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SOLVABILITY OF SOME FUNCTIONAL INTEGRAL EQUATION
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ABSTRACT. In this paper we present results on the existence and asymptotic behaviour of solu-

tions of a functional integral equation. Considering the equation in Banach space and proving a new

fixed point theorem we establish existence theorems which generalize several ones obtained earlier

by other authors. The applicability of the results is illustrated by an example.
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1. INTRODUCTION

In the paper [4] the authors proved an interesting theorem on the existence of

solutions of the following functional integral equation

(1.1) x(t) = f
(
t,

t∫

0

x(s)ds,

t∫

0

x(h(s, x(s)))ds
)
, t ∈ R+ = [0,∞).

Their investigations were situated in the Banach space Cp(R+) consisting of all real

functions defined and continuous on R+ and tempered by some function p(t). This

method can be improved. The aim of the present paper is to study the problem of

the existence of solutions of Eq. (1.1) in the appropriate Fréchet space. Such method

allows us to obtain results which generalize those obtained in [4].

In this paper we first prove a new fixed point theorem formulated in terms of the

Kuratowski measure. And then by making use of it, we generalize [4] by considering

the equation (1.1) in the Fréchet space C(R+, E) where E is a real Banach space.

Next, as a simple consequence of the established theorem, we get result for equation

(1.1) in C(R+) which improves Theorem 3.1 [4].

The equation of the type (1.1) or its particular cases were investigated in [1, 2,

3, 4, 6, 7, 8, 9, 10, 13]. The result obtained in this paper generalizes those obtained

in the above mentioned papers.
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Let us mention that the theory of functional integral equations has many useful

applications in describing numerous events and problems of the real world. For ex-

ample, integral equations are often applicable in engineering, mathematical physics,

economics and biology (cf. [1, 2, 3, 6, 8, 11]).

2. NOTATION AND AUXILIARY FACTS

In this section, we list a few auxiliary results which will be applied further on.

Assume that E is a real Banach space with the norm || · || and the zero element θ.

Denote by B(r) the closed ball centered at θ and with radius r.

Consider

C(R+, E) = {x : R+ → E, x is continuous},

equipped with the family of seminorms |x|n = sup{||x(t)|| : t ∈ [0, n]}, n ∈ N.

It is known that C(R+, E) furnished with the standard distance is a locally convex

Fréchet space. Let us recall two facts [12]:

(A) a sequence {xn} is convergent to x in C(R+, E) if and only if {xn} is uniformly

convergent to x on compact subsets of R+,

(B) a family A ⊂ C(R+, E) is relatively compact if and only if for each T > 0, the

restrictions to [0, T ] of all functions from A form an equicontinuous set and A(t)

is relatively compact in E for each t ∈ R+.

If X is a subset of E (or C(R+, E)), then X and ConvX denote the closure and

convex closure of X, respectively.

Let α denote the Kuratowski measure of noncompactness in E, the properties of

which may be found in [5].

For any X ⊂ C(R+, E) and t ≥ 0 let X(t) = {x(t) : x ∈ X}.
Moreover, the symbol ConvX(t) stands for (ConvX)(t).

To prove the main result in this paper, we need the following Lemma.

Lemma 2.1 (Fixed Point Theorem). Let Ω be equicontinuous on compact intervals

of R+, closed and convex subset of C(R+, E) such that Ω(t) is bounded set in E for

each t ≥ 0, operator F : Ω → Ω be continuous. For any X ⊂ Ω, set

(2.1) F̂ 1(X) = F (X), F̂ n(X) = F (ConvF̂ n−1(X)), n = 2, 3, . . . .

If for any X ⊂ Ω and T > 0

lim
n→∞

sup
t≤T

α
(
F̂ n(X)(t)

)
= 0

then F has a fixed point in Ω.
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Proof. Let us put Ω0 = Ω. Applying repeatedly (2.1) we obtain a sequence of naturals

{nk} and a sequence of sets {Ωk}, such that

Ωk = ConvF̂ nk(Ωk−1) for k = 1, 2, . . .

sup
t≤k

α(Ωk(t)) ≤ 1/k for k = 1, 2, . . .

i.e.

(2.2) lim
k→∞

sup
t≤k

α(Ωk(t)) = 0.

The sets {Ωk} are obviously closed and convex subsets in C(R+, E). Next let us

observe that

(2.3) F (Ωk) ⊂ Ωk for k = 0, 1, 2, . . . .

Indeed

F̂ 1(Ω0) = F (Ω0) ⊂ Ω0 hence ConvF̂ 1(Ω0) ⊂ Ω0,

F̂ 2(Ω0) = F (ConvF̂ 1(Ω0)) ⊂ F (Ω0) = F̂ 1(Ω0),

F̂ 3(Ω0) = F (ConvF̂ 2(Ω0)) ⊂ F (ConvF̂ 1(Ω0)) = F̂ 2(Ω0),

· · ·
F̂ n1(Ω0) = F (ConvF̂ n1−1(Ω0)) ⊂ F (ConvF̂ n1−2(Ω0)) = F̂ n1−1(Ω0).

This implies that

Ω1 = ConvF̂ n1(Ω0) ⊂ ConvF̂ n1−1(Ω0),

F (Ω1) ⊂ F (ConvF̂ n1−1(Ω0)) = F̂ n1(Ω0) ⊂ ConvF̂ n1(Ω0) = Ω1.

