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ABSTRACT. This contribution is devoted to a discussion of the asymptotic behavior of solutions

of systems of first order nonlinear difference equations. We show that under appropriate conditions

there exists at least one solution of the system considered the graph of which stays in a prescribed

domain. The domains we work with are the so called polyfacial sets. In literature, retract and

Liapunov type approaches are known as excellent asymptotic analysis tools. We present a method

which connects both these techniques. Thanks to this, the achieved result can be applied to a

substantially wider range of equations. The main result is applied to study a linear system of

difference equations as well as to investigate a nonlinear system similar to the discrete scalar equation

of Bernoulli’s type. Results are illustrated by detailed examples.

AMS (MOS) Subject Classification. 39A10, 39A11

1. INTRODUCTION

The asymptotic behavior of solutions of discrete equations was studied (under

different assumptions) e.g. in [2]–[23]. Two important tools are very often used in

asymptotic analysis, referred to as the retract and Liapunov type approaches. Inves-

tigations based on these tools have been performed, e.g., in [6] and [8]. Paper [6] deals

with a system where all the boundary points of the studied domain are the so called

points of strict egress and the retract principle is used there. In [8], the case of the

purely Liapunov type set is investigated. In the paper presented we give a method

which connects both these techniques. Comparing the improvements introduced by

the new technique with the above cited methods, we underline the connection of both

these methods into one tool. The domains we work with are the so called polyfacial

sets and we simultaneously admit both of the above mentioned properties for them:

part of the boundary points are points of strict egress and the remaining part of the

boundary together with some inner points have the character typical for Liapunov

type sets.
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The simplest version of such “hybrid” case was studied by both authors in [11],

considering a system of two equations. The presented paper brings a non-trivial

generalization of that result to any finite number of equations. Thanks to this, the

achieved result can be applied to a substantially wider range of equations and its

flexibility is demonstrated on applications.

Throughout this paper, we use the following notation: for integers s, q, s ≤ q we

define

Z
q
s := {s, s + 1, . . . , q}

where possibilities s = −∞ or q = ∞ are admitted, too.

We investigate the asymptotic behavior for k → ∞ of the solutions of the system

of n difference equations

(1.1) ∆u(k) = F (k, u(k))

where k ∈ Z
∞
a , a ∈ N = {0, 1, 2, . . .} is fixed, u = (u1, . . . , un), ∆u(k) = u(k+1)−u(k)

and F = (F1, . . . , Fn) is a mapping from Z
∞
a × R

n to R
n.

We recall some known facts. The solution of system (1.1) is defined as an infinite

sequence of number vectors

{u(a), u(a + 1), u(a + 2), . . . }

with u = (u1, . . . , un) such that for any k ∈ Z
∞
a , equality (1.1) holds. The existence

and uniqueness of the solution of system (1.1) with a prescribed initial condition

(1.2) u(a) = ua ∈ R
n

on Z
∞
a is obvious. The sequence {(k, u(k))}, k ∈ Z

∞
a , is called the graph of the

solution u = u(k) of initial problem (1.1), (1.2). If for every fixed k ∈ Z
∞
a the right

hand side F (k, u) is continuous with respect to its argument u, then the solution of

initial problem (1.1), (1.2) depends continuously on the initial data.

The paper is organized as follows - in Section 2 we pose the problem formulated

and necessary auxiliary notions. These are used in Section 3 where the main result

regarding the existence at least one solution of the system considered the graph of

which stays in a prescribed domain is proved. Following two section deal with its

application. In Section 4 asymptotic behavior of solutions of a linear nonhomoge-

neous system is investigated and in Section 5 nonlinear system of Bernoulli’s type

is treated. All results are illustrated by detailed examples. In the last Section 6,

some comparisons with the latest results are given. Moreover, some comments on the

flexibility, severity and application of the method presented are included.
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2. DESCRIPTION OF THE PROBLEM CONSIDERED AND

AUXILIARY NOTIONS

2.1. Polyfacial Sets. Let bi, ci : Z
∞
a → R, i = 1, . . . , n, be functions such that

bi(k) < ci(k) for each k ∈ Z
∞
a .

Define the sets

Ω(k) := {(k, u1, . . . , un) : ui ∈ R, bi(k) < ui < ci(k), i = 1, . . . , n}

and the set Ω ⊂ Z
∞
a × R

n as

Ω :=
⋃

k∈Z∞

a

Ω(k)

Such set Ω is called a polyfacial set.

Our aim is to find sufficient conditions which guarantee the existence of at least one

solution u = u∗(k), k ∈ Z
∞
a , of system (1.1) satisfying

(2.1) (k, u∗(k)) ∈ Ω(k)

for every k ∈ Z
∞
a .

Since the asymptotic behavior of a solution satisfying (2.1) is in some sense condi-

tioned by the shape of the set Ω, we call the asymptotic behavior of such solutions

compulsory asymptotic behavior.

In [8] the above described problem is solved via Liapunov type technique. Here

we will combine this technique with the retract type technique which was used in [6].

Before we start, define some basic notions that will be used.

2.2. Consequent Points.

Definition 2.1. Define the mapping C : Z
∞
a × R

n → Z
∞
a × R

n as

C : (k, u) 7→ (k + 1, u + F (k, u)).

For any point M = (k, u) ∈ Z
∞
a × R

n, the point C(M) is called the first consequent

point of the point M .

This means that if a point M lies on the graph of some solution of system (1.1),

then its first consequent point C(M) is the next point on this graph.

Definition 2.2. For any r ∈ N define the r-th consequent point of a point M ∈
Z
∞
a × R

n as

Cr(M) = C
(

Cr−1(M)
)

for r ≥ 1

and

C0(M) = M.
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2.3. Liapunov type polyfacial sets. We say that a polyfacial set Ω is of Liapunov

type with respect to the discrete system (1.1) if

bi(k + 1) < ui + Fi(k, u) < ci(k + 1)

for every i = 1, . . . , n and every (k, u) ∈ Ω. Such sets were used in [8].

The geometrical meaning of this property is this: If a point M = (k, u) lies inside the

set Ω(k), then its first consequent point C(M) stays inside Ω(k + 1).

In this contribution we will deal with sets that need not be of Liapunov type, but

they will have a similar property only with respect to a part of the indices. We give

the relevant definition below.

Definition 2.3. We say that a polyfacial set Ω is of Liapunov type with respect to

the j-th variable and to the discrete system (1.1) if for every (k, u) ∈ Ω

(2.2) bj(k + 1) < uj + Fj(k, u) < cj(k + 1).

The geometrical meaning is that if M = (k, u) ∈ Ω(k), then the uj-coordinate of

its first consequent point stays between bj(k + 1) and cj(k + 1), meanwhile the other

coordinates of C(M) may be arbitrary.

2.4. Points of strict egress and their geometrical sense. An important role in

the application of the retract type technique is played by the so called strict egress

points.

Before we define these points, let us describe the boundary of the set Ω in detail. As

one can easily see,

∂Ω =

(

n
⋃

j=1

Ωj
B

)

∪
(

n
⋃

j=1

Ωj
C

)

with

Ωj
B := {(k, u) : k ∈ Z

∞
a , uj = bj(k), bi(k) ≤ ui ≤ ci(k), i = 1, . . . , n, i 6= j}

and

Ωj
C := {(k, u) : k ∈ Z

∞
a , uj = cj(k), bi(k) ≤ ui ≤ ci(k), i = 1, . . . , n, i 6= j}.

In accordance with [6, Lemmas 1,2], a point (k, u) ∈ ∂Ω is a point of the type of strict

egress for the polyfacial set Ω with respect to discrete system (1.1) if and only if for

some j ∈ {1, . . . , n}

(2.3) uj = bj(k) and Fj(k, u) < bj(k + 1) − bj(k),

or

(2.4) uj = cj(k) and Fj(k, u) > cj(k + 1) − cj(k).

Geometrically these inequalities mean the following:
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If a point M = (k, u) ∈ ∂Ω is a point of the type of strict egress, then the first

consequent point C(M) 6∈ Ω.

2.5. Retract and retraction. If A ⊂ B are any two sets of a topological space and

π : B → A is a continuous mapping from B onto A such that π(p) = p for every

p ∈ A, then π is said to be a retraction of B onto A. If there exists a retraction of B

onto A, A is called a retract of B.

3. MAIN RESULT

Let Ω be a polyfacial set. In this part we will solve our problem supposing that

for some fixed set of indices IL ⊆ {1, . . . , n} the set Ω is of Liapunov type with respect

to the j−th variable for j ∈ IL and for the remaining indices the corresponding parts

of the set ∂Ω consist of points of the type of strict egress.

