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ABSTRACT. In this paper we investigate a nonlinear integral equation of Volterra type on an

unbounded interval. We show that under some assumptions our equation has solutions belonging

to the space of bounded and continuous functions on R+. The main tool used in our study is the

technique associated with the measures of noncompactness.
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1. INTRODUCTION

It is well known that integral equations have many useful applications in describ-

ing numerous events and problems of the real world (see, for example, [1, 6, 7, 8, 9]).

The purpose of this paper is to consider the existence of solutions for the following

nonlinear integral equation of Volterra type

(1.1) x(t) = (T1x)(t) + (T2x)(t)

∫ t

0

u(t, s, x(s))ds, t ≥ 0,

where T1, T2 are given operators on certain space of functions defined on R+, u is

a continuous function while x is an unknown function. We show that under some

assumptions Eq. (1.1) has a solution being continuous and bounded on R+. The

result obtained in the paper generalizes several ones obtained earlier [5, 10].

2. PRELIMINARIES

This section is devoted to collect some definitions and auxiliary results which will

be used in the sequel.

Assume that (E, ‖ · ‖) is an infinite dimensional Banach space with zero element

θ. Denote by B(x, r) the closed ball centered at x and with radius r. The symbol Br

stands for the ball B(θ, r).

If X is a nonempty subset of E we denote by X, ConvX the closure and the

closed convex closure of X, respectively. The family of all nonempty and bounded
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subsets of E is denoted by ME and by NE its subfamily consisting of all relatively

compact sets.

We use the following definition of the concept of measure of noncompactness [4].

Definition 2.1. A mapping µ : ME −→ R+ is said to be a measure of noncompact-

ness in the space E if it satisfies the following conditions:

1. The family kerµ = {X ∈ ME : µ(X) = 0} is nonempty and ker µ ⊂ NE .

2. X ⊂ Y ⇒ µ(X) ≤ µ(Y ).

3. µ(ConvX) = µ(X).

4. µ(X) = µ(X).

5. µ(λX + (1 − λ)Y ) ≤ λµ(X) + (1 − λ)µ(Y ) for λ ∈ [0, 1].

6. If (Xn) is a sequence of closed sets from ME such thatXn+1 ⊂ Xn for n = 1, 2, . . .

and if limn→∞ µ(Xn) = 0, then the set X∞ =
⋂∞

n=1Xn is nonempty.

The family ker µ described in 1 is called the kernel of the measure of noncom-

pactness µ.

A measure µ is said to be sublinear if it satisfies the following two conditions:

7. µ(λX) = |λ|µ(X) for λ ∈ R.

8. µ(X + Y ) ≤ µ(X) + µ(Y ).

Further facts concerning measures of noncompactness and their properties may

be found in [4]. For our further purposes we will only need the following fixed point

theorem [4].

Theorem 2.2. Let Ω be a nonempty, bounded, closed and convex subset of the Banach

space E and let F : Ω −→ Ω be a continuous operator such that µ(FX) ≤ kµ(X) for

any nonempty subset X of Ω, where k ∈ [0, 1) is a constant. Then F has a fixed point

in the set Ω.

Remark 2.3. An operator F satisfying the assumptions of Theorem 2.2 is called a

Darbo operator with constant k with respect to the measure of noncompactness µ.

Remark 2.4. Under the assumptions of the above theorem it can be shown that the

set Fix(F ) of fixed points of F belonging to Ω is a member of the kernel ker µ.

In the sequel we will work in the Banach space BC(R+) consisting of all real

functions defined, bounded and continuous on R+. The space BC(R+) is equipped

with the standard norm

‖x‖ = sup{|x(t)| : t ≥ 0}.

Now we recollect the main facts about some measure of noncompactness in the

space BC(R+) which will be used in the paper. This measure was introduced in [2].
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To do this let us fix a nonempty bounded subset X of BC(R+). For ε > 0, T > 0

and x ∈ X, denote by wT (x, ε) the modulus of continuity of the function x on the

interval [0, T ] defined by the formula

wT (x, ε) = sup{|x(t) − x(s)| : t, s ∈ [0, T ], |t− s| ≤ ε}.

Further, let us put

wT (X, ε) = sup{wT (x, ε) : x ∈ X},

wT
0 (X) = lim

ε→0
wT (X, ε),

w0(X) = lim
T→∞

wT
0 (X).

For a fixed number t ≥ 0 we denote

X(t) = {x(t) : x ∈ X}

and

diamX(t) = sup{|x(t) − y(t)| : x, y ∈ X}.

Finally, let us define the function µ on the family MBC(R+) by putting

µ(X) = w0(X) + lim sup
t→∞

diamX(t).

It can be shown [2] that the function µ is a sublinear measure of noncompactness on

the space BC(R+). The kernel ker µ of this measure contains nonempty and bounded

sets X such that functions from X are locally equicontinuous on R+ and the thickness

of the bundle formed by functions from X tends to zero at infinity.

3. MAIN RESULT

In this section, we will investigate the nonlinear integral equation (1.1). Our

considerations are placed in the Banach space BC(R+) described above.

