
Dynamic Systems and Applications 18 (2009) 605-620

EXISTENCE AND UNIFORM DECAY FOR A NONLINEAR
VISCOELASTIC EQUATION WITH STRONG DAMPING AND

NONLINEAR BOUNDARY MEMORY DAMPING TERM

JONG YEOUL PARK AND JUNG AE KIM

Department of Mathematics, College of Science, Pusan National University,

Kumjung, Pusan 609-735, Republic of Korea

jyepark@pusan.ac.kr

Department of Mathematical Sciences, KAIST, Guseong-dong 373-1, Yuseong-gu,

Daejeon, 305-701, South Korea

jakim@kaist.ac.kr

ABSTRACT. In this paper, we prove the existence of the solution to the nonlinear viscoelastic

equation with strong damping and nonlinear boundary memory damping term. Moreover, we discuss

the uniform decay of the solution.
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1. INTRODUCTION

This manuscript is devoted to the existence and uniform decay rates of the energy

of solutions for the nonlinear viscoelastic problem with strong damping and nonlinear

boundary memory damping term:

(1.1)



























|ut|
ρutt − β∆utt − ∆u − ∆ut = 0 in Ω × (0,∞),

u = 0 on Γ1 × (0,∞),

β ∂utt

∂ν
+ ∂u

∂ν
+ ∂ut

∂ν
+ u =

∫ t

0
g(t − τ)|ut(τ)|γut(τ)dτ on Γ0 × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x) for x ∈ Ω,

where Ω is a bounded domain of Rn with C2 boundary Γ = ∂Ω such that Γ = Γ0∪Γ1,

Γ̄0 ∩ Γ̄1 = ∅ and Γ0, Γ1 have positive measures and ν denotes the unit outer normal

vector pointing towards Ω. Here γ, ρ is a real number such that

(1.2) 0 < γ, ρ ≤
1

n − 2
if n ≥ 3 or γ, ρ > 0 if n = 1, 2,

β ≥ 0 and g represents the kernel of the memory term which will be assumed to decay

exponentially.

Problem related to the equation

(1.3) f(ut)utt − ∆u − ∆utt = 0
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are interesting not only from the point of view of PDE general theory, but also due

to its applications in Mechanics. For instance, when the material density, f(ut) is

equal to 1, Equation (1.3) describes the extensional vibrations of thin rods, see Love

[13] for the physical details. When the material density f(ut) is not constant, we are

dealing with a thin rod which possesses a rigid surface and whose interior is somehow

permissive to slight deformations such that the material density varies according to

the velocity.

On the other hand, it is important to observe that similar equations to the one

given in (1.3) arise in the study of viscoelastic plate with memory, more precisely

(1.4) utt + ∆2u − ∆utt −

∫ t

0

g(t − τ)∆2u(τ)dτ = 0.

The existence of global weak solutions to problem (1.3), in the degenerate case,

that is, when we have the equation

K(x, t)utt − ∆u + F (u) − ∆ut = 0

and K can vanish, was studied by Ferreira and Pereira in [6]. More recently, Ferreira

and Rojas Medar [7] studied the existence of weak solutions to problem (1.1) when

g = 0, in non-cylindrical domains. However, no uniform decay result was presented

in Reference [6] and in Reference [7] only an existence result was studied.

Concerning the study of plates, there is a substantial number of papers dealing

with Equation (1.4). In this direction, we can cite the work of Lagnese [11], who

studied the viscoelastic plate equation and showed that the energy decays to zero

as time goes to infinity by introducing a dissipative mechanism on the boundary of

the system and the work of Munoz Rivera et al. [18], who proved that the first and

second order energy, associated with the solutions of the viscoelastic plate equation,

decay exponentially provided the kernel of the memory also decays exponentially, that

is, when the unique dissipation mechanism is given by the relaxation function. The

combination of memory effects and dissipative mechanisms was already introduced

by the authors for the wave equation in the works [1, 2, 4, 5, 8–10, 14–17, 20].

To the best of our knowledge, this is the first result dealing with Equation (1.3)

subject to viscoelastic effects and presenting uniform decay rates. Therefore, our

results are interesting to be studied even considering a nonlinear memory damping

terms acting in the boundary.

In order to obtain the existence of global solutions to problem (1.1), we use the

Faedo Galerkin method and in order to get the uniform decay rates of the energy

E(t) =
1

ρ + 2
‖u′(t)‖ρ+2

ρ+2 +
β

2
‖∇u′(t)‖2 +

1

2
‖∇u(t)‖2 +

1

2
‖u(t)‖2

Γ0

we use the perturbed energy method, see Zuazua [20].
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Our paper is organized as follows. In Section 2 we give some notations, assump-

tions and state our main result. In Section 3 we obtain global existence for weak

solutions and in Section 4 we derive the uniform decay of the energy.

2. ASSUMPTIONS AND MAIN RESULT

We begin by introducing some notations that will be used throughout this work.