Theorem 3.1 (Main Result). Suppose that F : Z
∞
a × R

n → R
n is a continuous

mapping and that the set Ω is a polyfacial set. Let there be a set of indices Ie ⊆
{1, . . . , n} such that if M ∈ Ωi

B ∪ Ωi
C for some i ∈ Ie, then M is a point of strict

egress for the set Ω with respect to system (1.1). Further suppose that for any j ∈
IL := {1, . . . , n}\Ie the set Ω is of the Liapunov type with respect to the j-th variable.

Then there exists a solution u = u∗(k), k ∈ Z
∞
a , of (1.1) satisfying the relation

(3.1) (k, u∗(k)) ∈ Ω(k), i.e. bi(k) < u∗
i (k) < ci(k), i = 1, . . . , n,

for every k ∈ Z
∞
a .

Before we prove this theorem, let us make a few comments. The statement of the

theorem says that under given assumptions, there exists an initial condition u(a) = ua

such that the coordinates of the appropriate solution u(k) are bounded from below

by the functions bi(k) and from above by the functions ci(k). A result of this type is

important when we deal with a situation where the initial conditions are adjustable,

e.g. when we study whether there is a chance how to set the initial state of some

system so that the solution stays bounded. In the case that the initial condition is

fixly given, Theorem 3.1 does not give us any useful result.

Further, Theorem 3.1 does not give us any recipe how to find the functions bi(k)

and ci(k). This is a situation similar to the Liapunov second (or direct) method in

the theory of stability of ordinary differential equations. There, too, the existence of a

function with certain properties (the so called Liapunov function) is supposed, but the

theorem does not tell us how to obtain this function for a given equation. However, for

some particular classes of equations, the Liapunov function can be found. Similarly,

for some special forms of system (1.1), functions bi(k) and ci(k) can be found, as will

be shown in sections 4 and 5.
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Proof. First consider the case Ie = ∅, i.e. IL = {1, . . . , n}. Then the set Ω is of

Liapunov type with respect to discrete system (1.1). In this case for any initial

condition u(a) = ua such that (a, ua) ∈ Ω(a), the solution given by this condition

satisfies (3.1). The proof is very simple and it can be found in [8]. We omit this proof

here referring the reader to that source.

The situation for Ie = {1, . . . , n} and IL = ∅ was discussed in [6], [7], [9] and [10].

There it is proved that if the boundary of the set Ω consists only of the points of

strict egress, then the solution with property (3.1) has to exist. Again, we omit this

proof.

Now we focus our attention to the “hybrid” case. Let Ie 6= ∅ and IL 6= ∅ and

denote m the number of elements of the set Ie. Without the loss of generality we may

suppose that Ie = {1, . . . , m}.
For the reader’s convenience, the proof is divided into several parts.

a) General scheme of the proof.

Suppose that the initial data (a, u∗(a)) ∈ Ω(a), generating a solution u = u∗(k)

of system (1.1) with property (3.1) do not exist. We will prove that under this

assumption there exists a retraction R (which will be a composition of two auxiliary

mappings P and Q defined below) of a set which is topologically equivalent to a closed

m-dimensional ball onto its boundary, which cannot happen.

Denote ue = (u1, . . . , um) and uL = (um+1, . . . , un). Then u = (ue, uL).

In the following we will work with the sets

Ωe(k) := {(k, ue) : bi(k) < ui < ci(k), i = 1, . . . , m}, k ∈ Z
∞
a .

The boundaries and closures of the sets Ωe(k) will be always taken in the correspond-

ing space

(3.2) Se(k) := {(k, ue) : ue ∈ R
m}, k ∈ Z

∞
a .

Further, if the r-th consequent point of some point M ∈ Z
∞
a × R

n is the point

N = (k, ue, uL), i.e. if Cr(M) = N , then denote Cr
e(M) := (k, ue).

Now we will construct a retraction R which will map the set Ωe(a) onto the set

∂Ωe(a).

b) The leaving index k∗ and its computation.

For the construction of the mapping R, the moment when the graph of the solution

leaves the prescribed set Ω will be essential. This moment will be described with help

of the so called leaving index.

Choose ua
L = (ua

m+1, . . . , u
a
n) with ua

i ∈ (bi(a), ci(a)), i = m + 1, . . . , n arbi-

trarily but fixed. Now consider the point M = (a, ua) = (a, ua
e , u

a
L) such that
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Me := (a, ua
e) ∈ Ωe(a). The initial condition u(a) = (ue(a), uL(a)) = (ua

e , u
a
L) de-

fines the corresponding solution u = u(k) = (ue(k), uL(k)) of system (1.1) and as ua
L

is fixed, the solution is now given just by the choice of ua
e .

If Me ∈ ∂Ωe(a), then (due to the strict egress property)

Ce(M) /∈ Ωe(a + 1) and hence C(M) /∈ Ω(a + 1).

If Me ∈ Ωe(a), then from the supposition that no initial data from Ω(a) give a

solution whose graph would stay in Ω we conclude that there exists an integer s > 0

such that

Cr(M) ∈ Ω(a + r), r = 0, . . . , s − 1

and

Cs(M) 6∈ Ω(a + s),

i.e. there exists an i ∈ {1, . . . , n} such that the inequalities

(3.3) bi(a + s) < ui(a + s) < ci(a + s),

do not hold.

As the set Ω is of Liapunov type with respect to the variables with indices from

IL and Cs−1(M) ∈ Ω(a + s− 1), the validity of (3.3) cannot be violated for any index

i ∈ IL. Thus, it has to be for some i ∈ Ie and hence

Cs
e(M) /∈ Ωe(a + s).

Moreover, if Cs
e(M) ∈ ∂Ωe(a + s) then we have (again due to the strict egress

property) Cs+1
e (M) 6∈ Ωe(a + s + 1).

Define now the leaving index k∗ as

k∗ =















s − 1 if Me ∈ Ωe(a) and Cs
e(M) /∈ Ωe(a + s),

s if Me ∈ Ωe(a) and Cs
e(M) ∈ ∂Ωe(a + s),

0 if Me ∈ ∂Ωe(a).

The value k∗ characterizes the last moment for which the solution stays in the set Ω.

Altogether, we have

Ck∗

e (M) ∈ Ωe(a + k∗) and Ck∗+1

e (M) /∈ Ωe(a + k∗ + 1).

As the value of k∗ depends on the chosen initial point M , we could write k∗ = k∗(M)

but we will mostly omit the argument M , unless it is necessary.
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c) Connecting set and connecting function.

To construct the retraction R, we will introduce a “connection” of the sets Ωe(k),

k ∈ Z
∞
a .

First extend the functions bi, ci, i = 1, . . . , m onto the whole interval [a,∞):

bi(t) := bi([t]) + (bi([t] + 1) − bi([t])) · (t − [t]),

ci(t) := ci([t]) + (ci([t] + 1) − ci([t])) · (t − [t]),

[t] being the integer part of t. Note that bi, ci are now piecewise linear continuous

functions of a real variable t ∈ [a,∞) such that bi(t) < ci(t) for every t and that the

original values of bi(k), ci(k) for k ∈ Z
∞
a are preserved.

The set connecting all the sets Ωe(k), k ∈ Z
∞
a can now be defined as

Va,∞ := {(t, ue) : a ≤ t < ∞, bi(t) ≤ ui ≤ ci(t), i = 1, . . . , m}.

Further, define the u-boundary of this set as

∂uVa,∞ := ∂Va,∞ \ {(a, ue) : bi(a) < ui < ci(a), i = 1 . . . , m},

∂Va,∞ being the “classical” boundary of the set Va,∞ in the space R × R
m.

It is easy to see that the set Va,∞ can be written as

Va,∞ =
⋃

k∈Z∞

a

Vk,k+1

with

Vk,k+1 := {(t, ue) : k ≤ t ≤ k + 1, bi(t) ≤ ui ≤ ci(t), i = 1, . . . , m}.

For our further considerations, it is vital to notice that every set Vk,k+1 is convex.

This is because the functions bi(t) and ci(t) are linear on each interval [k, k + 1] and

thus the set Vk,k+1 is an intersection of half-spaces.

As for the boundary of Vk,k+1, it can be decomposed to two parts, the u-boundary

and the t-boundary, where

∂uVk,k+1 := ∂uVa,∞ ∩ Vk,k+1,

∂tVk,k+1 := {(t, ue) : t = k or t = k + 1, bi(t) < ui < ci(t), i = 1, . . . , m}.