We will consider Eq. (1.1) under following hypotheses:

(H1) Ti : BC(R+) → BC(R+), (i = 1, 2) are continuous and Darbo operators with

respect to the measure of noncompactness considered in Section 2 with constants

Qi, (i = 1, 2). Moreover, there exist nonnegative constants ci, di, (i = 1, 2) such

that

‖T1x‖ ≤ c1 + d1‖x‖ and ‖T2x‖ ≤ c2 + d2‖x‖ for x ∈ BC(R+),

(H2) u : R+ × R+ × R → R is a continuous function and there exist continuous

functions a, b, ψ : R+ → R+ with ψ nondecreasing such that

|u(t, s, x)| ≤ a(t)b(s)ψ(|x|), for t, s ∈ R+ and x ∈ R

and

lim
t→∞

a(t)

∫ t

0

b(s)ds = 0.
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Remark 3.1. Observe that based on the assumption (H2) there exists the following

finite constant:

A = sup

{

a(t)

∫ t

0

b(s)ds : t ≥ 0

}

.

(H3) There exists r0 > 0 such that

(c1 + d1r0) + (c2 + d2r0) ψ(r0) A ≤ r0

and, moreover, Q1 +Q2 ψ(r0) A < 1.

Now we can formulate our existence result.

Theorem 3.2. Under assumptions (H1)-(H3) Eq. (1.1) has at least one solution x =

x(t) which belongs to the space BC(R+).

Proof. Define the operator F on the space BC(R+) by putting

(3.1) (Fx)(t) = (T1x)(t) + (T2x)(t)

∫ t

0

u(t, s, x(s))ds, t ≥ 0.

Firstly, we will show that for an arbitrarily fixed x ∈ BC(R+) the function Fx is

continuous on R+.

By (H1), to do this it is sufficient to show that the function

(Bx)(t) =

∫ t

0

u(t, s, x(s))ds

is continuous.

Thus, fix ε > 0, T > 0 and t1, t2 ∈ [0, T ] such that |t1 − t2| ≤ ε. Without loss of

generality we can assume that t1 < t2. Then

|(Bx)(t2) − (Bx)(t1)| ≤

∣

∣

∣

∣

∫ t2

0

u(t2, s, x(s))ds−

∫ t1

0

u(t1, s, x(s))ds

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ t2

0

u(t2, s, x(s))ds−

∫ t1

0

u(t2, s, x(s))ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t1

0

u(t2, s, x(s))ds−

∫ t1

0

u(t1, s, x(s))ds

∣

∣

∣

∣

≤

∫ t2

t1

|u(t2, s, x(s))|ds+

∫ t1

0

|u(t2, s, x(s)) − u(t1, s, x(s))|ds

≤

∫ t2

t1

a(t2)b(s)ψ(|x(s)|)ds+

∫ t1

0

wT
u (ε)ds

≤ ‖a|[0,T ]‖ · ‖b|[0,T ]‖ · ψ(‖x‖) (t2 − t1) + wT
u (ε)

∫ T

0

ds

≤ ‖a|[0,T ]‖ · ‖b|[0,T ]‖ · ψ(‖x‖) ε+ wT
u (ε) T,

where

‖a|[0,T ]‖ = sup{a(t) : t ∈ [0, T ]},



EXISTENCE OF SOLUTIONS 555

‖b|[0,T ]‖ = sup{b(t) : t ∈ [0, T ]},

wT
u (ε) = sup{|u(t, s, y)− u(t′, s, y)| : t, t′, s ∈ [0, T ], |t− t′| ≤ ε, y ∈ [−‖x‖, ‖x‖]}.

Consequently

wT (Bx, ε) ≤ ‖a|[0,T ]‖ · ‖b|[0,T ]‖ · ψ(‖x‖) ε+ wT
u (ε) T.

Let us notice that wT
u (ε) → 0 as ε → 0 which is a consequence of the uniform

continuity of the function u on the compact [0, T ] × [0, T ] × [−‖x‖, ‖x‖]. This fact

gives us that

lim
ε→0

wT (Bx, ε) = 0

and this says us that the function Bx is continuous on the interval [0, T ]. As T is

arbitrary, Bx is continuous on R+ and this proves that Fx is continuous on R+.

Moreover, taking into account the assumptions (H1) and (H2) we derive the fol-

lowing estimate

|(Fx)(t)| ≤ |(T1x)(t)| + |(T2x)(t)|

∫ t

0

|u(t, s, x(s))|ds

≤ ‖T1x‖ + ‖T2x‖

∫ t

0

|u(t, s, x(s))|ds

≤ (c1 + d1‖x‖) + (c2 + d2‖x‖)

∫ t

0

a(t)b(s)ψ(|x(s)|)ds

≤ (c1 + d1‖x‖) + (c2 + d2‖x‖) ψ(‖x‖)

∫ t

0

a(t)b(s)ds

≤ (c1 + d1‖x‖) + (c2 + d2‖x‖) ψ(‖x‖) A.

Thus Fx is bounded on R+.

Moreover the above estimate gives the following inequality

‖Fx‖ ≤ (c1 + d1‖x‖) + (c2 + d2‖x‖) ψ(‖x‖) A.

In view of (H3) we have that F : Br0
→ Br0

.