Let us consider the Hilbert space L2(Ω) endowed with the inner product and the

corresponding norm

(u, v) =

∫

Ω

u(x)v(x)dx, (u, v)Γ0
=

∫

Γ0

u(x)v(x)dΓ,

‖u‖p
p,Γ0

=

∫

Γ0

|u(x)|pdx, ‖u‖∞ = ‖u‖L∞(Ω).

Let V = {u ∈ H1(Ω); u = 0 on Γ1}.

Throughout the article, we assume always that the function g(·) satisfies the

following conditions:

(H.1) g; R+ → R+ be a positive and bounded C1 function such that

1 −

∫

∞

0

g(s)ds = l > 0.

(H.2) There exists a positive constants m0, m1 such that

−m0g(t) ≤ g′(t) ≤ −m1g(t), ∀ t ≥ 0.

(H.3) Condition (H.2) implies the following condition of |g′|:

There exists a positive constant m2 such that

|g′(t)| ≤ m2g(t), ∀ t ∈ [0, t0].

We recall that the energy related with problem (1.1) is given by

(2.1) E(t) =
1

ρ + 2
‖ut(t)‖

ρ+2
ρ+2 +

β

2
‖∇u′(t)‖2 +

1

2
‖∇u(t)‖2 +

1

2
‖u(t)‖2

Γ0
.

Now we are in a position to state our main result.

Theorem 2.1. Let u0, u1 ∈ V . Under assumptions (H.1)–(H.3), suppose that γ, ρ

satisfy hypothesis (1.2) with ρ ≥ γ and β > 0. Then, problem (1.1) possesses at least

a strong solution u : Ω × (0,∞) → R in the class

(2.2) u ∈ L∞(0,∞; V ), u′ ∈ L∞(0,∞; V ), u′′ ∈ L2(0,∞; V ).

Moreover, the energy determined by the solution u possesses the following decay:

E(t) ≤ 3l−1E(0) exp
(

−
ε

2
C2t

)

, for all t ≥ 0 and ε ∈ (0, ε0],

where C2 = C2(ρ, E(0), β) and ε0 = ε0(ρ, E(0), m1, ‖g‖L1(0,∞)) are positive constants.
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Remark. When g = 0, following the calculations of Section 4, we obtain expo-

nential decay rates given by

E(t) ≤ 3E(0) exp
(

−
ε

2
C2t

)

, for all t ≥ 0 and ε ∈ (0, ε0],

where C2 = C2(ρ, E(0)) and ε0 = ε0(ρ, E(0)).

3. PROOF OF THEOREM 2.1

In this section we are going to show the existence of solution for problem (1.1)

using Faedo-Galerkin’s approximation. For this end we represent by {wj}j∈N a basis

in V which is orthonormal in L2(Ω), by Vm the finite dimensional subspace of V

generated by the first m vectors.

Next we define um(t) = Σm
j=1gjm(t)wj, where um(t) is the solution of the following

Cauchy problem:

(|u′

m|
ρu′′

m, w) + β(∇u′′

m,∇w) + (∇um,∇w) + (∇u′

m,∇w) + (um, w)Γ0
(3.1)

=

∫ t

0

g(t − τ)(|u′

m(τ)|γu′

m(τ), w)Γ0
dτ, w ∈ Vm.

with the initial conditions,

um(0) = u0m =

m
∑

j=1

(u0, wj)wj → u0 in V,(3.2)

u′

m(0) = u1m =

m
∑

j=1

(u1, wj)wj → u1 in V.

Note that we can solve the system (3.1) and (3.2) by Picard’s iteration method. In

fact, the problems (3.1) and (3.2) have a unique solution on some interval [0, Tm).

The extension of the solution to the whole interval [0,∞) is a consequence of the first

estimate we are going to obtain below.

3.1. A Priori Estimate I. Considering w = u′

m(t) in (3.1), assumption (H.3) yields

d

dt

( 1

ρ + 2
‖u′

m(t)‖ρ+2
ρ+2 +

β

2
‖∇u′

m(t)‖2 +
1

2
‖∇um(t)‖2 +

1

2
‖um(t)‖2

Γ0
(3.3)

+
1

γ + 2
g(t)‖um(t)‖γ+2

γ+2,Γ0
+

∫ t

0

g(t − τ)‖u′

m(τ)‖γ+2
γ+2,Γ0

dτ
)

+ ‖∇u′

m(t)‖2

=

∫ t

0

g(t− τ)(|u′

m(τ)|γu′

m(τ), u′

m(t))Γ0
dτ +

1

γ + 2
g′(t)‖um(t)‖γ+2

γ+2,Γ0

+ g(t)(|um(t)|γum(t), u′

m(t))Γ0
+

∫ t

0

g′(t − τ)‖u′

m(τ)‖γ+2
γ+2,Γ0

dτ

+ g(0)‖u′

m(t)‖γ+2
γ+2,Γ0

≤

∫ t

0

g(t − τ)(|u′

m(τ)|γu′

m(τ), u′

m(t))Γ0
dτ +

m2

γ + 2
g(t)‖um(t)‖γ+2

γ+2,Γ0
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+ g(t)(|um(t)|γum(t), u′

m(t))Γ0
+ m2

∫ t

0

g(t− τ)‖u′

m(τ)‖γ+2
γ+2,Γ0

dτ

+ g(0)‖u′

m(t)‖γ+2
γ+2,Γ0

.