Now we will find a continuous function V : [a,∞) × R
m → R with help of which

the set Va,∞ can be described as

(3.4) Va,∞ = {(t, ue) : a ≤ t < ∞,V(t, ue) ≤ 0}

and its u-boundary as

∂uVa,∞ = {(t, ue) : a ≤ t < ∞,V(t, ue) = 0}.
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For finding such a function, notice that the cut of the set Va,∞ through any hyperplane

t = t∗, t∗ ∈ [a,∞), is the m-dimensional interval

(3.5) {(t∗, ue) : bi(t
∗) ≤ ui ≤ ci(t

∗), i = 1, . . . , m}.

Now recall the trivial fact that the inequality

max
i=1,...,m

|xi| ≤ 1

defines the m-dimensional interval {x ∈ R
m : − 1 ≤ xi ≤ 1, i = 1, . . . , m}.

Using a simple transformation, we get that the interval (3.5) can be described as the

set of all points (t∗, ue) for which the inequality

max
i=1,...,m

(
∣

∣

∣

∣

ui −
bi(t

∗) + ci(t
∗)

2

∣

∣

∣

∣

/(

ci(t
∗) − bi(t

∗)

2

))

≤ 1

holds. The function V from (3.4) is therefore (after a small simplification)

(3.6) V(t, ue) = max
i=1,...,m

|2ui − bi(t) − ci(t)|
ci(t) − bi(t)

− 1.

This function is continuous, because a maximum of continuous functions is continuous,

too.

The function V defined by (3.6) will be called the connecting function for the sets

Ωe(k), k ∈ Z
∞
a .

d) Auxiliary mapping P and its continuity.

Define the value of the mapping P : Ωe(a) → ∂uVa,∞ for the point Me ∈ Ωe(a) as

the intersection of the line segment with the end points Ck∗

e (M) and Ck∗+1
e (M) with

∂uVa+k∗,a+k∗+1 (see Figure 1).

Prove that the mapping P is well defined on Ωe(a). We have to consider two

cases: either Ck∗

e (M) ∈ ∂Ωe(a + k∗) or Ck∗

e (M) ∈ Ωe(a + k∗).

If Ck∗

e (M) ∈ ∂Ωe(a + k∗), then for some i ∈ {1, . . . , m}, the ui-coordinate of

Ck∗

e (M) equals to ci(a + k∗) or to bi(a + k∗). Then, by the strict egress property,

the ui-coordinate of Ck∗+1(M) is greater than ci(a + k∗ + 1) or less then bi(a + k∗ +

1), respectively. Thus any point (t, ue) of the line segment connecting Ck∗

e (M) and

Ck∗+1
e (M), except the point Ck∗

e (M) itself, cannot fulfill the condition ui ≤ ci(t) or

ui ≥ bi(t), respectively, and therefore there is just one intersection of this line segment

with ∂uVa+k∗,a+k∗+1, namely, the point Ck∗

e (M) itself. This reasoning also shows that

P (Me) = Me for Me ∈ ∂Ωe(a).

If Ck∗

e (M) ∈ Ωe(a+k∗), then it lies on the t-boundary of the convex set Va+k∗, a+k∗+1.

In general, for a line segment AB, where A lies on the boundary of a convex set and

B is outside this set, for the intersection of AB with the boundary of the set there

are three possibilities: it could be one point (the point A itself), two points (A and

one more point) or a line segment beginning at A. From the construction of the sets

Vk,k+1 and from the position of the points Ck∗

e (M) and Ck∗+1
e (M) it is clear that here
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only the second case comes into question and that there is one intersection of the

considered line segment with the u-boundary of the set Va+k∗, a+k∗+1.

u1

u2

t

Me

a

k
∗

P (Me)

A
AU

Figure 1. Mapping P

Prove that the mapping P is continuous. Let {Mj}∞j=1 be any sequence with

Mj = (a, ua
e,j, u

a
L) (recall that ua

L is the fixly chosen part of the initial condition) such

that Me,j := (a, ua
e,j) ∈ Ωe(a) and Me,j → Me (or, equivalently Mj → M) for j → ∞.

We will show that P (Me,j) → P (Me). Because of the continuity of the mapping F

(3.7) Ci
e(Mj) → Ci

e(M) for any fixed i ∈ N.

We have to consider two cases:

I) Ck∗

e (M) ∈ Ωe(a + k∗),

II) Ck∗

e (M) ∈ ∂Ωe(a + k∗).

I) In this case also Ck∗

e (Mj) ∈ Ωe(a + k∗) and Ck∗+1
e (Mj) /∈ Ωe(a + k∗ + 1) for all j

sufficiently large. That means that the leaving index k∗(Mj) is the same as k∗ given

by M and thus we deal with the same set Va+k∗, a+k∗+1.

Denote ℓ̃ the line segment with the end points Ck∗

e (M), Ck∗+1
e (M) and ℓj the line

segment with the end points Ck∗

e (Mj), Ck∗+1
e (Mj) and consider their parametrizations

ℓ̃ :







t = k∗ + s, s ∈ [0, 1]

ue = ϕ(s)
ℓj :







t = k∗ + s, s ∈ [0, 1]

ue = ϕj(s)

where

ϕ(s) = Ck∗

e (M) +
(

Ck∗+1

e (M) − Ck∗

e (M)
)

· s,
ϕj(s) = Ck∗

e (Mj) +
(

Ck∗+1

e (Mj) − Ck∗

e (Mj)
)

· s.

As for j → ∞ the end points of ℓj converge to the end points of ℓ̃ and ϕ and ϕj are

linear mappings, it is obvious that

(3.8) ϕj(s) → ϕ(s) for j → ∞ for any fixed s ∈ [0, 1] .
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As the u-boundary of the set Va+k∗,a+k∗+1 is described by the equation V(t, u) = 0

for t ∈ [a + k∗, a + k∗ + 1], the value of the parameter s for the point of intersection

of the line segment ℓ̃ with the boundary of the set Va+k∗,a+k∗+1 can be obtained as

the solution of the equation

ṽ(s) = 0, where ṽ(s) := V(k∗ + s, ϕ(s)),

meanwhile for ℓj it is the solution of

vj(s) = 0, where vj(s) := V(k∗ + s, ϕj(s)).

From the above considerations it follows that each of the equations has just one

solution on the interval [0, 1]. Denote these solutions s̃ (for the equation ṽ(s) = 0)

and sj (for vj(s) = 0). Remark that ṽ(s) < 0 for 0 ≤ s < s̃ because the function V
is negative for the inner points of Va,∞ and the beginning point of the line segment

ℓ̃, i.e. Ck∗

e (M), lies inside the set Va,∞. Further, ṽ(s) > 0 for s̃ < s ≤ 1 because V is

positive for the outer points Va,∞ and the end point of ℓ̃, i.e. Ck∗+1
e (M), lies outside

Va,∞. A similar thing holds for the functions vj.

Show that sj → s̃ for j → ∞. As the function V is continuous and because

of (3.8), we can see that

vj(s) → ṽ(s) for any fixed s ∈ [0, 1] .

Choose ε > 0 arbitrarily small. Then ṽ(s̃ − ε) < 0 and ṽ(s̃ + ε) > 0. Thus, for

sufficiently large j, vj(s̃ − ε) < 0 and vj(s̃ + ε) > 0 and hence s̃ − ε < sj < s̃ + ε.

That gives |sj − s̃| < ε for j sufficiently large, i.e. sj → s̃. From this and from (3.8)

we get that P (Me,j) → P (Me) for j → ∞.

II) In this case there can be Ck∗

e (Mj) ∈ Ωe(a + k∗) for some members of the sequence

{Mj} and Ck∗

e (Mj) /∈ Ωe(a + k∗) for the others. In general there could be three

subsequences {Mkj
}, {Mlj} and {Mmj

} such that

Ck∗

e (Mkj
) ∈ Ωe(a + k∗), Ck∗

e (Mlj ) ∈ ∂Ωe(a + k∗)

and Ck∗

e (Mmj
) /∈ Ωe(a + k∗).

If k∗ > 0, we have to consider all three subsequences. If k∗ = 0, the subsequence

{Mmj
} can be left out from our considerations because C0

e (Mmj
) /∈ Ωe(a) would mean

that Me,mj
/∈ Ωe(a). As the sequence {Mj}∞j=1 consist just of points from Ω(a), this

cannot happen.

For the subsequence {Mkj
} the situation is very similar to that in the case I).

Now the root of the equation ṽ(s) = 0 is equal to zero (the intersection of ℓ̃ and

∂uVa+k∗,a+k∗+1 is the left end point of ℓ̃) and we have to prove that skj
→ 0. Again,

choose ε > 0 arbitrarily small. Then ṽ(ε) > 0 and thus vkj
(ε) > 0 for j sufficiently
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large. Further, as the left end point of ℓkj
lies inside Ωe(a + k∗), vkj

(0) < 0 and thus

0 < skj
< ε, i.e. skj

→ 0.