Now, let us take a nonempty subset X of the ball Br0
. Fix ε > 0, T > 0 and take

t1, t2 ∈ [0, T ] such that |t1 − t2| ≤ ε with t1 < t2 and x ∈ X. Then, keeping in mind
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our assumptions, we can get

|(Fx)(t2) − (Fx)(t1)|

=

∣

∣

∣

∣

∣

(T1x)(t2) + (T2x)(t2)

∫ t2

0

u(t2, s, x(s))ds

− (T1x)(t1) − (T2x)(t1)

∫ t1

0

u(t1, s, x(s))ds

∣

∣

∣

∣

∣

≤ |(T1x)(t2) − (T1x)(t1)|

+

∣

∣

∣

∣

(T2x)(t2)

∫ t2

0

u(t2, s, x(s))ds− (T2x)(t1)

∫ t2

0

u(t2, s, x(s))ds

∣

∣

∣

∣

+

∣

∣

∣

∣

(T2x)(t1)

∫ t2

0

u(t2, s, x(s))ds− (T2x)(t1)

∫ t1

0

u(t2, s, x(s))ds

∣

∣

∣

∣

+

∣

∣

∣

∣

(T2x)(t1)

∫ t1

0

u(t2, s, x(s))ds− (T2x)(t1)

∫ t1

0

u(t1, s, x(s))ds

∣

∣

∣

∣

≤ wT (T1x, ε) + |(T2x)(t2) − (T2x)(t1)|

∫ t2

0

|u(t2, s, x(s))|ds

+ |(T2x)(t1)|

∫ t2

t1

|u(t2, s, x(s))|ds

+ |(T2x)(t1)|

∫ t1

0

|u(t2, s, x(s)) − u(t1, s, x(s))|ds

≤ wT (T1x, ε) + wT (T2x, ε) a(t2)

∫ t2

0

b(s)ψ(|x(s)|)ds

+ (c2 + d2r0) a(t2)

∫ t2

t1

b(s)ψ(|x(s)|)ds+ (c2 + d2r0)

∫ t1

0

wT
u,r0

(ε)ds

≤ wT (T1x, ε) + wT (T2x, ε) ψ(‖x‖) a(t2)

∫ t2

0

b(s)ds

+ (c2 + d2r0) ‖a|[0,T ]‖ · ‖b|[0,T ]‖ · ψ(‖x‖) (t2 − t1) + (c2 + d2r0) w
T
u,r0

(ε)

∫ t1

0

ds

≤ wT (T1x, ε) + wT (T2x, ε) ψ(r0) A

+ (c2 + d2r0)[‖a|[0,T ]‖ · ‖b|[0,T ]‖ · ψ(r0) ε+ wT
u,r0

(ε) T ],

where

wT
u,r0

(ε) = sup{|u(t, s, y)− u(t′, s, y)| : t, t′, s ∈ [0, T ], y ∈ [−r0, r0], |t− t′| ≤ ε}

and as u is uniformly continuous on the compact [0, T ] × [0, T ] × [−r0, r0] we have

that wT
u,r0

(ε) → 0 as ε→ 0. The last estimate gives us that

wT (FX, ε) ≤ wT (T1X, ε) + wT (T2X, ε) ψ(r0) A

+ (c2 + d2r0) [‖a|[0,T ]‖ · ‖b|[0,T ]‖ · ψ(r0) ε+ wT
u,r0

(ε) T ].



EXISTENCE OF SOLUTIONS 557

Taking limit as ε→ 0 we get

wT
0 (FX) ≤ wT

0 (T1X) + wT
0 (T2X) ψ(r0) A

and finally passing to limit as T → ∞,

(3.2) w0(FX) ≤ w0(T1X) + w0(T2X) ψ(r0) A.

Now, for x, y ∈ X and for a fixed t ≥ 0, in virtue of our assumptions, we obtain

|(Fx)(t) − (Fy)(t)| ≤ |(T1x)(t) − (T1y)(t)|

+

∣

∣

∣

∣

(T2x)(t)

∫ t

0

u(t, s, x(s))ds− (T2y)(t)

∫ t

0

u(t, s, y(s))ds

∣

∣

∣

∣

≤ diam(T1X)(t)

+

∣

∣

∣

∣

(T2x)(t)

∫ t

0

u(t, s, x(s))ds− (T2y)(t)

∫ t

0

u(t, s, x(s))ds

∣

∣

∣

∣

+

∣

∣

∣

∣

(T2y)(t)

∫ t

0

u(t, s, x(s))ds− (T2y)(t)

∫ t

0

u(t, s, y(s))ds

∣

∣

∣

∣

≤ diam(T1X)(t) + |(T2x)(t) − (T2y)(t)|

∫ t

0

|u(t, s, x(s))|ds

+ |(T2y)(t)|

∫ t

0

|u(t, s, x(s)) − u(t, s, y(s))|ds

≤ diam(T1X)(t) + diam(T2X)(t) ψ(r0) a(t)

∫ t

0

b(s)ds

+ (c2 + d2r0)

[
∫ t

0

|u(t, s, x(s))|ds+

∫ t

0

|u(t, s, y(s))|ds

]

≤ diam(T1X)(t) + diam(T2X)(t) ψ(r0) a(t)

∫ t

0

b(s)ds

+ (c2 + d2r0) 2ψ(r0) a(t)

∫ t

0

b(s)ds.

Hence we deduce that

diam(FX)(t) ≤ diam(T1X)(t) + diam(T2X)(t) ψ(r0) a(t)

∫ t

0

b(s)ds

+ (c2 + d2r0) 2ψ(r0) a(t)

∫ t

0

b(s)ds.

Now, taking into account our assumptions we get

(3.3) lim sup
t→∞

diam(FX)(t) ≤ lim sup
t→∞

diam(T1X)(t).
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Now, linking (3.2) and (3.3) and, keeping in mind the definition of the measure of

noncompactness µ in the space BC(R+) given in Section 2, we obtain

µ(FX) = w0(FX) + lim sup
t→∞

diam(FX)(t)

≤ w0(T1X) + w0(T2X) ψ(r0) A+ lim sup
t→∞

diam(T1X)(t)

= µ(T1X) + w0(T2X) ψ(r0) A.