Note that Hölder’s inequality and Young’s inequality [3] yields

(|u′

m(τ)|γu′

m(τ), u′

m(t))Γ0
≤

∫

Γ0

|u′

m(τ)|γ+1|u′

m(t)|dΓ(3.4)

≤
(

∫

Γ0

|u′

m(τ)|γ+2dΓ
)

γ+1

γ+2
(

∫

Γ0

|u′

m(t)|γ+2dΓ
)

1

γ+2

= ‖u′

m(τ)‖γ+1
γ+2,Γ0

‖u′

m(t)‖γ+2,Γ0

≤ C1(η)‖u′

m(τ)‖γ+2
γ+2,Γ0

+ η‖u′

m(t)‖γ+2
γ+2,Γ0

,

where C1(η) = (γ+1
γ+2

)( 1
η(γ+2)

)
1

γ+1 , p = γ+2
γ+1

, q = γ + 2.

Using (3.4), we get
∫ t

0

g(t− τ)(|u′

m(τ)|γu′

m(τ), u′

m(t))Γ0
dτ(3.5)

≤

∫ t

0

g(t − τ){C1(η)‖u′

m(τ)‖γ+2
γ+2,Γ0

+ η‖u′

m(t)‖γ+2
γ+2,Γ0

}dτ

= C1(η)

∫ t

0

g(t − τ)‖u′

m(τ)‖γ+2
γ+2,Γ0

dτ + η‖u′

m(t)‖γ+2
γ+2,Γ0

∫ t

0

g(τ)dτ.

Since ρ ≥ γ, Lρ+2(Γ0) →֒ Lγ+2(Γ0) and therefore we can obtain

(3.6) η‖u′

m(t)‖γ+2
γ+2,Γ0

∫ t

0

g(τ)dτ ≤ C2(η)

∫ t

0

g(τ)dτ + η

∫ t

0

g(τ)dτ‖u′

m(t)‖ρ+2
ρ+2,Γ0

,

where C2(η) = (ρ−γ
ρ+2

)(kη( γ+2
η(ρ+2)

)
ρ+2

γ+2 )
ρ+2

ρ−γ , k is a Sobolev embedding’s constant.

Therefore, (3.5) and (3.6) yield
∫ t

0

g(t− τ)(|u′

m(τ)|γu′

m(τ), u′

m(t))Γ0
dτ(3.7)

≤ C1(η)

∫ t

0

g(t − τ)‖u′

m(τ)‖γ+2
γ+2,Γ0

dτ + C2(η)

∫ t

0

g(τ)dτ

+η

∫ t

0

g(τ)dτ‖u′

m(t)‖ρ+2
ρ+2,Γ0

.

Similarly applying Hölder’s inequality, Young’s inequality and the result Lρ+2(Γ0) →֒

Lγ+2(Γ0), we have

g(t)(|um(t)|γum(t), u′

m(t))Γ0
≤ g(t)

∫

Γ0

|um(t)|γ+1|u′

m(t)|dΓ(3.8)

≤ g(t)
(

∫

Γ0

|um(t)|γ+2dΓ
)

γ+1

γ+2
(

∫

Γ0

|u′

m(t)|γ+2dΓ
)

1

γ+2

= g(t)‖um(t)‖γ+1
γ+2,Γ0

‖u′

m(t)‖γ+2,Γ0

≤ C3(η)g(t)‖um(t)‖γ+2
γ+2,Γ0

+ ηg(t)‖u′

m(t)‖γ+2
γ+2,Γ0
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≤ C3(η)g(t)‖um(t)‖γ+2
γ+2,Γ0

+ C4(η)g(t) + ηg(t)‖u′

m(t)‖ρ+2
ρ+2,Γ0

,

where C3(η) = (γ+1
γ+2

)( 1
η(γ+2)

)
1

γ+1 , C4(η) = (ρ−γ
ρ+2

)(kη( γ+2
η(ρ+2)

)
ρ+2

γ+2 )
ρ+2

ρ−γ .

Therefore, (3.3), (3.7) and (3.8) give

d

dt

( 1

ρ + 2
‖u′

m(t)‖ρ+2
ρ+2 +

β

2
‖∇u′

m(t)‖2 +
1

2
‖∇um(t)‖2 +

1

2
‖um(t)‖2

Γ0
(3.9)

+
1

γ + 2
g(t)‖um(t)‖γ+2

γ+2,Γ0
+

∫ t

0

g(t− τ)‖u′

m(τ)‖γ+2
γ+2,Γ0

dτ
)

+ ‖∇u′

m(t)‖2

≤ (C1(η) + m2)

∫ t

0

g(t− τ)‖u′

m(τ)‖γ+2
γ+2,Γ0

dτ + g(0)‖u′

m(t)‖γ+2
γ+2,Γ0

+
(

C3(η) +
m2

γ + 2

)

g(t)‖um(t)‖γ+2
γ+2,Γ0

+ C4(η)g(t)

+C2(η)

∫ t

0

g(τ)dτ + ηg(t)‖u′

m(t)‖ρ+2
ρ+2,Γ0

+ η

∫ t

0

g(τ)dτ‖u′

m(t)‖ρ+2
ρ+2,Γ0

.