For the subsequence {Mlj} there is no problem, too. If Ck∗

e (Mlj ) belongs to

∂uVa+k∗,a+k∗+1, then P (Me,lj) = Ck∗

e (Mlj ) and P (Me) = Ck∗

e (M) and hence (because

of (3.7))

P (Me,lj) → P (Me).

As for the subsequence {Mmj
}, the leaving index k∗(Mmj

) is different from k∗

given by M because Ck∗

e (Mmj
) is already out of Ωe(a + k∗). For j sufficiently large,

k∗(Mmj
) = k∗ − 1

because Ck∗−1
e (M) ∈ Ωe(a + k∗ − 1) and thus also Ck∗−1

e (Mmj
) ∈ Ωe(a + k∗ − 1).

Now, P (Me) can be also seen as the point of intersection of the line segment given

by the end points Ck∗−1
e (M), Ck∗

e (M) with ∂uVa+k∗−1,a+k∗ . The desired convergence

P (Me,mj
) → P (Me) can be proved with help of similar considerations as in the case

of the subsequence {Mkj
}.

We have shown that P (Me,kj
) → P (Me), P (Me,lj) → P (Me) and also P (Me,mj

) →
P (Me), and thus P (Me,j) → P (Me).

e) Auxiliary mapping Q.

Define an auxiliary mapping Q̃ : [a,∞) × R
m → Se(a), where Se(a) is the space

specified with k = a by (3.2), as Q̃ : (t, u1, . . . , um) 7→ (a, y1, . . . , ym) with

yi = bi(a) +
ci(a) − bi(a)

ci(t) − bi(t)
(ui − bi(t)), i = 1, . . . , m.

This mapping is obviously continuous. Consider a point N = (t, u1, . . . , um) such that

N ∈ ∂uVa,∞. For such point bi(t) ≤ ui ≤ ci(t) for i = 1, . . . , m and uj = bj(t) or uj =

cj(t) for some j ∈ {1, . . . , m}. That gives that for the point Q̃(N) = (a, y1, . . . , ym),

bi(a) ≤ yi ≤ ci(a) for i = 1, . . . , m and yj = bj(a) or yj = cj(a), respectively, which

means that Q̃(N) ∈ ∂Ωe(a).

If N ∈ ∂Ωe(a), i.e. t = a, then yi = ui for i = 1, . . . , m, i.e. Q̃(N) = N .

Thus if we define the mapping Q as the restriction of Q̃ to the set ∂uVa,∞, then

Q is a retraction of the set ∂uVa,∞ onto the set ∂Ωe(a).

f) The resulting retraction R.

In the previous parts of the proof, we have constructed a continuous mapping P : Ωe(a) →
∂uVa,∞ such that P (Me) = Me for Me ∈ ∂Ωe(a). Further, we have defined a retraction

Q : ∂uVa,∞ → ∂Ωe(a).

Finally, define the mapping R as the composition of mappings P and Q, R :=

Q ◦ P . Mapping R is a retraction of the set Ωe(a) onto the set ∂Ωe(a). As such a

retraction cannot exist, we have come to a contradiction and the supposition that

there is no solution satisfying (3.1) cannot hold.
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Example 3.2. Consider the nonlinear system

(3.9)

∆u1(k) = F1(k, u1(k), u2(k), u3(k)) := −3

2
k +

√

u2
1(k) +

1

16
u2

3(k),

∆u2(k) = F2(k, u1(k), u2(k), u3(k)) :=
1

k

√

u2
1(k) +

1

3
u2

2(k),

∆u3(k) = F3(k, u1(k), u2(k), u3(k)) :=
1

k

√

u2
2(k) +

1

4
u2

3(k)

with k ∈ Z
∞
4 . We prove that system (3.9) has a solution u = u∗(k) = (u∗

1(k), u∗
2(k), u∗

3(k))

such that for every k ∈ Z
∞
4

(3.10) k < u∗
1(k) < 2k, k < u∗

2(k) < 3k, k < u∗
3(k) < 4k.

Let us explain the trick how these bounds for the solution were determined:

We suppose that there exists a solution u = u(k) of system (3.9) such that the

asymptotical representations of its coordinates (for k → ∞) are

ui(k) ∼ aik

where ai, i = 1, 2, 3, are suitable coefficients. Moreover, for such functions we suppose

∆ui(k) ∼ ai, i = 1, 2, 3. Then, substituting all these representations into (3.9), we

get

a1 ∼− 3

2
k +

√

a2
1k

2 +
1

16
a2

3k
2,(3.11)

a2 ∼
1

k

√

a2
1k

2 +
1

3
a2

2k
2,(3.12)

a3 ∼
1

k

√

a2
2k

2 +
1

4
a2

3k
2.(3.13)

From relations (3.12) and (3.13) we can easily see that

(3.14) a2

2 ∼
3

2
a2

1, a2

3 ∼
4

3
a2

2,

and thus a2
3 ∼ 2a2

1. Substituting the last equivalence into (3.11), we get

a1 ∼ −3

2
k +

√

a2
1k

2 +
1

8
a2

1k
2

and, after simplification,

a1 ∼ −3

2
k + a1k

√

9

8

which leads to

a1 ∼
3k/2

k
√

9/8 − 1
∼ 3/2

(3
√

2)/4
=

√
2.

Using (3.14), we get

a2 ∼
√

3, a3 ∼ 2.
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So we can expect that there exists a solution u = (u1(k), u2(k), u3(k)) which is asymp-

totically equivalent to (k
√

2, k
√

3, 2k). We finish our explanation with a recommen-

dation that the functions bi(k), i = 1, 2, 3 should be less than the corresponding

coordinates of the last vector and the functions ci(k), i = 1, 2, 3 should be greater.

According to it, we will examine, e.g., the functions (compare (3.10)):

bi(k) := k, i = 1, 2, 3, c1(k) := 2k, c2(k) := 3k, c3(k) := 4k.

These functions were chosen so that bi(k) < aik < ci(k) for i = 1, 2, 3 and so that

all the conditions of Theorem 3.1 were satisfied (a bit of guessing and trying was

needed).

Now prove that all the conditions of Theorem 3.1 with Ie = {1} and IL = {2, 3},
functions bi(k) and ci(k) defined by (3.14), and the sets Ω(k), k ∈ Z

∞
4 , defined by

Ω(k) := {(k, u1, u2, u3) : k < u1 < 2k, k < u2 < 3k, k < u3 < 4k}.

are fulfilled.

The functions Fi(k, u1, u2, u3), i = 1, 2, 3 are obviously continuous with respect

to u1, u2 and u3. Show that all the points of the sets Ω1
B and Ω1

C are points of strict

egress. Indeed, if

(3.15) u1 = b1(k) = k and k < u2 < 3k, k < u3 < 4k,

then inequality (2.3) with j = 1 is satisfied. For the left-hand side of inequality (2.3),

under the assumptions (3.15), the following estimate holds:

F1(k, u1, u2, u3) = −3

2
k +

√

k2 +
1

16
u2

3 < −3

2
k +

√

k2 +
1

16
16k2

= k

(

−3

2
+
√

2

)

< 0,

meanwhile the right-hand side is

b1(k + 1) − b1(k) = k + 1 − k = 1

and hence (2.3) is fulfilled.

Similarly, for

u1 = c1(k) = 2k and k < u2 < 3k, k < u3 < 4k,

the left hand-side of inequality (2.4) (again for j = 1) is

F1(k, u1, u2, u3) = −3

2
k +

√

4k2 +
1

16
u2

3 > −3

2
k +

√

4k2 +
1

16
k2

= k

(

−3

2
+

√

65

16

)

,
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the right-hand side is

c1(k + 1) − c1(k) = 2k + 2 − 2k = 2

and as
(

−3/2 +
√

65/16
)

· k > 2 for k > 3, inequality (2.4) holds for k ∈ Z
∞
4 .

Now verify that the set Ω is of the Liapunov type with respect to the second and

third variable, i.e. that for every (k, u1, u2, u3) such that k < u1 < 2k, k < u2 < 3k,

k < u3 < 4k inequalities (2.2) with i = 2, 3 are fulfilled.

Let us find the upper and lower estimate for the expression u2 + F2(k, u1, u2, u3):

u2 + F2(k, u1, u2, u3) = u2 +
1

k

√

u2
1 +

1

3
u2

2 < 3k +
1

k

√

4k2 +
1

3
9k2 = 3k +

√
7

and

u2 + F2(k, u1, u2, u3) = u2 +
1

k

√

u2
1 +

1

3
u2

2 > k +
1

k

√

k2 +
1

3
k2 = k +

√

4

3
.