By (H1), as the operators T1 and T2 are Darbo operators with constants Q1 and Q2,

respectively, we get

µ(FX) ≤ µ(T1X) + w0(T2X) ψ(r0) A

≤ µ(T1X) + µ(T2X) ψ(r0) A

≤ Q1 µ(X) +Q2 µ(X) ψ(r0) A

= [Q1 +Q2 ψ(r0) A] µ(X).

(3.4)

Finally, we will show that F is continuous on the ball Br0
.

In order to do this let us fix ε > 0 and take a sequence (xn) ⊂ Br0
and x ∈ Br0

with xn → x. Then, for t ∈ R+, we get

|(Fxn)(t) − (Fx)(t)| ≤ |(T1xn)(t) − (T1x)(t)|

+

∣

∣

∣

∣

(T2xn)(t)

∫ t

0

u(t, s, xn(s))ds− (T2x)(t)

∫ t

0

u(t, s, x(s))ds

∣

∣

∣

∣

≤ |(T1xn)(t) − (T1x)(t)|

+

∣

∣

∣

∣

(T2xn)(t)

∫ t

0

u(t, s, xn(s))ds− (T2x)(t)

∫ t

0

u(t, s, xn(s))ds

∣

∣

∣

∣

+

∣

∣

∣

∣

(T2x)(t)

∫ t

0

u(t, s, xn(s)) − (T2x)(t)

∫ t

0

u(t, s, x(s))ds

∣

∣

∣

∣

≤ |(T1xn)(t) − (T1x)(t)|

+ |(T2xn)(t) − (T2x)(t)|

∫ t

0

|u(t, s, xn(s))|ds

+ |(T2x)(t)|

∫ t

0

|u(t, s, xn(s)) − u(t, s, x(s))|ds.

(3.5)

Next, using assumption (H2), we can choose a number T > 0 such that for t ≥ T , the

following inequality holds

a(t)

∫ t

0

b(s)ds < min

{

ε,
1

ψ(r0) + 1
,

ε

3 · 2ψ(r0) (c2 + d2r0)

}

.

If we put

w̄T
u,r0

(ε) = sup{|u(t, s, x) − u(t, s, y)| : t, s ∈ [0, T ], x, y ∈ [−r0, r0], |x− y| ≤ ε}
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then the uniform continuity of u on the compact [0, T ]× [0, T ]× [−r0, r0] yields that

limε→0 w̄
T
u,r0

(ε) = 0 and this means that for ε > 0 given there exists δ > 0 such that

if 0 < δ′ < δ, then

w̄T
u,r0

(δ′) <
ε

3(c2 + d2r0) T
.

As xn → x, for δ > 0 there exists n1 ∈ N such that ‖xn − x‖ < δ/2, for n ≥ n1.

Moreover, as T1 and T2 are continuous operators there exists n2 ∈ N such that

for n ≥ n2

‖T1xn − T1x‖ <
ε

3
,

‖T2xn − T2x‖ < min

{

ε

3
,

ε

3 ‖a|[0,T ]‖ · ‖b|[0,T ]‖ · ψ(r0) T

}

.

Now we take n ≥ max{n1, n2} and we consider two cases:

1. If t ≥ T .

2. If t < T .

Case 1. In virtue of (3.5) we get

|(Fxn)(t) − (Fx)(t)| ≤ ‖T1xn − T1x‖ + ‖T2xn − T2x‖ · ψ(r0) a(t)

∫ t

0

b(s)ds

+ (c2 + d2r0) 2ψ(r0) a(t)

∫ t

0

b(s)ds

≤
ε

3
+
ε

3

ψ(r0)

ψ(r0) + 1
+

(c2 + d2r0) 2ψ(r0) ε

3 · 2 ψ(r0) (c2 + d2r0)

≤ ε.

Case 2. In virtue of (3.5) we get

|(Fxn)(t) − (Fx)(t)| ≤ ‖T1xn − T1x‖ + ‖T2xn − T2x‖ · ψ(r0) · ‖a|[0,T ]‖ · ‖b|[0,T ]‖ T

+ (c2 + d2r0)

∫ t

0

wT
u,r0

(

δ

2

)

ds

≤
ε

3
+
ε ψ(r0) · ‖a|[0,T ]‖ · ‖b|[0,T ]‖ T

3 ‖a|[0,T ]‖ · ‖b|[0,T ]‖ · ψ(r0) T
+
ε (c2 + d2r0) T

3(c2 + d2r0) T

≤ ε.

These facts prove that F is continuous on the ball Br0
.

Finally, taking into account (3.4), assumption (H3) and Theorem 2.2 we infer

that the operator F has at least one fixed point in Br0
. This completes the proof.

Remark 3.3. Theorem 3.2 can be proved using the Schauder fixed point principle

instead Darbo’s theorem. In fact, to do this we consider the set Br0
appearing in the

proof of Theorem 3.2 and put B1
r0

= Conv(F (Br0
)), B2

r0
= Conv(F (B1

r0
)) and so on.

Observe that the sequence of sets (Bn
r0

) is decreasing i.e. Bn+1
r0

⊂ Bn
r0

for n = 1, 2, . . ..
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Moreover the sets of this sequence are closed and convex. From this, in view of (3.4)

we get

µ(Bn
r0

) ≤ qnµ(Br0
),

where q = Q1 +Q2 ψ(r0) A.

Notice that by assumption (H3) of Theorem 3.2, q < 1. From this fact and the

last inequality we infer

lim
n→∞

µ(Bn
r0

) = 0.