Integrating (3.9) over [0, t], choosing η > 0 sufficiently small , the result Lρ+2(Γ0) →֒

Lγ+2(Γ0) and employing Gronwall’s lemma we obtain the first estimate:

‖u′

m(t)‖ρ+2
ρ+2 + ‖∇u′

m(t)‖2 + ‖∇um(t)‖2 + ‖um(t)‖2
Γ0

+ g(t)‖um(t)‖γ+2
γ+2,Γ0

(3.10)

+

∫ t

0

g(t − τ)‖u′

m(t)‖γ+2
γ+2,Γ0

dτ +

∫ t

0

‖∇u′

m(τ)‖2dτ ≤ L1,

where L1 > 0 is independent of m, u0, u1.

3.2. A Priori Estimate II. Substituting w = u′′

m(t) in (3.1), using Young’s inequal-

ity and the continuity of the trace operator γ0 : H1(Ω) →֒ L2(Γ) for 1 ≤ q ≤ 2n−2
n−2

, it

holds that
∫

Ω

|u′

m(t)|ρ|u′′

m(t)|2dx + β‖∇u′′

m(t)‖2 +
1

2

d

dt
‖∇u′

m(t)‖2(3.11)

= −(∇um(t),∇u′′

m(t)) − (um(t), u′′

m(t))Γ0

+

∫ t

0

g(t − τ)(|u′

m(τ)|γu′

m(τ), u′′

m(t))Γ0
dτ

≤ 2η‖∇u′′

m(t)‖2 + C5(η)L1 +

∫ t

0

g(t − τ)(|u′

m(τ)|γu′

m(τ), u′′

m(t))Γ0
dτ.

Now, taking into account that γ+1
2γ+2

+ 1
2

= 1, using the generalized Hölder inequality,

Young’s inequality and the continuity of the trace operator γ0 : H1(Ω) →֒ L2(Γ) for

1 ≤ q ≤ 2n−2
n−2

, we obtain

(|u′

m(τ)|γum(τ), u′′

m(t))Γ0
≤

(

∫

Γ0

|u′

m(τ)|2γ+2dτ
)

γ+1

2γ+2
(

∫

Γ0

|u′′

m(t)|2dτ
)

1

2

(3.12)

≤ C6(η)‖∇u′

m(τ)‖2γ+2 + η‖∇u′′

m(t)‖2

≤ C6(η)Lγ+1
1 + η‖∇u′′

m(t)‖2.
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Thus from (3.12), we get

∫ t

0

g(t− τ)(|u′

m(τ)|γu′

m(τ), u′′

m(t))Γ0
dτ(3.13)

≤

∫ t

0

g(t − τ){C6(η)Lγ+1
1 + η‖∇u′′

m(t)‖2}dτ

≤ C6(η)Lγ+1
1 ‖g‖L1(0,∞) + η‖∇u′′

m(t)‖2‖g‖L1(0,∞).

Combining estimate (3.11)–(3.13), we get
∫

Ω

|u′

m(t)|ρ|u′′

m(t)|2dx + (β − 2η − η‖g‖L1(0,∞))‖∇u′′

m(t)‖2 +
1

2

d

dt
‖∇u′

m(t)‖2(3.14)

≤ C5(η)L1 + C6(η)Lγ+1
1 ‖g‖L1(0,∞).

Integrating (3.14) over [0, t], we infer

∫ t

0

∫

Ω

|u′

m(s)|ρ|u′′

m(s)|2dxds + (β − 2η − η‖g‖L1(0,∞))

∫ t

0

‖∇u′′

m(s)‖2ds +
1

2
‖∇u′

m(t)‖2

≤ C7(η) + C6(η)Lγ+1
1 ‖g‖L1(0,∞)T,

where C7(η) is a positive constant which depends on η and T .

From the last inequality choosing η > 0 small enough we obtain the second

estimate:

(3.15) ‖∇u′

m(t)‖2 +

∫ t

0

‖∇u′′

m(s)‖2ds ≤ L2,

where L2 > 0 is independent of m, u0, u1.

The estimates (3.10) and (3.15) are sufficient to pass to the limit in the linear

terms of problem (3.1). Next we are going to consider the nonlinear ones.