Altogether we have

k +
√

4/3 < u2 + F2(k, u1, u2, u3) < 3k +
√

7

and since

b2(k + 1) = k + 1 < k +
√

4/3 and 3k +
√

7 < 3k + 3 = c2(k + 1) for k ∈ N,

inequalities (2.2) with i = 2 hold for k ∈ Z
∞
4 .

Now do the same for i = 3:

u3 + F3(k, u1, u2, u3) = u3 +
1

k

√

u2
2 +

1

4
u2

3 < 4k +
1

k

√

9k2 +
1

4
16k2 = 4k +

√
13

and

u3 + F3(k, u1, u2, u3) = u3 +
1

k

√

u2
2 +

1

4
u2

3 > k +
1

k

√

k2 +
1

4
k2 = k +

√

5

4
.

Inequalities (2.2) with i = 3 hold because

b3(k + 1) = k + 1 < k +
√

5/4 and 4k +
√

13 < 4k + 4 = c3(k + 1) for k ∈ N.

Thus all the conditions of Theorem 3.1 are fulfilled and there exists a solution of

system (3.9) for which inequalities (3.10) hold.

4. ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF A LINEAR

NONHOMOGENEOUS DISCRETE SYSTEM

The main goal of our investigation here will be to establish the asymptotic for-

mulae for the behaviour of a solution u = (u1, . . . , un)
T of a linear nonhomogeneous

system of discrete equations. Suppose that the considered system has the form

(4.1) ∆u(k) = A(k)u(k) + g(k), k ∈ Z
∞
a
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where A(k) = (aij(k))n
i,j=1 is an n × n real matrix, aij : Z

∞
a → R, i, j = 1, . . . , n and

g(k) = (g1(k), . . . , gn(k))T, g : Z
∞
a → R

n.

In this case there is a way how to find the bounding functions bi(k) and ci(k)

from Theorem 3.1:

In the following we suppose detA(k) 6= 0 for every k ∈ Z
∞
a . Let us define the

vector

(4.2) ω(k) = −A−1(k)g(k), k ∈ Z
∞
a

where A−1(k) is the inverse of matrix A(k). This means that the vector ω(k) is

the unique solution of the system of linear equations A(k)ω(k) + g(k) = θ (θ =

(0, . . . , 0)T), i.e. it is the root of the right-hand side of system (4.1). We will suppose

that there exists a solution u(k) of system (4.1) which is close to ω, say

(4.3) u(k) = ω(k) + f(k), k ∈ Z
∞
a ,

where f(k) = (f1(k), . . . , fn(k))T is a “perturbation” of ω(k). Now we will try to find

an approximate expression of f(k). Substituting (4.3) for u(k) into (4.1), we get

(4.4) ∆(ω(k) + f(k)) = A(k)(ω(k) + f(k)) + g(k).

Considering the definition of ω, i.e. (4.2), equation (4.4) can be rewritten as

∆ω(k) + ∆f(k) = A(k)f(k).

We expect ∆f(k) to be “small” compared to the terms A(k)f(k) and ∆ω(k) and we

will omit it. Thus we get

∆ω(k) ∼ A(k)f(k)

as k → ∞. Hence, we will define the vector f(k), k ∈ Z
∞
a , as

(4.5) f(k) = A−1(k)∆ω(k).

Now we will show that under certain conditions, there exists a solution u(k) of sys-

tem (4.1) which is bounded by the functions ω(k) and ω(k) + f(k).

Theorem 4.1. Let us suppose that for every k ∈ Z
∞
a :

1) detA(k) 6= 0.

2) fi(k) > 0, ∆fi(k) ≤ 0, and ∆ωi(k) ≥ 0 for i = 1, . . . , p, 0 ≤ p ≤ n.

3) fi(k) < 0, ∆fi(k) ≤ 0, and ∆ωi(k) ≥ 0, for i = p + 1, . . . , n.

4) aij(k) ≤ 0 for i = 1, . . . , n, j = 1, . . . , p and i 6= j.

5) aij(k) ≥ 0 for i = 1, . . . , n, j = p + 1, . . . , n and i 6= j.

6)
∑n

j=1,j 6=i |aij(k)| > 0 for every i = 1, . . . , n.

7) fi(k)+aii(k)fi(k)−∆ωi(k) ≤ 0 and aii(k)fi(k)+fi(k+1) ≤ 0 for i = p+1, . . . , n
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Then there exists a solution u = u∗(k), k ∈ Z
∞
a , of (4.1) such that

(4.6)
ωi(k) < u∗

i (k) < ωi(k) + fi(k), i = 1, . . . , p,

ωi(k) + fi(k) < u∗
i (k) < ωi(k), i = p + 1, . . . , n.

Proof. We will apply Theorem 3.1 with Ie = {1, . . . , p}, IL = {p + 1, . . . , n},

Fi(k, u) =
n
∑

j=1

aij(k)uj + gi(k), i = 1, . . . , n,

bi(k) = ωi(k), ci(k) = ωi(k) + fi(k), i = 1, . . . , p,

bi(k) = ωi(k) + fi(k), ci(k) = ωi(k), i = p + 1, . . . , n.

First, let us point out some facts that will be useful in our next considerations.

Due to (4.2), the functions Fi can be rewritten as

Fi(k, u) =

n
∑

j=1

aij(k)uj −
n
∑

j=1

aij(k)ωj(k) =

n
∑

j=1

aij(k)(uj − ωj(k)),

i = 1, . . . , n, k ∈ Z
∞
a . Further, due to assumptions 4), 5) and 6) of the Theorem, if

bj(k) < uj < cj(k), j = 1, . . . , n,

then

(4.7)

n
∑

j=1,j 6=i

aij(k)(uj − ωj(k)) < 0, i = 1, . . . , n

and

(4.8)

n
∑

j=1,j 6=i

aij(k)(uj − ωj(k) − fj(k)) > 0, i = 1, . . . , n.

Now we will verify that all the assumptions of Theorem 3.1 are satisfied. Start with

proving that all the points of the sets Ωi
B and Ωi

C , i = 1, . . . , p, are points of strict

egress.

Due to (2.3), we have to show that if ui = bi(k) = ωi(k) and bj(k) < uj < cj(k)

for every j = 1, . . . , n, j 6= i, then
n
∑

j=1

aij(k)(uj − ωj(k)) < bi(k + 1) − bi(k) = ∆ωi(k).

This inequality is equivalent to the inequality
n
∑

j=1

aij(k)(uj − ωj(k)) − ∆ωi(k) < 0

which can be rewritten as
n
∑

j=1,j 6=i

aij(k)(uj − ωj(k)) + aii(k)(ωi(k) − ωi(k)) − ∆ωi(k) < 0.
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But this certainly holds because of (4.7) and the assumption that ∆ωi(k) ≥ 0 (see

assumption 2) of the Theorem).

Similarly, due to (2.4), we have to prove that if ui = ci(k) = ωi(k) + fi(k) and

bj(k) < uj < cj(k) for every j = 1, . . . , n, j 6= i, then

(4.9)

n
∑

j=1

aij(k)(uj − ωj(k)) > ci(k + 1) − ci(k) = ∆ωi(k) + ∆fi(k)

which is equivalent to

n
∑

j=1

aij(k)(uj − ωj(k)) − ∆ωi(k) − ∆fi(k) > 0.

The left-hand side can be estimated as

n
∑

j=1

aij(k)(uj − ωj(k)) − ∆ωi(k) − ∆fi(k) >
n
∑

j=1

aij(k)fj(k) − ∆ωi(k) − ∆fi(k).

Thanks to (4.5),
∑n

j=1
aij(k)fj(k) = ∆ωi(k), and thus

n
∑

j=1

aij(k)(uj − ωj(k)) − ∆ωi(k) − ∆fi(k) > −∆fi(k).

As ∆fi(k) ≥ 0 due to assumption 2) of the Theorem, inequality (4.9) holds.

Now let us prove that the set Ω is of Liapunov type with respect to the i-th

variable for every i ∈ {p + 1, . . . , n}. According to (2.2), we have to show that if

bj(k) < uj < cj(k) for j = 1, . . . , n, then for i = p + 1, . . . , n

(4.10) bi(k + 1) < ui + Fi(k, u) < ci(k + 1).

To verify this property, we will show that inequalities (4.10) hold for both ui = bi(k)

and ui = ci(k) and that the function

G(ui) = ui + Fi(k, u1, . . . , ui−1, ui, ui+1, . . . , un)

is monotone for every fixed k ∈ Z
∞
a and every fixed u1, . . . , ui−1, ui+1, . . . , un with

bj(k) < uj < cj(k), j 6= i. Then inequalities (4.10) have to hold for any ui between

bi(k) and ci(k).