Hence, taking into account the condition 6 of the definition of a measure of non-

compactness, we get that the set Y =
⋂∞

n=1(B
n
r0

) is nonempty, bounded, closed and

convex. Moreover, in view of the condition 2 in the Definition 2.1 and the fact that

limn→∞ µ(Bn
r0

) = 0, the set Y is member of the ker µ and, consequently, Y is relatively

compact subset of BC(R+). We observe that the operator F transforms the set Y

into itself. The proof that F is continuous on Y is the same as that appearing in

Theorem 3.2.

Finally, taking into account all facts concerning the set Y and the continuity of

the operator F : Y → Y , the Schauder fixed point principle says us that F has at

least one fixed point in Y , being a solution of Eq. (1.1).

4. FURTHER DISCUSSIONS, REMARKS AND EXAMPLES

This section is devoted to discuss and to give some examples in connection with

our main result proved in the previous section.

Remark 4.1. Let f : R+×R → R be a continuous function and such that t 7→ f(t, 0)

is an element of BC(R+) and suppose that there exists a constant k such that

|f(t, x) − f(t, y)| ≤ k|x− y| for x, y ∈ R.

Then the operator T : BC(R+) −→ BC(R+) defined by (Tx)(t) = f(t, x(t)) is a

Darbo operator with respect to the measure of noncompactness µ defined in the

Section 1.

In fact, it is easily seen that if x ∈ BC(R+) then, by our assumptions about f ,

Tx is continuous on R+. Moreover, if x ∈ BC(R+), then

|(Tx)(t)| = |f(t, x(t))| ≤ |f(t, x(t)) − f(t, 0)| + |f(t, 0)| ≤ k|x(t)| + |f(t, 0)|

and this proves that T transforms BC(R+) into itself.

In what follows we prove that T is a Darbo operator.

Let X be a nonempty bounded subset of BC(R+) and x, y ∈ X, t ∈ R+, then we

obtain

|(Tx)(t) − (Ty)(t)| = |f(t, x(t)) − f(t, y(t))| ≤ k|x(t) − y(t)|
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and this gives us

diam(Tx)(t) ≤ k diamX(t)

and, consequently

(4.1) lim sup
t→∞

diam(Tx)(t) ≤ k lim sup
t→∞

diamX(t).

On the other hand, for T > 0, ε > 0, t, p ∈ [0, T ] with |t− p| ≤ ε and x ∈ X we have

|(Tx)(t) − (Tx)(p)| = |f(t, x(t)) − f(p, x(p))|

≤ |f(t, x(t)) − f(t, x(p))| + |f(t, x(p)) − f(p, x(p))|

≤ k|x(t) − x(p)| + wT
f (ε),

where wT
f (ε) = sup{|f(t1, x) − f(t2, y)| : t1, t2 ∈ [0, T ], |t1 − t2| ≤ ε, x, y ∈

[−‖X‖, ‖X‖]} and ‖X‖ = sup{‖x‖ : x ∈ X}.

Notice that as f is uniformly continuous on [0, T ]× [−‖X‖, ‖X‖], limε→0w
T
f (ε) =

0.

Taking into account the above mentioned facts and the last inequality, we get

wT (TX, ε) ≤ kwT (X, ε) + wT
f (ε)

and taking limit as ε → 0,

wT
0 (TX) ≤ kwT

0 (X)

and, finally, taking limit as T → ∞

(4.2) w0(TX) ≤ kw0(X).

Now, linking (4.1) and (4.2) we have

µ(TX) ≤ kµ(X)

and this proves that T is a Darbo operator with constant k.

Functions f satisfying conditions appearing in Remark 4.1 are used in the papers

[5, 10] and, consequently, our theorem generalizes the results of these papers in some

particular cases (for example, when m(t) is a bounded function, see [5, 10]).

In the paper [3] it is used a function f : R+ × R → R continuous and such that

there exist positive constants L,M with M < L and

|f(t, x) − f(t, y)| ≤
M |x− y|

L+ |x− y|
for x, y ∈ R

and t 7→ f(t, 0) is a bounded function.

In this case, this function can be considered as a particular case of the functions

appearing in Remark 4.1, in virtue of

|f(t, x) − f(t, y)| ≤
M |x− y|

L+ |x− y|
≤
M

L
|x− y|
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and, consequently, the result proved in [3] is a particular case of our Theorem 3.2.

Now, we present some examples of Darbo operators which can be used in our

Theorem 3.2.

Example 4.2. Let ϕ : R+ → R+ be a continuous nondecreasing function with

bounded derivative and limt→∞ ϕ(t) = ∞. Consider the composition operator:

Tϕ : BC(R+) −→ BC(R+),

defined by (Tϕx)(t) = x(ϕ(t)). Obviously, Tϕ transforms BC(R+) into itself.

In what follows we prove that Tϕ is a Darbo operator.

In fact, let X be a nonempty bounded subset of BC(R+) and x, y ∈ X, t ∈ R+

then we have

|(Tϕx)(t) − (Tϕy)(t)| = |x(ϕ(t)) − y(ϕ(t))|.

From this we get

diam(TϕX)(t) ≤ diamX(ϕ(t))

and as limt→∞ ϕ(t) = ∞, we obtain

(4.3) lim sup
t→∞

diam(TϕX)(t) ≤ lim sup
t→∞

diamX(ϕ(t)) = lim sup
t→∞

diamX(t).