3.3. Analysis of the nonlinear terms. From the above estimate (3.10) and (3.15),

we have that

uµ ⇀ u weak star in L∞(0, T ; V ),(3.16)

u′

µ ⇀ u′ weak star in L∞(0, T ; V ),(3.17)

u′′

µ ⇀ u′′ weakly in L2(0, T ; V ).(3.18)

From the first estimate, we deduce

‖|u′

µ|
ρu′

µ‖
2
L2(0,T ;L2(Ω)) =

∫ T

0

‖u′

µ(t)‖
2(ρ+1)
2(ρ+1)dt(3.19)

≤ C

∫ T

0

‖∇u′

µ(t)‖
2(ρ+1)dt ≤ CTL

ρ+1
1 ,

where C > 0 comes from embedding H1(Ω) →֒ L2(ρ+1)(Ω).



612 J. Y. PARK AND J. A. KIM

On the other hand, from Aubin-Lions theorem, see Lions [12] we deduce that

there exists a subsequence of (uµ), still represented by the same notation, such that

u′

µ → u′ strongly in L2(0, T ; L2(Ω)).

Therefore,

(3.20) |u′

µ|
ρu′

µ → |u′|ρu′ a.e. in Ω × (0, T ).

Combining (3.19), (3.20) and owing to Lions lemma, we deduce

(3.21) |u′

µ|
ρu′

µ ⇀ |u′|ρu′ weak in L2(0, T ; L2(Ω)).

Also, from the first estimate, we have that

(uµ) is bounded in L2(0, T ; H
1

2 (Γ0)),(3.22)

(u′

µ) is bounded in L2(0, T ; H
1

2 (Γ0)).(3.23)

From (3.22) and (3.23), taking into consideration that the injection H
1

2 (Γ) →֒ L2(Γ)

is continuous and compact and using Aubin compactness theorem, we deduce that

there exists a subsequence of (uµ), still represented by the same notation, such that

(3.24) uµ → u a.e. on Σ0 and u′

µ → u′ a.e. on Σ0.

and therefore

(3.25) |u′

µ|
γu′

µ → |u′|γu′ a.e. on Σ0.

On the other hand, from the first estimate we obtain

(3.26)
(

∫ t

0

g(t− τ)|u′

µ|
γu′

µ

)

is bounded in L2(Σ0).

Combining (3.25) and (3.26), we deduce that

(3.27)

∫ t

0

g(t − τ)|u′

µ|
γu′

µdτ →

∫ t

0

g(t − τ)|u′|γu′dτ weakly in L2(Σ0).

Multiplying (3.1) by θ ∈ D(0, T ) (here D(0, t) means the space of functions in C∞

with compact support in (0, T )) and integrating the obtained result over (0, T ), it

holds that

−
1

ρ + 1

∫ T

0

(|u′

m(t)|ρu′

m(t), w)θ′(t)dt +

∫ T

0

(∇um(t),∇w)θ(t)dt(3.28)

+β

∫ T

0

(∇u′′

m(t),∇w)θ(t)dt +

∫ T

0

(∇u′

m(t),∇w)θ(t)dt

+

∫ T

0

(um(t), w)Γ0
θ(t)dt

=

∫ T

0

∫ t

0

g(t − τ)(|u′

m(τ)|γu′

m(τ), w)Γ0
θ(t)dτdt, ∀w ∈ Vm.
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Convergences (3.16)–(3.18), (3.21)–(3.23) and (3.27) are sufficient to pass to the limit

in (3.28) in order to obtain

|u′|ρu′′ − β∆u′′ − ∆u − ∆u′ = 0 in L2
loc(0,∞; H−1(Ω)).

This completes the proof of the existence of solutions of (1.1). The uniqueness is

obtained in a usual way, so we omit the proof here. �

4. UNIFORM DECAY

In this section we prove the exponential decay for weak solutions of problem (1.1).

We define the energy E(t) of problem (1.1) by

E(t) =
1

ρ + 2
‖u′(t)‖ρ+2

ρ+2 +
β

2
‖∇u′(t)‖2 +

1

2
‖∇u(t)‖2 +

1

2
‖u(t)‖2

Γ0
.

Then the derivative of the energy is given by

E ′(t) = −‖∇u′(t)‖2 +

∫ t

0

g(t− τ)(|u′(τ)|γu′(τ), u(t))Γ0
dτ.

Defining

(4.1) (g�u)(t) =

∫ t

0

g(t − τ)||u′(τ)|γu′(τ) − u(t)|2Γ0
dτ,

a simple computation give us

(g�u)′(t) =

∫ t

0

g′(t − τ)||u′(τ)|γu′(τ) − u(t)|2Γ0
dτ(4.2)

+(
d

dt
‖u(t)‖2

Γ0
)

∫ t

0

g(τ)dτ − 2

∫ t

0

g(t − τ)(|u′(τ)|γu′(τ), u′(t))Γ0
dτ

= (g′
�u)(t) − 2

∫ t

0

g(t − τ)(|u′(τ)|γu′(τ), u′(t))Γ0
dτ

+
d

dt
{‖u(t)‖2

Γ0

∫ t

0

g(τ)dτ} − g(t)‖u(t)‖2
Γ0

.