Start with ui = bi(k) = ωi(k) + fi(k). First we will show that ui + Fi(k, u) <

ci(k + 1) which gives

(4.11) ωi(k) + fi(k) +
n
∑

j=1

aij(k)(uj − ωj(k)) − ωi(k + 1) < 0.
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We will rearrange the left-hand side of inequality (4.11) and then, using (4.7), find

its upper estimate:

ωi(k) + fi(k) +

n
∑

j=1

aij(k)(uj − ωj(k)) − ωi(k + 1)

= fi(k) + aii(k)(ωi(k) + fi(k) − ωi(k)) +

n
∑

j=1,j 6=i

aij(k)(uj − ωj(k)) − ∆ωi(k)

< fi(k) + aii(k)fi(k) − ∆ωi(k).

Due to assumption 7), we have

ui + F (k, ui) − ci(k + 1) < fi(k) + aii(k)fi(k) − ∆ωi(k) ≤ 0.

Thus inequality (4.11) holds.

Now let us show that for ui = bi(k) also ui + Fi(k, u) > bi(k + 1). That gives

(4.12) ωi(k) + fi(k) +

n
∑

j=1

aij(k)(uj − ωj(k)) − ωi(k + 1) − fi(k + 1) > 0.

We will proceed analogously as before. This time we will use relations (4.5), (4.8)

and the fact that ∆fi(k) ≤ 0.

ωi(k) + fi(k) +
n
∑

j=1

aij(k)(uj − ωj(k)) − ωi(k + 1) − fi(k + 1)

=

n
∑

j=1

aij(k)(uj − ωj(k)) − ∆ωi(k) − ∆fi(k) =

n
∑

j=1

aij(k)(uj − ωj(k) − fj(k))

− ∆fi(k) = aii(k)(ωi(k) + fi(k) − ωi(k) − fi(k))

+

n
∑

j=1,j 6=i

aij(k)(uj − ωj(k) − fj(k)) − ∆fi(k) > 0.

That proves the validity of (4.12).

Now we will investigate the upper end point, ui = ci(k) = ωi(k). Inequality

ui + Fi(k, u) < ci(k + 1) is here equivalent with the inequality

(4.13) ωi(k) +
n
∑

j=1

aij(k)(uj − ωj(k)) − ωi(k + 1) < 0.

Using (4.7) and the fact that ∆ωi(k) ≥ 0, we get

ωi(k) +
n
∑

j=1

aij(k)(uj − ωj(k)) − ωi(k + 1) = aii(k)(ωi(k) − ωi(k))

+
n
∑

j=1,j 6=i

aij(k)(uj − ωj(k)) − ∆ωi(k) < −∆ωi(k) ≤ 0
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and (4.13) is proved.

Finally, let us show that for ui = ci(k) also ui + Fi(k, u) > bi(k + 1). That is

equivalent with

(4.14) ωi(k) +

n
∑

j=1

aij(k)(uj − ωj(k)) − ωi(k + 1) − fi(k + 1) > 0.

Using (4.5) and (4.8), we get

ωi(k) +

n
∑

j=1

aij(k)(uj − ωj(k)) − ωi(k + 1) − fi(k + 1)

=

n
∑

j=1

aij(k)(uj − ωj(k)) − ∆ωi(k) − fi(k + 1)

=

n
∑

j=1

aij(k)(uj − ωj(k) − fj(k)) − fi(k + 1) = aii(k)(ωi(k) − ωi(k) − fi(k))

+

n
∑

j=1,j 6=i

aij(k)(uj − ωj(k) − fj(k)) − fi(k + 1) > −aii(k)fi(k) − fi(k + 1).

Looking at assumption 7) of the Theorem, we can see that inequality (4.14) is fulfilled.

Noticing that the function

G(ui) = ui +

n
∑

j=1

aij(k)(uj − ωj(k)) = (1 + aii(k))ui − aii(k)ωi(k)

+

n
∑

j=1,j 6=i

aij(k)(uj − ωj(k))

is a linear function of its argument ui, we can straightly say that this function is

monotone for any fixly chosen k ∈ Z
∞
a and u1, . . . , ui−1, ui+1, . . . , un.

All conditions of Theorem 3.1 are satisfied. From its conclusion it follows that

there exists at least one solution u = u∗(k) satisfying the inequalities (4.6). This

completes the proof.

Example 4.2. Let us consider the linear discrete system of equations

(4.15)

∆u1(k) = ku1(k) +
1√
k

u2(k) − k2 − 1,

∆u2(k) = −ku1(k) − 2√
k

u2(k) + k2 + 2.

We will show that for k ∈ Z
∞
4 , all the assumptions of Theorem 4.1 are fulfilled with

p = 1. In this case

A =

(

k 1/
√

k

−k −2/
√

k

)

, g =

(

−k2 − 1

k2 + 2

)

.
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After a simple calculation, we get

detA(k) = −
√

k, A−1(k) =

(

2/k 1/k

−
√

k −
√

k

)

,

(

ω1(k)

ω2(k)

)

= −A−1(k)g(k) =

(

k
√

k

)

.

Further,

∆ω1(k) = 1, ∆ω2(k) =
√

k + 1 −
√

k,

(

f1(k)

f2(k)

)

= A−1(k)∆ω(k) =

(

2/k 1/k

−
√

k −
√

k

)(

1
√

k + 1 −
√

k

)

=

(

(2 +
√

k + 1 −
√

k)/k

−
√

k(1 +
√

k + 1 −
√

k)

)

.

Assumptions 1), 4), 5) and 6) are obviously fulfilled.

As for assumption 2), it is clear that f1(k) > 0 and ∆ω1(k) > 0. Remind that√
k + 1 −

√
k monotonely tends to 0 for k → ∞. Thanks to this, the function in

the numerator of f1(k) is decreasing and thus also f1(k) is decreasing. This fact

guarantees that ∆f1(k) < 0.

Conditions f2(k) < 0 and ∆ω2(k) ≥ 0 from assumption 3) hold for every k ∈ N.

Calculating ∆f2(k), after some simplifications we get

∆f2(k) = 1 −
√

k + 1(
√

k + 2 −
√

k) −
√

k + 1 +
√

k < 0.

It remains to verify the validity of assumption 7): fi(k) + aii(k)fi(k) − ∆ωi(k) ≤ 0

with i = 2 gives

f2(k)(1 + a22(k)) − ∆ω2(k)

= −
√

k(1 +
√

k + 1 −
√

k)(1 − 2/
√

k) − (
√

k + 1 −
√

k) ≤ 0.

This inequality holds for k ≥ 4 because for such k, 1 − 2/
√

k ≥ 0.

The last desired inequality is a22(k)f2(k) + f2(k + 1) ≤ 0 which gives

(−2/
√

k)(−
√

k)(1 +
√

k + 1 −
√

k) −
√

k + 1(1 +
√

k + 2 −
√

k + 1) ≤ 0.

Simplifying the left-hand side, we get

2(1 +
√

k + 1 −
√

k) −
√

k + 1(1 +
√

k + 2 −
√

k + 1) ≤ 0

which holds for k ≥ 4.

All the assumptions of Theorem 4.1 are fulfilled and thus there exists a solution

u = u∗(k), k ∈ Z
∞
4 , of system (4.15) such that bi(k) < u∗

i (k) < ci(k), i = 1, 2. In our
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case, b2(k) = ω2(k) + f2(k) =
√

k −
√

k(1 +
√

k + 1 −
√

k) = −
√

k(
√

k + 1 −
√

k).

That means that the solution u = u∗(k) satisfies the inequalities

k < u∗
1(k) < k + (2 +

√
k + 1 −

√
k)/k,

−
√

k(
√

k + 1 −
√

k) < u∗
2(k) <

√
k.

5. SYSTEM OF BERNOULLI’S TYPE

In this section, the result of Theorem 3.1 is applied to the investigation of the

asymptotic behavior of solutions of the system

(5.1)
∆u1(k) = u2(k) (−γ1(k)u1(k) + β1(k)) ,

∆u2(k) = u1(k) ( γ2(k)u2(k) − β2(k))

where γi, βi : Z
∞
a → R

+ := (0,∞), i = 1, 2. This system is similar to the scalar

equation

∆u(k) = u(k) (γ(k)u(k) − β(k))

which is called the equation of Bernoulli’s type or (with regard to terminology used

in [1]) Verhulst’s equation with opposite coefficients.