On the other hand, for T > 0, ε > 0, t, p ∈ [0, T ] with |t− p| ≤ ε and x ∈ X we have

(4.4) |(Tϕx)(t) − (Tϕx)(p)| = |x(ϕ(t)) − x(ϕ(p))|.

As ϕ has bounded derivative, we put h = sup{|ϕ′(t)| : t ∈ R+} and the mean value

theorem gives us that |ϕ(t) − ϕ(p)| ≤ h|t− p|. Notice that ϕ is a nondecreasing and

nonnegative function and t, p ∈ [0, T ] then ϕ(t), ϕ(p) ∈ [0, ϕ(T )] and (4.4) gives us

wT (Tϕx, ε) ≤ wϕ(T )(x, hε).

Taking supremum in x ∈ X

wT (TϕX, ε) ≤ wϕ(T )(X, hε),

and taking limit as ε → 0

wT
0 (TϕX) ≤ w

ϕ(T )
0 (X).

Finally, taking limit as T → ∞ and keeping in mind that limt→∞ ϕ(t) = ∞ we obtain

(4.5) w0(TϕX) ≤ w0(X).

Now, linking (4.3) and (4.5) we get

µ(TϕX) ≤ µ(X)

and, consequently, Tϕ is a Darbo operator with constant k = 1.

An example of function ϕ is ϕ(t) = ln(t+ 1).
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Example 4.3. Consider the composition operator appearing in Example 4.2 with

ϕ(t) = t2. Notice that the derivative of ϕ is not bounded.

In this case, we will prove that Tϕ is also a Darbo operator. Obviously, Tϕ

transforms BC(R+) into itself.

Let X be a nonempty bounded subset of BC(R+) and x, y ∈ X, t ∈ R+, then

|(Tϕx)(t) − (Tϕy)(t)| = |x(t2) − y(t2)|.

This gives us

diam(TϕX)(t) ≤ diamX(t2)

and, consequently,

(4.6) lim sup
t→∞

diam(TϕX)(t) ≤ lim sup
t→∞

diamX(t2) = lim sup
t→∞

diamX(t).

On the other hand, for T > 0, ε > 0, t, p ∈ [0, T ] with |t− p| ≤ ε and x ∈ X we have

|(Tϕx)(t) − (Tϕx)(p)| = |x(t2) − x(p2)|.

As |t2 − p2| = |t+ p| · |t− p| ≤ 2 T |t− p| we obtain

wT (Tϕx, ε) ≤ wT 2

(x, 2Tε)

and this gives us

wT (TϕX, ε) ≤ wT 2

(X, 2Tε).

Taking limit as ε→ 0

wT
0 (TϕX) ≤ wT 2

0 (X)

and taking limit as T → ∞

(4.7) w0(TϕX) ≤ w0(X).

Finally, linking (4.6) and (4.7)

µ(TϕX) ≤ µ(X)

and this proves that Tϕ is a Darbo operator with constant k = 1.

The condition about the boundedness of derivative of ϕ can be changed by the

following condition:

|ϕ(t) − ϕ(p)| ≤ ϕ(T )|t− p|, for t, p ∈ [0, T ]

and the Example 4.2 would work for our purposes. (An example of such functions is

ϕ(t) = et).
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Example 4.4. Let ϕ be a continuous and bounded function on R+ and we consider

the multiplication operator T ϕ : BC(R+) → BC(R+) defined by (T ϕx)(t) = x(t)ϕ(t).

Obviously, T ϕ transforms BC(R+) into itself.

In order to prove that T ϕ is a Darbo operator we take a nonempty bounded

subset X of BC(R+) and x, y ∈ X, t ∈ R+ then

|(T ϕx)(t) − (T ϕy)(t)| = |ϕ(t)| · |x(t) − y(t)| ≤ ‖ϕ‖ · |x(t) − y(t)|

and this proves that

(4.8) lim sup
t→∞

diam(T ϕX)(t) ≤ ‖ϕ‖ lim sup
t→∞

diamX(t).

On the other hand, for T > 0, ε > 0, t, p ∈ [0, T ] with |t− p| ≤ ε and x ∈ X we have

|(T ϕx)(p) − (T ϕx)(t)| = |ϕ(p)x(p) − ϕ(t)x(t)|

≤ |ϕ(p)x(p) − ϕ(p)x(t)| + |ϕ(p)x(t) − ϕ(t)x(t)|

≤ |ϕ(p)| · |x(p) − x(t)| + |x(t)| · |ϕ(p) − ϕ(t)|

≤ ‖ϕ‖ · |x(p) − x(t)| + ‖x‖ · wT
ϕ(ε),

where wT
ϕ(ε) = sup{|ϕ(t1)−ϕ(t2)| : t1, t2 ∈ [0, T ], |t1−t2| ≤ ε}. Obviously, wT

ϕ (ε) → 0

as ε→ 0.

The last inequality gives us

wT (T ϕx, ε) ≤ ‖ϕ‖wT (x, ε) + ‖x‖wT
ϕ(ε)

and, consequently,

wT (T ϕX, ε) ≤ ‖ϕ‖wT (X, ε) + ‖X‖wT
ϕ(ε).

Following the same steps that in Example 4.3 we get

(4.9) w0(T
ϕX) ≤ ‖ϕ‖w0(X).

Finally, linking (4.8) and (4.9)

µ(T ϕX) ≤ ‖ϕ‖µ(X)

and this proves that T ϕ is a Darbo operator with constant k = ‖ϕ‖.