Thus we have
∫ t

0

g(t− τ)(|u′(τ)|γu′(τ), u′(t))Γ0
dτ(4.3)

= −
1

2
(g�u)′(t) +

1

2
(g′

�u)(t) +
1

2

d

dt

(

‖u(t)‖2
Γ0

∫ t

0

g(τ)dτ
)

−
1

2
g(t)‖u(t)‖2

Γ0
.

Define the modified energy by

e(t) =
1

ρ + 2
‖u′(t)‖ρ+2

ρ+2 +
β

2
‖∇u′(t)‖2 +

1

2
‖∇u(t)‖2(4.4)

+
1

2
(g�u)(t) +

1

2
(1 −

∫ t

0

g(τ)dτ)‖u(t)‖2
Γ0

.

Then

(4.5) e′(t) = −‖∇u′(t)‖2 +
1

2
(g′

�u)(t) −
1

2
g(t)‖u(t)‖2

Γ0
.
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We observe that in view of assumption (H.1) we have e(t) ≥ 0 and according to

assumption (H.2) we deduce that e′(t) ≤ 0.

On the other hand, we note that from assumption (H.1)

E(t) =
1

ρ + 2
‖u′(t)‖ρ+2

ρ+2 +
β

2
‖∇u′(t)‖2 +

1

2
‖∇u(t)‖2 +

1

2
‖u(t)‖2

Γ0
(4.6)

≤
1

ρ + 2
‖u′(t)‖ρ+2

ρ+2 +
β

2
‖∇u′(t)‖2

+
1

2
‖∇u(t)‖2 +

1

2l
(1 −

∫ t

0

g(τ)dτ)‖u(t)‖2
Γ0

≤ l−1e(t)

and therefore it is enough to obtain the desired exponential decay for the modified

energy e(t) which will be done below.

We define the perturbed energy by

(4.7) eε(t) = e(t) + εΨ(t)

where

(4.8) Ψ(t) =
1

ρ + 1
(|u′(t)|ρu′(t), u(t)) + β(∇u′(t),∇u(t)).

Proposition 4.1. There exists C1 = C1(ρ, E(0), β) a positive constant such that

|eε(t) − e(t)| ≤ εC1e(t), ∀t ≥ 0 and ∀ε > 0.

Proof. From Young’s inequality, we deduce

|Ψ(t)| ≤
1

ρ + 2
‖u′(t)‖ρ+2

ρ+2 +
(ρ + 1)−1

ρ + 2
‖u(t)‖ρ+2

ρ+2 + β
1

2

(1

2
‖∇u(t)‖2 +

β

2
‖∇u′(t)‖2

)

.

Now, considering the embedding H1(Ω) →֒ Lρ+2(Ω) and taking (4.4) into account, it

holds that

|Ψ(t)| ≤
1

ρ + 2
‖u′(t)‖ρ+2

ρ+2 + C
(ρ + 1)−1

ρ + 2
‖∇u(t)‖ρ+2 + β

1

2 (
1

2
‖∇u(t)‖2 +

β

2
‖∇u′(t)‖2)

≤ e(t) + C
(ρ + 1)−1

ρ + 2
2

ρ+2

2 e(0)
ρ

2 e(t) + β
1

2 e(t),

where C comes from the inequality ‖v‖ρ+2 ≤ C‖∇v‖ for all v ∈ V .

Then, |eε(t) − e(t)| ≤ εC1e(t), where C1 = 1 + C
(ρ+1)−1

ρ+2
2

ρ+2

2 e(0)
ρ

2 + β
1

2 .

This completes the proof.

Proposition 4.2. There exist C2 = C2(ρ, E(0), β) and ε1 = ε1(ρ, m1, ‖g‖L1(0,∞))

positive constants such that

e′ε(t) ≤ −εC2e(t), ∀ t ≥ 0 and ∀ ε ∈ (0, ε1].
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Proof. Taking the derivative of Ψ(t) defined in (4.8) and using the problem (1.1), we

have

Ψ′(t) = (|u′(t)|ρu′′(t), u(t)) +
1

ρ + 1
(|u′(t)|ρu′(t), u′(t))(4.9)

+β(∇u′′(t),∇u(t)) + β‖∇u′(t)‖2

=
1

ρ + 1
(|u′(t)|ρu′(t), u′(t)) + β‖∇u′(t)‖2 − ‖∇u(t)‖2

−(∇u′(t),∇u(t)) − ‖u(t)‖2
Γ0

+

∫ t

0

g(t − τ)(|u′(τ)|γu′(τ), u(t))Γ0
dτ

= −e(t) + C(ρ)(|u′(t)|ρu′(t), u′(t)) +
3

2
β‖∇u′(t)‖2 −

1

2
‖∇u(t)‖2

−
1

2
‖u(t)‖2

Γ0
+

1

2
(g�u)(t) −

1

2

∫ t

0

g(τ)dτ‖u(t)‖2
Γ0

−(∇u′(t),∇u(t)) +

∫ t

0

g(t− τ)(|u′(τ)|γu′(τ), u(t))Γ0
dτ,

where C(ρ) = (2ρ+3)
[(ρ+1)(ρ+2)]

.

