exists c > 0 such that, for any 0 < ε < 1,

the functional K3 defined by

K3(t) :=
1

4ε

∫ 1

0

m(x)ψt

(

ψx −

∫ t

0

g(t− s)ψx(s)ds

)

dx+ ε

∫ 1

0

m(x)ϕtϕxdx

satisfies, along the solution, the estimate

K ′

3(t) ≤ −
1

4ε

[

(

ψx(1, t) −

∫ t

0

g(t− s)ψx(1, s)ds

)2

+

(

ψx(0, t) −

∫ t

0

g(t− s)ψx(0, s)ds

)2
]

− ε
(

ϕ2
x(1, t) + ϕ2

x(0, t)
)

+ (
1

4
+ εc)

∫ 1

0

(ψ + ϕx)
2dx+ εc

∫ 1

0

ϕ2
tdx

+
c

ε2

(
∫ 1

0

ψ2
xdx+ g ◦ ψx

)

+
c

ε

∫ 1

0

ψ2
t dx−

c

ε
(g′ ◦ ψx)(3.5)

Proof. Using equations (1.5) and integrating by parts yield

K ′

3(t) =
1

4ε

∫ 1

0

m(x)

(

ψx −

∫ t

0

g(t− s)ψx(s)ds

)

x

(

ψx −

∫ t

0

g(t− s)ψx(s)ds

)

dx

−
1

4ε

∫ 1

0

m(x)

(

ψx −

∫ t

0

g(t− s)ψx(s)ds

)

(ϕx + ψ)dx

+
1

4ε

∫ 1

0

m(x)ψt

(

ψxt − g(0)ψx −

∫ t

0

g′(t− s)ψx(s)ds

)

dx

+ ε

∫ 1

0

m(x)ψxϕxdx+ ε

∫ 1

0

m(x)ϕxxϕxdx+ ε

∫ 1

0

m(x)ϕtϕxtdx

=
1

4ε

[

−

(

[ψx(1, t) −

∫ t

0

g(t− s)ψx(1, s)ds]
2 + [ψx(0, t) −

∫ t

0

g(t− s)ψx(0, s)ds]
2

)

−
1

2

∫ 1

0

m′(x)

(

ψx −

∫ t

0

g(t− s)ψx(s)ds

)2

dx

−

∫ 1

0

m(x)

(

ψx −

∫ t

0

g(t− s)ψx(s)ds

)

(ϕx + ψ)dx−
1

2

∫ 1

0

m′(x)ψ2
t dx

+

∫ 1

0

m(x)ψt

(
∫ t

0

g′(t− s)(ψx(t) − ψx(s))ds

)

dx− g(t)

∫ 1

0

m(x)ψxψtdx

]
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+ ε

[

∫ 1

0

m(x)ψxϕxdx−
(

ϕ2
x(1, t) + ϕ2

x(0, t)
)

−
1

2

∫ 1

0

m′(x)ϕ2
xdx−

1

2

∫ 1

0

m′(x)ϕ2
tdx

]

By using Young’s and Poincaré’s inequalities, Lemma 3.2,and the fact that

ϕ2
x ≤ 2(ψ + ϕx)

2 + 2ψ2

we obtain (3.5).

Lemma 3.7. Assume that (H1) and (H2) hold. Then, after fixing ε small enough,

the functional K defined by

K(t) := 3cεK1(t) +K2(t) +K3(t)

satisfies, along the solution, the estimate

(3.6)

K ′(t) ≤ −
1

2

∫ 1

0

(ψ+ϕx)
2dx− τ

∫ 1

0

ϕ2
tdx+ c

∫ 1

0

ψ2
t dx+ c

∫ 1

0

ψ2
xdx+ cg ◦ψx − cg′ ◦ψx

where τ = cε.

Proof. By using Lemma 3.4, Lemma 3.5, Lemma 3.6, and the fact that
(

ψx −

∫ t

0

g(t− s)ψx(s)ds

)

ϕx ≤ εϕ2
x +

1

4ε

(

ψx −

∫ t

0

g(t− s)ψx(s)ds

)2

,

we obtain (3.6).