Example 4.5. Let φ : R → R be a Lipschitz function. Consider the operator

Lφ : BC(R+) → BC(R+) defined by

(Lφx)(t) = (φ ◦ x)(t).

Obviously, if x is continuous on R+ then φ ◦ x is also continuous. Moreover, if x is

bounded on R+ as φ is continuous on R+, φ ◦ x is bounded.

In what follows we prove that Lφ is a Darbo operator.
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Let X ⊂ BC(R+) be a nonempty bounded subset and x, y ∈ X, t ∈ R+ then

|(Lφx)(t) − (Lφy)(t)| = |(φ ◦ x)(t) − (φ ◦ y)(t)|

= |(φ(x(t)) − (φ(y(t))|

≤M |x(t) − y(t)|,

where M is the Lipschitz constant of φ.

Consequently,

diam(LφX)(t) ≤MdiamX(t)

and this implies that

(4.10) lim sup
t→∞

diam(LφX)(t) ≤M lim sup
t→∞

diamX(t).

On the other hand, for T > 0, ε > 0, t, p ∈ [0, T ] with |t− p| ≤ ε and x ∈ X we have

|(Lφx)(p) − (Lφx)(t)| = |(φ(x(p)) − (φ(x(t))| ≤M |x(p) − x(t)|

and this gives us that

wT (LφX, ε) ≤MwT (X, ε).

Consequently,

(4.11) w0(LφX) ≤Mw0(X).

Finally, linking (4.10) and (4.11)

µ(LφX) ≤Mµ(X)

Notice that examples of functions φ are: φ(t) = sin t, φ(t) = arctan t and φ(t) =
|t|

1 + |t|
.

Example 4.6. Let ϕ : R+ → R be a continuous function such that

∫ ∞

0

|ϕ(s)|ds <∞.

Consider the operator Iϕ : BC(R+) → BC(R+) defined by

(Iϕx)(t) =

∫ t

t/2

x(s)ϕ(s)ds.

In view of our assumptions it is easily seen that Iϕ transforms BC(R+) into itself.

Now, we will show that Iϕ is a Darbo operator.

In fact, let X ⊂ BC(R+) be a nonempty bounded subset and x, y ∈ X, t ∈ R+

then we have

|(Iϕx)(t) − (Iϕy)(t)| =

∣

∣

∣

∣

∫ t

t/2

x(s)ϕ(s)ds−

∫ t

t/2

y(s)ϕ(s)ds

∣

∣

∣

∣

≤

∫ t

t/2

|x(s) − y(s)||ϕ(s)|ds

≤ ‖x− y‖

∫ t

t/2

|ϕ(s)|ds ≤ 2‖X‖

∫ t

t/2

|ϕ(s)|ds,
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where ‖X‖ = sup{‖x‖ : x ∈ X}.

This gives

diam(IϕX)(t) ≤ 2‖X‖

∫ t

t/2

|ϕ(s)|ds

and, as

∫ ∞

0

|ϕ(s)|ds <∞, we get

lim sup
t→∞

diam(IϕX)(t) ≤ 2‖X‖ lim
t→∞

∫ t

t/2

|ϕ(s)|ds = 0.

On the other hand, for T > 0, ε > 0, t, p ∈ [0, T ] with |t− p| ≤ ε and x ∈ X we have

|(Iϕx)(p) − (Iϕx)(t)| =

∣

∣

∣

∣

∫ p

p/2

x(s)ϕ(s)ds−

∫ t

t/2

x(s)ϕ(s)ds

∣

∣

∣

∣

.

Without loss of generality we can suppose that t < p. Then

|(Iϕx)(p) − (Iϕx)(t)| =

∣

∣

∣

∣

∣

∫ p

0

x(s)ϕ(s)ds−

∫ p/2

0

x(s)ϕ(s)ds

−

∫ t

0

x(s)ϕ(s)ds+

∫ t/2

0

x(s)ϕ(s)ds

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ p

t

x(s)ϕ(s)ds−

∫ p/2

t/2

x(s)ϕ(s)ds

∣

∣

∣

∣

∣

≤ ‖x‖

[

∫ p

t

|ϕ(s)|ds+

∫ p/2

t/2

|ϕ(s)|ds

]

≤ ‖x‖
[

‖ϕ|[0,T ]‖(p− t) + ‖ϕ|[0,T ]‖(p/2 − t/2)
]

≤ ‖x‖‖ϕ|[0,T ]‖
3

2
ε,

where ‖ϕ|[0,T ]‖ = sup{|ϕ(s)| : s ∈ [0, T ]}.

Consequently,

wT (IϕX, ε) ≤ ‖x‖‖ϕ|[0,T ]‖
3

2
ε

and this gives

wT
0 (IϕX) = 0.

This proves that Iϕ is a compact operator and thus, a Darbo operator.

Examples of functions ϕ are: ϕ(t) = e−λt and ϕ(t) =
1

1 + t2
.

Example 4.7. Let ϕ ∈ BC(R+) be a fixed function. Consider the operator Mϕ :

BC(R+) → BC(R+) defined by

(Mϕx)(t) = max(x(t), ϕ(t)).

Obviously, Mϕ transforms BC(R+) into itself.

Now, we prove that Mϕ is a Darbo operator.
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In fact, let X ⊂ BC(R+) be a nonempty bounded subset and x, y ∈ X, t ∈ R+

then

|(Mϕx)(t) − (Mϕy)(t)| = |max(x(t), ϕ(t)) − max(y(t), ϕ(t))|.