For system (5.1), again we can find the bounding functions bi(k) and ci(k) from

Theorem 3.1. We will construct them in a similar way as in the case of the linear

system (4.1):

Suppose that there exists a solution u(k) of system (5.1) which is “close” to the

unique root ω(k) = (ω1(k), ω2(k))T of the system

−γ1(k)ω1(k) + β1(k) = 0,(5.2)

γ2(k)ω2(k) − β2(k) = 0(5.3)

derived from the right-hand side of (5.1). In our case

(5.4) ωi(k) =
βi(k)

γi(k)
, i = 1, 2.

It means

(5.5) u(k) = ω(k) + f(k), k ∈ Z
∞
a ,

where f(k) = (f1(k), f2(k))T is a “perturbation” of ω. Substituting (5.5) for u(k)

into (5.1) and using (5.2), (5.3), we get

∆(ω1(k) + f1(k)) = (ω2(k) + f2(k)) (−γ1(k)f1(k)) ,(5.6)

∆(ω2(k) + f2(k)) = (ω1(k) + f1(k))γ2(k)f2(k).(5.7)
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Supposing that ∆fi(k), i = 1, 2, are “small” compared to the remaining terms in (5.6),

(5.7), we assume that

∆ω1(k) ∼ −ω2(k)γ1(k)f1(k),

∆ω2(k) ∼ ω1(k)γ2(k)f2(k)

if k → ∞.

Hence, we will define f1(k) and f2(k), k ∈ Z
∞
a , as

f1(k) = − ∆ω1(k)

ω2(k)γ1(k)
, f2(k) =

∆ω2(k)

ω1(k)γ2(k)
.

Now we will show that under certain conditions, there exists a solution u(k) of sys-

tem (5.1) which is bounded by the coordinates of the functions ω(k) and ω(k)+f(k).

Theorem 5.1. Let the functions γi, βi : Z
∞
a → R

+, i = 1, 2, be given.

Suppose that for every k ∈ Z
∞
a the following assumptions hold:

1) ∆ω1(k) < 0.

2) ∆ω2(k) > 0.

3) ∆ω1(k) + f1(k + 1) > 0.

4) f1(k) + f2(k)(∆ω1(k))/ω2(k) > 0.

5) ∆f1(k) > 0.

6) ∆f2(k) < 0.

Then the system of difference equations (5.1) has a solution u = u∗(k) = (u∗
1(k), u∗

2(k))

such that

(5.8) ωi(k) < u∗
i (k) < ωi(k) + fi(k)

for i = 1, 2 and k ∈ Z
∞
a .

Proof. We will apply Theorem 3.1 with Ie = {2} and IL = {1},

(5.9) F1(k, u1, u2) = u2 · (−γ1(k)u1 + β1(k)), F2(k, u1, u2) = u1 · (γ2(k)u2 − β2(k)),

(5.10) bi(k) = ωi(k), ci(k) = ωi(k) + fi(k), i = 1, 2,

Ω(k) = {(k, u1, u2) : ωi(k) < ui < ωi(k) + fi(k), i = 1, 2}.
Remark that due to assumptions 1) and 2), fi(k) > 0 for k ∈ Z

∞
a , i = 1, 2.

The functions F1 and F2 are obviously continuous with respect to their arguments

u1 and u2.

Let us prove that the set Ω is of Liapunov type with respect to the first variable

and to the system (5.1). Suppose that

b1(k) < u1 < c1(k) and b2(k) < u2 < c2(k).
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As the function

G(u1) := u1 + F1(k, u1, u2) = u1 + u2 · (−γ1(k)u1 + β1(k))

is linear with respect to its argument u1 for every fixed k ∈ Z
∞
a and every fixed u2

such that b2(k) < u2 < c2(k), to prove inequalities (2.2), it will be sufficient to show

that these inequalities are fulfilled for the end points of the interval (b1(k), c1(k)), i.e.

that

(5.11) b1(k + 1) < b1(k) + F1(k, b1(k), u2) < c1(k + 1)

and

(5.12) b1(k + 1) < c1(k) + F1(k, c1(k), u2) < c1(k + 1)

for any k ∈ Z
∞
a and b2(k) < u2 < c2(k).

Start with inequalities (5.11). Substituting for b1(k) and then for ω1(k), we get

b1(k) + F1(k, b1(k), u2) = ω1(k) + u2 · (−γ1(k)ω1(k) + β1(k)) = ω1(k).

Thus, inequalities (5.11) reduce to

ω1(k + 1) < ω1(k) < ω1(k + 1) + f1(k + 1).

The first inequality (ω1(k + 1) < ω1(k)) is fulfilled due to assumption 1). The second

inequality is equivalent to the inequality

∆ω1(k) + f1(k + 1) > 0

which is supposed to be valid in assumption 3). Thus, inequalities (5.11) hold.

Now let us concentrate on inequalities (5.12). Again, substituting the appropriate

values, we get

c1(k) + F1(k, c1(k), u2) = ω1(k) + f1(k) + u2 · (−γ1(k)(ω1(k) + f1(k)) + β1(k))

= ω1(k) + f1(k) − u2γ1(k)f1(k) = ω1(k) + f1(k) + u2

∆ω1(k)

ω2(k)
.

We have to prove that

(5.13) ω1(k + 1) < ω1(k) + f1(k) + u2

∆ω1(k)

ω2(k)
< ω1(k + 1) + f1(k + 1).

Find the lower and the upper estimate of ω1(k) + f1(k) + u2(∆ω1(k))/ω2(k). In the

following considerations we will use the fact that ∆ω1(k) < 0 (see assumption 1)).

ω1(k) + f1(k) + u2

∆ω1(k)

ω2(k)
> ω1(k) + f1(k) + (ω2(k) + f2(k))

∆ω1(k)

ω2(k)

= ω1(k) + f1(k) + ∆ω1(k) + f2(k)
∆ω1(k)

ω2(k)
= ω1(k + 1) + f1(k) + f2(k)

∆ω1(k)

ω2(k)
,
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ω1(k) + f1(k) + u2

∆ω1(k)

ω2(k)
< ω1(k) + f1(k) + ω2(k)

∆ω1(k)

ω2(k)

= ω1(k) + f1(k) + ∆ω1(k) = ω1(k + 1) + f1(k).

To prove the first inequality of (5.13), it is sufficient to prove that

ω1(k + 1) < ω1(k + 1) + f1(k) + f2(k)
∆ω1(k)

ω2(k)

which gives

0 < f1(k) + f2(k)
∆ω1(k)

ω2(k)
.

This inequality is fulfilled due to assumption 4) of the Theorem. As for the second

inequality from (5.13), it is sufficient to show that

ω1(k + 1) + f1(k) < ω1(k + 1) + f1(k + 1).

This holds because of assumption 5). That means that inequalities (5.12) hold. Al-

together we have shown that the set Ω is of Liapunov type with respect to the first

variable and to system (5.1).

Now prove that all the points of the sets

Ω2

B = {(k, u1, b2(k)) : k ∈ Z
∞
a , b1(k) ≤ u1 ≤ c1(k)},

Ω2

C = {(k, u1, c2(k)) : k ∈ Z
∞
a , b1(k) ≤ u1 ≤ c1(k)}

are points of strict egress.

Due to (2.3), we have to show that

F2(k, u1, b2(k)) < b2(k + 1) − b2(k)

which, after substitution for F2 and b2 from (5.9) and (5.10), becomes

(5.14) u1 · (γ2(k)ω2(k) − β2(k)) < ω2(k + 1) − ω2(k).

From the definition of ω2(k) (see (5.4)), we get

u1 · (γ2(k)ω2(k) − β2(k)) = u1 ·
(

γ2(k)
β2(k)

γ2(k)
− β2(k)

)

= 0

and thus (5.14) reduces to

0 < ω2(k + 1) − ω2(k) = ∆ω2(k)

which holds thanks to assumption 2).

Finally, due to (2.4), prove that

F2(k, u1, c2(k)) > c2(k + 1) − c2(k).

After substitution, we get

u1 · (γ2(k)(ω2(k) + f2(k)) − β2(k)) > ω2(k + 1) + f2(k + 1) − (ω2(k) + f2(k)),
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which can be simplified to

(5.15) u1γ2(k)f2(k) > ∆ω2(k) + ∆f2(k).

The minimum possible value of the left-hand side of (5.15) is

ω1(k)γ2(k)f2(k) = ω1(k)γ2(k)
∆ω2(k)

ω1(k)γ2(k)
= ∆ω2(k).

To prove inequality (5.15), it is enough to show that

∆ω2(k) > ∆ω2(k) + ∆f2(k)

but this certainly holds because of assumption 6).