As in [10], we use the multiplier w which solves

(3.7) −wxx = ψx, w(0) = w(1) = 0.

Lemma 3.8. The solution of (3.7) satisfies
∫ 1

0

w2
xdx ≤

∫ 1

0

ψ2dx

and
∫ 1

0

w2
t dx ≤

∫ 1

0

ψ2
t dx.

Proof. We multiply equation (3.7) by w, integrate by parts, and use the Cauchy-

Schwarz inequality, to get
∫ 1

0

w2
xdx ≤

∫ 1

0

ψ2dx.

Next, we differentiate (3.7) with respect to t to obtain, by similar calculations,
∫ 1

0

w2
xtdx ≤

∫ 1

0

ψ2
t dx.
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Poincaré’s inequality, then yields
∫ 1

0

w2
t dx ≤

∫ 1

0

ψ2
t dx.

This completes the proof of Lemma 3.8.

Lemma 3.9. Assume that (H1) and (H2) hold. Then, the functional J defined by

J(t) :=

∫ 1

0

(ψψt + wϕt)dx

satisfies, along the solution, the estimate

(3.8) J ′(t) ≤ −
l

2

∫ 1

0

ψ2
xdx+

c

ε0

∫ 1

0

ψ2
t dx+ ε0

∫ 1

0

ϕ2
tdx+ cg ◦ ψx

for any 0 < ε0 < l ( l is defined in (H1)).

Proof. Using equations (1.5), integrating by parts, and Young’s inequality, we get

J ′(t) =

∫ 1

0

(ψ2
t − ψ2

x)dx+

∫ 1

0

ψx

∫ t

0

g(t− s)ψx(s)ds dx

−

∫ 1

0

ψ(ψ + ϕx)dx+

∫ 1

0

w(ψx + ϕxx)dx+

∫ 1

0

wtϕtdx

≤

∫ 1

0

ψ2
t dx−

l

2

∫ 1

0

ψ2
xdx+ cg ◦ ψx

+

∫ 1

0

(w2
x − ψ2)dx+ ε0

∫ 1

0

ϕ2
tdx+

1

4ε0

∫ 1

0

w2
t dx

Then Poincaré’s inequality and Lemma 3.8 give the desired result.

4. GENERALIZED STABILITY

We are now ready to state and prove our main result.

Theorem 4.1. Let (ϕ0, ϕ1), (ψ0, ψ1) ∈ H1
0 (0, 1) × L2(0, 1) be given. Assume that

(H1) and (H2) are satisfied, then there exist two positive constants c and ω, for which

the solution of problem (1.5) satisfies, for t large,

(4.1) E(t) ≤ ce−ω
R t

0
ξ(s)ds

Proof. For N1, N2, N3 > 1, let

L(t) := N1E(t) +N2I(t) +N3J +K(t)

and let g0 =
∫ t0

0
g(s)ds > 0 for some fixed t0 > 0. By combining (3.1), (3.2), (3.6),

(3.8), and taking δ = 1/(4N2) (in (3.2)), we arrive at

L′(t) ≤ −(
lN3

2
−

5

4
c)

∫ 1

0

ψ2
xdx− (τ − ε0N3)

∫ 1

0

ϕ2
tdx

− (N2g0 −
1

4
− c

N3

ε0
− c)

∫ 1

0

ψ2
t dx−

1

4

∫ 1

0

(ψ + ϕx)
2dx
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+ (4cN2
2 +

1

4
c+ cN3 + c)(g ◦ ψx)(t) + (

N1

2
− 4cN2

2 − c)(g′ ◦ ψx)(t)(4.2)

for all t ≥ t0 and 0 < ε0 < l.