We can distinguish several cases:

1. max(x(t), ϕ(t)) = x(t) and max(y(t), ϕ(t)) = y(t).

2. max(x(t), ϕ(t)) = x(t) and max(y(t), ϕ(t)) = ϕ(t).

3. max(x(t), ϕ(t)) = ϕ(t) and max(y(t), ϕ(t)) = y(t).

4. max(x(t), ϕ(t)) = ϕ(t) and max(y(t), ϕ(t)) = ϕ(t).

Case 1. In this case |(Mϕx)(t) − (Mϕy)(t)| = |x(t) − y(t)| ≤ diamX(t).

Case 2. In this case |(Mϕx)(t) − (Mϕy)(t)| = |x(t) − ϕ(t)|.

Notice that ϕ(t) ≤ x(t) and y(t) ≤ ϕ(t).

Consequently, |x(t) − ϕ(t)| = d(x(t), ϕ(t)) ≤ d(x(t), y(t)) ≤ |x(t) − y(t)|, and

|(Mϕx)(t) − (Mϕy)(t)| ≤ |x(t) − y(t)| ≤ diamX(t).

Case 3. It is analogous to case 2.

Case 4. In this case |(Mϕx)(t) − (Mϕx)(t)| = 0.

In summary, we have that

|(Mϕx)(t) − (Mϕy)(t)| ≤ diamX(t)

and this gives

diam(MϕX)(t) ≤ diamX(t)

and, consequently,

lim sup
t→∞

diam(MϕX)(t) ≤ lim sup
t→∞

diamX(t).

On the other hand, for T > 0, ε > 0, t, p ∈ [0, T ] with |t− p| ≤ ε and x ∈ X we have

|(Mϕx)(t) − (Mϕx)(p)| = |max(x(t), ϕ(t)) − max(x(p), ϕ(p))|.

We can distinguish several cases:

1. max(x(t), ϕ(t)) = x(t) and max(x(p), ϕ(p)) = x(p).

2. max(x(t), ϕ(t)) = x(t) and max(x(p), ϕ(p)) = ϕ(p).

3. max(x(t), ϕ(t)) = ϕ(t) and max(x(p), ϕ(p)) = x(p).

4. max(x(t), ϕ(t)) = ϕ(t) and max(x(p), ϕ(p)) = ϕ(p).

Following the same argument that we use for diameter it is easily proved that

wT (Mϕx, ε) ≤ max{wT (x, ε), wT (ϕ, ε)}

the last inequality gives us that

wT (Mϕx, ε) ≤ wT (x, ε) + wT (ϕ, ε)
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and this implies that

wT (MϕX, ε) ≤ wT (X, ε) + wT (ϕ, ε).

As ϕ is continuous we obtain

wT
0 (MϕX) ≤ wT

0 (X)

and, thus,

w0(MϕX) ≤ w0(X).

An interesting case appears when ϕ = 0 and in this case

Mϕx = max(x, 0) = x+ (positive part of x)

Remark 4.8. In our Theorem 3.2 we use the condition ‖Tx‖ ≤ c + d‖x‖ for x ∈

BC(R+). Notice that this condition is satisfied when |(Tx)(t)| ≤ c + d|x(t)| for

t ∈ R+.

The following example proves that these conditions are not equivalent.

We consider the Darbo operator given in Example 4.3, i.e. (Tx)(t) = x(t2).

Obviously, ‖Tx‖ ≤ ‖x‖.

Now we suppose that there exist nonnegative constants c and d such that |(Tx)(t)| ≤

c+ d|x(t)| for every x ∈ BC(R+) and t ∈ R+.

We consider the function

x(t) =







1

2
(max{c, d} + 1)(t− 2), 0 ≤ t ≤ 4

max{c, d} + 1, t > 4.

Obviously, x ∈ BC(R+) and |(Tx)(2)| = |x(4)| = max{c, d} + 1 > c + d|x(2)| = c.

Remark 4.9. Following the definition in [5] the asymptotic stability of a solution

x = x(t) of Eq. (1.1) will be understood in the following sense:

For ε > 0 given there exist T > 0 and r > 0 such that if x, y ∈ Br and x = x(t),

y = y(t) are solutions of Eq. (1.1) then |x(t) − y(t)| ≤ ε for t ≥ T .

Taking into account Remark 2.4 and the description of the kernel of the measure

of noncompactness µ given in Section 2, we infer easily from the proof of Theorem 3.2

that any solution of Eq. (1.1) which belongs to the ball Br0
is asymptotically stable.

Remark 4.10. If (T1x)(t) = h(t), (T2x)(t) = 1 and u(t, s, x) = ϕ(s)x(s) with ϕ :

R+ → R+ continuous, our Eq. (1.1) reduces to

x(t) = h(t) +

∫ t

0

ϕ(s)x(s)ds.



EXISTENCE OF SOLUTIONS 569

In this case we can obtain uniqueness of the solution in the ball Br0
. In fact, if

x = x(t), y = y(t) are solutions of our Eq. (1.1) then, for t ∈ [0, T ], where T > 0 is

fixed, we obtain

|x(t) − y(t)| ≤

∫ t

0

ϕ(s)|x(s) − y(s)|ds

and Gronwall inequality [11] gives us |x(t) − y(t)| = 0 and, consequently, x(t) = y(t)

in [0, T ] and, as T is arbitrary, this gives us the uniqueness of the solution in Br0
.
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[4] J. Banaś, K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure

and Appl. Math. Vol. 60, Marcel Dekker, New York and Basel, 1980.
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