We have shown that all the assumptions of Theorem 3.1 are fulfilled and thus

there exists a solution of system (5.1) satisfying conditions (5.8).

Example 5.2. Let us consider the system of equations

(5.16)
∆u1(k) = u2(k)

(

− 1

k4
u1(k) +

1

k5

)

,

∆u2(k) = u1(k)(k3u2(k) − k4).

We will show that for k ∈ Z
∞
2 , all the assumptions of Theorem 5.1 are fulfilled. In

this case

ω1(k) =
1

k
, ω2(k) = k,

∆ω1(k) =
1

k + 1
− 1

k
= − 1

k(k + 1)
, ∆ω2(k) = (k + 1) − k = 1,

and

f1(k) = −−1/(k(k + 1))

k · 1/k4
=

k2

k + 1
, f2(k) =

1

(1/k) · k3
=

1

k2
.

Assumptions 1) and 2) of Theorem 5.1 are obviously fulfilled.

Prove the validity of assumption 3):

∆ω1(k) + f1(k + 1) = − 1

k(k + 1)
+

(k + 1)2

k + 2
=

k4 + 3k3 + 3k2 − 2

k(k + 1)(k + 2)
.

The last expression is positive for any k ∈ Z
∞
1 and thus assumption 3) holds.

The desired inequality in assumption 4) is in our case

f1(k) + f2(k)
∆ω1(k)

ω2(k)
=

k2

k + 1
+

1

k2
· −1/(k(k + 1))

k
=

k2

k + 1
− 1

k4(k + 1)

=
k6 − 1

k4(k + 1)
> 0.

This holds for any k ∈ Z
∞
2 .

As for assumption 5), we get

∆f1(k) =
(k + 1)2

k + 2
− k2

k + 1
=

k2 + 3k + 1

(k + 1)(k + 2)
> 0
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for any k ∈ Z
∞
1 .

Finally, assumption 6) is fulfilled, too, because the function f2(k) = 1/k2 is

decreasing for k ∈ Z
∞
1 and thus ∆f2(k) < 0.

All the assumptions of Theorem 5.1 are fulfilled and thus there exists a solution

u = u∗(k), k ∈ Z
∞
2 , of system (5.16) that satisfies the conditions

1

k
< u∗

1(k) <
1

k
+

k2

k + 1
,

k < u∗
2(k) < k +

1

k2
.

6. CONCLUDING REMARKS

The previous results of the first author introduce or apply just one of the in the

introduction mentioned techniques (retract or Liapunov). E.g., in papers [6] and [9],

the retract type technique is used, meanwhile in [8], the author uses the Liapunov type

technique. In [6], the typical assumptions are inequalities of the type (2.3) and (2.4).

For [8], inequalities of the type (2.2) are typical, but there they are applied to all the

equations of system (1.1).

Combining both methods brings a nontrivial generalization of the cited results.

The presented “hybrid” method involves both the single methods as its special cases.

If we choose Ie = ∅ in Theorem 3.1, we get the purely Liapunov case, i.e.the method

described in [8], and for the choice Ie = {1, . . . , n} we get the purely retract type case,

i.e.the method from [9]. The introduced connection of two various methods enables

us to apply the result of Theorem 3.1 to discrete systems which could not be treated

with help of any of the single methods. As an example let us mention the discrete

analogue of the so called Emden-Fowler differential equation which is studied in [11].

Finally, let us underline the flexibility of the new method. In the formulation of

the results, the role of the functions bi and ci is vital. The suitable choice of them

(which often depends upon our resourcefulness – see comments after Theorem 3.1)

often allows us to prove a result that could be anticipated by intuition. Sometimes

even the best possible and sharp results can be obtained this way. What is meant by

the “best possible result” will be illustrated on the following example. Simultaneously

we underline that the severity of conditions of our approach is not very restrictive

and is adequate to the obtained result due to comparisons with known results given

below.

Example 6.1. Let us consider the second order difference equation

(6.1) ∆v(k + 1) = −p(k)v(k).
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In applications, the existence of positive solutions of equations describing various

phenomena is discussed very often. The following result on the existence of a positive

solution of (6.1) is useful and interesting in its own right.

Theorem 6.2. If there exists a θ ∈ [0, 1) such that

(6.2) 0 < p(k) ≤ 1

4
+

θ

16k2
, k ∈ Z

∞
1 ,

then there exists a solution v = v∗(k) of (6.1) such that for k sufficiently large,

(6.3) 0 < v∗(k) <
√

k

(

1

2

)k

,

i.e. there exists a solution of equation (6.1) which is positive for k sufficiently large.

Proof. Using substitutions u1(k) := v(k), u2(k) := v(k + 1), equation (6.1) can be

rewritten as a system of two first order equations

∆u1(k) = − u1(k) + u2(k),(6.4)

∆u2(k) = − p(k)u1(k).(6.5)

We will show that if there exists a θ ∈ [0, 1) such that (6.2) holds then there exists a

solution u = (u∗
1(k), u∗

2(k)) of (6.4), (6.5) such that

0 < u∗
1(k) <

√
k

(

1

2

)k

,(6.6)

0 < u∗
2(k) <

√
k + 1

(

1

2

)k+1

(6.7)

for k sufficiently large.

That means that a solution v = v∗(k) of the original equation (6.1) exists such

that for k sufficiently large (6.3) holds. It means that a positive solution of equa-

tion (6.1) exists for k sufficiently large.

To prove this assertion, we will apply Theorem 3.1 with

Ie = {2}, IL = {1},
F1(k, u1, u2) := u2 − u1, F2(k, u1, u2) := −p(k)u1,

bi(k) := 0, i = 1, 2,

c1(k) :=
√

k

(

1

2

)k

, c2(k) :=
√

k + 1

(

1

2

)k+1

.

The proof of inequalities (2.2) with j = 1 and (2.3) with j = 2 is quite obvious

and we will omit it. Due to (2.4), we have to show that if

u2(k) =
√

k + 1

(

1

2

)k+1

, 0 < u1(k) <
√

k

(

1

2

)k

,
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then

−p(k)u1 >
√

k + 2

(

1

2

)k+2

−
√

k + 1

(

1

2

)k+1

,

which is equivalent to the inequality

(6.8)
√

k + 1

(

1

2

)k+1

−
√

k + 2

(

1

2

)k+2

− p(k)u1 > 0.

We will estimate the left-hand side of (6.8) with help of the second-degree Maclaurin

polynomial of the function
√

1 + x, i.e.

√
1 + x = 1 +

1

2
x − 1

8
x2 + O(x3).

Then

√
k + 1

(

1

2

)k+1

−
√

k + 2

(

1

2

)k+2

− p(k)u1 >
√

k + 1

(

1

2

)k+1

−
√

k + 2

(

1

2

)k+2

−
(

1

4
+

θ

16k2

)√
k

(

1

2

)k

=
√

k

(

1

2

)k

·
(

1

2

√

1 +
1

k
− 1

4

√

1 +
2

k
− 1

4
− θ

16k2

)

=
√

k

(

1

2

)k

·
[

1

2

(

1 +
1

2k
− 1

8k2
+ O

(

1

k3

))

−1

4

(

1 +
2

2k
− 4

8k2
+ O

(

1

k3

))

− 1

4
− θ

16k2

]

=
√

k

(

1

2

)k (
1 − θ

16k2
+ O

(

1

k3

))

> 0

for k sufficiently large. Thus, for such k, inequality (6.8) holds and all the assumptions

of Theorem 3.1 are fulfilled. Hence, there exists a solution of system (6.4), (6.5)

satisfying (6.6), (6.7) which implies the existence of a positive solution of (6.1).

Now let us investigate the simplest case of equation (6.1), namely p(k) ≡ p, where

p > 0 is a constant. In this case condition (6.2) reduces to

0 < p ≤ 1/4.

It can be shown easily (see e.g. [14, Theorem 7.7] and [15, Theorem 7.5.1]) that if

p > 1/4, then every solution of equation (6.1) oscillates, i.e. there exists no positive

solution of (6.1). This means that, as for the bounds bi and ci, i = 1, 2, we got the

best possible result.

Moreover it follows from [13, Corollary 4.7] that all solutions of (6.1) are oscilla-

tory (for k → ∞) if there exists a θ∗ > 1 such that

(6.9) p(k) ≥ 1

4
+

θ∗

16k2
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for all sufficiently large k. Comparing inequalities (6.2) and (6.9) we conclude that

they are almost opposite (values θ = 1 or θ∗ = 1 are not involved). So, we state again

that the choice of bounds bi and ci, i = 1, 2 led to the best possible and sharp result

(in terms of inequalities for the coefficient p of equation (6.1)).
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