Now, we choose N3 large enough so that

c1 := (
lN3

2
−

5

4
c) > 0,

then ε0 small enough so that

c2 := (τ − ε0N3) > 0

Next, we choose N2 large enough so that

c3 := (N2g0 −
1

4
− c

N3

ε0

− c) > 0

Finally, we choose N1 large enough so that

(
N1

2
− 4cN2

2 − c) > 0

Thus, (4.2) becomes

L′(t) ≤ −c1

∫ 1

0

ψ2
xdx− c2

∫ 1

0

ϕ2
tdx− c3

∫ 1

0

ψ2
t dx

(4.3) −
1

4

∫ 1

0

(ψ + ϕx)
2dx+ c(g ◦ ψx)(t) ≤ −kE(t) + c(g ◦ ψx)(t),

for all t ≥ t0.

On the other hand, we can choose N1 even larger (if needed) so that

(4.4) L(t) ∼ E(t).

Therefore, by using (H2), (3.1), and (4.3), we obtain

ξ(t)L′(t) ≤ −kξ(t)E(t) + cξ(t)(g ◦ ψx)(t)

= −kξ(t)E(t) + cξ(t)

∫ 1

0

∫ t

0

g(t− s)(ψx(t) − ψx(s))
2ds dx

≤ −kξ(t)E(t) + c

∫ 1

0

∫ t

0

ξ(t− s)g(t− s)(ψx(t) − ψx(s))
2ds dx

≤ −kξ(t)E(t) − c

∫ 1

0

∫ t

0

g′(t− s)(ψx(t) − ψx(s))
2ds dx

≤ −kξ(t)E(t) − cE ′(t), ∀t ≥ t0,

which gives

(ξL + cE)′ (t) ≤ −kξ(t)E(t), ∀t ≥ t0.

Hence, using the fact that

(4.5) F = ξL + cE ∼ E,
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we obtain, for some positive constant ω,

F ′(t) ≤ −ωξ(t)F (t), ∀t ≥ t0.

A simple integration over (t0, t), leads to

F (t) ≤ F (t0)e
−ω

R t

t0
ξ(s)ds

, ∀t ≥ t0.

Consequently, (4.1) is established by virtue of (4.5) and boundedness of E and ξ.

Examples. We give some examples to illustrate the energy decay rates obtained by

Theorem 4.1.

(1) If g(t) = ae−b(1+t)p

, 0 < p ≤ 1, then g′(t) = −ξ(t)g(t), where ξ(t) = bp(1 + t)p−1.

For suitably chosen positive constants a and b, g satisfies (H1) and (H2), and (4.1)

gives

E(t) ≤ ce−ωb(1+t)p

.

(2) If g(t) = a
(1+t)q , q > 1, then

E(t) ≤
c

(1 + t)qω
.

(3) If g(t) = a
(e+t)[ln(e+t)]s

, s > 1, then

E(t) ≤
c

[(e+ t)[ln(e+ t)]s]ω
.

The above three examples are included in the following more general one.

(4) For any nonincreasing function g(t) which satisfies (H1) and −g′

g
is also nonin-

creasing, (4.1) gives

E(t) ≤ c[g(t)]ω.

5. FINAL COMMENTS

1) It has to be noted that our result allows large class of relaxation functions, and, in

case
∫

∞

0
ξ(t)dt = +∞, (4.1) gives more general decay rate results for which the usual

exponential and polynomial decay estimates are only special cases.

2) Our result is established under weaker conditions on g than those in [10]. Precisely,

we do not require anything on g′′ as in (1.6) and (1.7) of [10]. Also, to obtain

exponential and polynomial decay results, the authors in [10] assumed that

(5.1) −a1g
p(t) ≤ g′(t) ≤ −a2g

p(t)

for some 1 ≤ p < 3
2
,while our result allows 1 ≤ p < 2. In fact, (5.1) is a special case

of (H2) with ξ(t) = a2g
p−1(t), and since (5.1) yields

c1
1 + t

≤ gp−1(t) ≤
c2

1 + t
, 1 < p < 2,

then (4.1) gives an exponential decay for p = 1 and a polynomial decay for 1 < p < 2.
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