Next, we will analyse terms on the right-hand side of (4.9).

Estimate for I1 = C(ρ)(|u′(t)|ρu′(t), u′(t)).

We have

|I1| ≤ C(ρ)‖u′(t)‖ρ+1
2(ρ+1)‖u

′(t)‖(4.10)

≤ η‖∇u′(t)‖2(ρ+1) + C(ρ, η)‖∇u′(t)‖2

≤ 2ρ+1β−(ρ+1)η[e(0)]ρe(t) + C(ρ, η)‖∇u′(t)‖2,

where η > 0 is an arbitrary positive constant.

Estimate for I2 =
∫ t

0
g(t − τ)(|u′(τ)|γu′(τ), u(t))Γ0

dτ .

We have

|I2| =

∫ t

0

g(t − τ)(|u′(τ)|γu′(τ) − u(t), u(t))Γ0
dτ +

∫ t

0

g(t − τ)‖u(t)‖2
Γ0

dτ(4.11)

≤ η‖u(t)‖2
Γ0

+
1

4η
(

∫ t

0

g(t− τ)||u′(τ)|γu′(τ) − u(t)|Γ0
dτ)2

+

∫ t

0

g(t − τ)‖u(t)‖2
Γ0

dτ

≤ η‖u(t)‖2
Γ0

+
1

4η
‖g‖L1(0,∞)(g�u)(t) + (

∫ t

0

g(τ)dτ)‖u(t)‖2
Γ0

.

Estimate for I3 = (∇u′(t),∇u(t)).

Analogously, we have

(4.12) |I3| ≤
1

4η
‖∇u′(t)‖2 + 2ηe(t).
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Combining (4.9)–(4.12), we infer

Ψ′(t) ≤ −(1 − ηL)e(t) + M(η)‖∇u′(t)‖2 −
1

2
‖∇u(t)‖2(4.13)

−(
1

2
− η +

1

2
‖g‖L1(0,∞))‖u(t)‖2

Γ0
+ N(η)(g�u)(t),

where L = 2ρ+1β−(ρ+1)[e(0)]ρ+2, M(η) = C(ρ, η)+ 3
2
β+ 1

4η
and N(η) = 1

2
+ 1

4η
‖g‖L1(0,∞).

Keeping in mind that 0 < ‖g‖L1(0,∞) < 1 (see assumption (H.1)), then 1
2
+1

2
‖g‖L1(0,∞) >

0 and consequently considering η > 0 sufficiently small such that

C2 = 1 − ηL > 0 and
1

2
+

1

2
‖g‖L1(0,∞) − η ≥ 0

from (4.13) we deduce

(4.14) Ψ′(t) ≤ −C2e(t) + M(η)‖∇u′(t)‖2 + N(η)(g�u)(t) −
1

2
‖∇u(t)‖2.

On the other hand, from (H.2), (4.5), (4.7) and (4.14) we deduce

e′ε(t) = e′(t) + εΨ′(t)(4.15)

≤ −εC2e(t) − (1 − εM(η))‖∇u′(t)‖2 − (
m1

2
− εN(η))(g�u)(t)

−
1

2
g(t)‖u(t)‖2

Γ0
−

ε

2
‖∇u(t)‖2.

Defining ε1 = min{ 1
M(η)

, m1

2N(η)
} and considering ε ∈ (0, ε1], we conclude, from (4.15)

that

e′ε(t) ≤ −εC2e(t).

This completes the proof.

4.1. Continuing the Proof of Theorem 2.1. Let ε0 = min
{

ε1,
1

2C1

}

, where C1

is given in Proposition 4.1.

Consider ε ∈ (0, ε0]. From Proposition 4.1 we obtain

(1 − εC1)e(t) ≤ eε(t) ≤ (1 + εC1)e(t).

Since ε ≤ 1
2C1

, then

(4.16)
1

2
e(t) ≤ eε(t) ≤

3

2
e(t) ≤ 2e(t) for all t ≥ 0.

From (4.16) and Proposition 4.2 we get

e′ε(t) ≤ −
ε

2
C2eε(t), for all t ≥ 0 and ε ∈ (0, ε0].

Consequently,

eε(t) ≤ eε(0) exp
(

−
ε

2
C2t

)

and taking (4.16) into account, we get

e(t) ≤ 3e(0) exp
(

−
ε

2
C2t

)

,

for all t ≥ 0 and ε ∈ (0, ε0].
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Then

E(t) ≤ l−1e(t) ≤ 3l−1E(0) exp
(

−
ε

2
C2t

)

,

for all t ≥ 0 and ε ∈ (0, ε0].

This conclude the Proof of Theorem 2.1. �

Finally, when β = 0, we will show the existence and the uniform decay of solution

for problem (4.18) using same method of Theorem 2.1.

Corollary 4.3. Let us consider u0, u1 ∈ V ∩ H3/2(Ω) verifying the compatibility

conditions

∆u0 + ∆u1 = 0 on Ω,(4.17)

∂u0

∂ν
+

∂u1

∂ν
+ u0 = 0 on Γ0

and under assumptions (H.1)–(H.3), suppose that ρ > 1, γ satisfy hypothesis (1.2).

Then, problem

|ut|
ρutt − ∆u − ∆ut = 0 in Ω × (0,∞),(4.18)

∂u

∂ν
+

∂ut

∂ν
+ u =

∫ t

0

g(t− τ)|ut(τ)|γut(τ)dτ on Γ0 × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x) for x ∈ Ω

possesses at least a strong solution u : Ω × (0,∞) → R in the class (2.2). Moreover,

the energy determined by the solution u possesses the following decay:

E(t) ≤ 3l−1E(0) exp
(

−
ε

2
C∗

2 t
)

, for all t ≥ 0 and ε ∈ (0, ε0],(4.19)

where C∗

2 = C∗

2(ρ, E(0)) and ε0 = ε0(ρ, E(0), m1, ‖g‖L1(0,∞)) are positive constants.

Proof. We define um(t) = Σm
j=1gjm(t)wj, where um(t) is the solution of the following

Cauchy problem:

(|u′

m|
ρu′′

m, w) + (∇um,∇w) + (∇u′

m,∇w) + (um, w)Γ0
(4.20)

=

∫ t

0

g(t − τ)(|u′

m(τ)|γu′

m(τ), w)Γ0
dτ, w ∈ Vm

with the initial conditions (3.2). Then, we can know the problems (4.20) have a

unique solution on some interval [0, Tm). Applying similar to the Priori Estimate I of

Theorem 2.1, we have the the first estimate:

‖u′

m(t)‖ρ+2
ρ+2 + ‖∇um(t)‖2 + ‖um(t)‖2

Γ0
+ g(t)‖um(t)‖γ+2

γ+2,Γ0
(4.21)

+

∫ t

0

g(t − τ)‖u′

m(t)‖γ+2
γ+2,Γ0

dτ +

∫ t

0

‖∇u′

m(τ)‖2dτ ≤ L∗

1,

where L∗

1 > 0 is independent of m, u0, u1.
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Next, we are estimating u′′

m(0) in the L2-norm. Considering t = 0 and w = u′′

m(0)

in (4.20), we conclude

(|u1|
ρu′′

m(0), u′′

m(0)) = (∆u0 + ∆u1, u
′′

m(0)) + (u0, u
′′

m(0))Γ0
.

The above identity, initial conditions (3.2) and (4.17) yield

‖u′′

m(0)‖ ≤ L∗

2,(4.22)

where L∗

2 > 0 is independent of m, u0, u1.

Differentiating (4.20) and substituting w by u′′

m(t), using (H.3),we obtain

1

2

d

dt

(

∫

Ω

|u′

m(t)|ρ|u′′

m(t)|2dx + ‖∇u′

m(t)‖2 + ‖u′

m(t)‖2
Γ0

)

(4.23)

+‖∇u′′

m(t)‖2 +
ρ

2

∫

Ω

|u′

m(t)|ρ−1|u′′

m(t)|3dx

=

∫ t

0

g′(t − τ)(|u′

m(τ)|u′

m(τ), u′′

m(t))Γ0
dτ

≤ m2

∫ t

0

g(t − τ)(|u′

m(τ)|u′

m(τ), u′′

m(t))Γ0
dτ.

Thus from (3.13), we get

m1

∫ t

0

g(t − τ)(|u′

m(τ)|u′

m(τ), u′′

m(t))Γ0
dτ(4.24)

≤ m1C(η)(2L∗

1)
γ+1‖g‖L1(0,∞) + m1η‖u

′′

m(t)‖2
Γ0
‖g‖L1(0,∞).

Combining the estimates (4.22)-(4.24), we see that

1

2

d

dt

(

∫

Ω

|u′

m(t)|ρ|u′′

m(t)|2dx + ‖∇u′

m(t)‖2 + ‖u′

m(t)‖2
Γ0

)

+ ‖∇u′′

m(t)‖2(4.25)

≤ m1C(η)(2L∗

1)
γ+1‖g‖L1(0,∞) + m1η‖u

′′

m(t)‖2
Γ0
‖g‖L1(0,∞).

Integrating (4.25) over [0, t] and Gronwall’s lemma we infer the second estimate:

(4.26)

∫

Ω

|u′

m(t)|ρ|u′′

m(t)|2dx + ‖∇u′

m(t)‖2 + ‖u′

m(t)‖2
Γ0

+

∫ t

0

‖∇u′′

m(t)‖2dτ ≤ L∗

3,

where L∗

3 > 0 is independent of m, u0, u1.

By using (4.24) and (4.25), repeating the procedure similar to the proof of section

3.3, we can get the existence result (2.2) of solutions of the problem (4.18). Also,

since the proof of the uniform decay of the problem (4.18) is similar to the proof of

Theorem 2.1, we can easily obtain the uniform decay result (4.19) of solutions of the

problem (4.18).
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