Employing the same method, we can prove that F (Ωk) ⊂ Ωk for k = 2, 3, . . . .

Now we show that {Ωk} is decreasing sequence of sets. Indeed,

F̂ 1(Ω0) = F (Ω0) ⊂ Ω0,

F̂ 2(Ω0) = F (ConvF̂ 1(Ω0)) ⊂ F (ConvΩ0) ⊂ Ω0,

· · ·
F̂ n1(Ω0) = F (ConvF̂ n1−1(Ω0)) ⊂ F (ConvΩ0) ⊂ Ω0,

and therefore Ω1 ⊂ Ω0. Applying (2.3) and repeating this argumentation we obtain

that Ωk ⊂ Ωk−1 for k = 1, 2, . . . .

Now we prove that
∞⋂

k=0

Ωk 6= ∅.

Suppose {ti}, i = 1, 2, . . . is a sequence of reals dense in R+. We take the sequence of

functions {xk} such that xk ∈ Ωk, k = 0, 1, . . . . Keeping in mind (2.2) we can choose

xk to be pointwise convergent at each point ti, i = 1, 2, . . . . It is always possible by
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taking consecutive subsequences converging successively at t1, t2, . . . and by applying

the diagonal procedure. Put x∞(ti) = lim
k→∞

xk(ti) for i = 1, 2, . . . . Repeating reason-

ing from [5, Th. 11.2] we obtain that x∞ can be extended to the R+ and that x∞ is

uniform limit of xk on every compact interval. Linking (A) and the closedness of Ωk

we get that x∞ ∈ Ωk and
∞⋂

k=0

Ωk 6= ∅.

Now let us denote

Ω̃ =
∞⋂

k=0

Ωk.

Applying (2.3) we get

F (Ω̃) = F (

∞⋂

k=0

Ωk) =

∞⋂

k=0

F (Ωk) ⊂
∞⋂

k=0

Ωk = Ω̃ .e. F (Ω̃) ⊂ Ω̃.

Next, in view of (2.2) we get α(Ω̃(t)) = 0 for each t ≥ 0. Linking this fact

together with closedness of Ω̃, (B) and previously established properties we obtain

that Ω̃ is nonempty, convex and compact subset of C(R+, E). Finally, applying the

Tikhonov fixed point theorem for F : Ω̃ → Ω̃ we infer that F has at least one fixed

point in Ω̃ ⊂ C(R+, E).

This completes the proof.

Lemma 2.2 ([11]). Assume X ⊂ C(R+, E) is equicontinuous on compact intervals

of R+ and X(t) is bounded for all t ≥ 0. Then

α
( t∫

0

X(s)ds
)
≤

t∫

0

α(X(s))ds, for all t ≥ 0.

Lemma 2.3 ([11]). Let X ⊂ C(R+, E) be equicontinuous on compact intervals of R+,

then ConvX is also equicontinuous on ones.

3. MAIN RESULT

In this section we will study the functional integral equation (1.1). We will

consider this equation under the following assumptions:

(H1) the function f : R+×E×E → E is uniformly continuous on [0, T ]×B(R)×B(R)

for any T,R > 0,

(H2) the function h : R+ ×E → R+ is uniformly continuous on [0, T ]×B(R) for any

T,R > 0 and h(s, x) ≤ s for all s ∈ R+ and x ∈ E,

(H3) there exist three continuous functions L0, L1, L2 : R+ → R+ such that the

following inequality

‖f(t, x, y)‖ ≤ L0(t) + L1(t)‖x‖ + L2(t)‖y‖

holds for each t ∈ R+ and x, y ∈ E,
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(H4) there are two continuous functions K1, K2 : R+ → R+ such that

α
(
f(t, U, V )

)
≤ K1(t)α(U) +K2(t)α(V )

for any bounded sets U, V ⊂ E.

Now, we formulate the following theorem which is the main result of the paper.

Theorem 3.1. Under the assumptions (H1)–(H4) the equation (1.1) has at least one

solution x ∈ C(R+, E).

Proof. Consider the operator F defined on the space C(R+, E) by the formula

(Fx)(t) = f
(
t,

t∫

0

x(s)ds,

t∫

0

x(h(s, x(s)))ds
)
, t ≥ 0.

Observe that the operator F is well-defined and transforms the space C(R+, E) into

itself.

Let us denote: Li(t) = sup
s≤t

Li(s) where i = 0, 1, 2 and consider the Cauchy

problem for the linear equation

L0(t) +
(
L1(t) + L2(t)

)
φ(t) = φ′(t), φ(0) = 0.

The solution φ(t) is defined for t ≥ 0 and we put ψ(t) = φ′(t). Obviously ψ(t) ≥ 0,

ψ(t) is increasing and moreover ψ(t) satisfies the equation

L0(t) +
(
L1(t) + L2(t)

) t∫

0

ψ(s)ds = ψ(t).

Let us observe that ψ(t) fulfils the inequality

(3.1) L0(t) +
(
L1(t) + L2(t)

) t∫

0

ψ(s)ds ≤ ψ(t).

Indeed

L0(t) +
(
L1(t) + L2(t)

) t∫

0

ψ(s)ds ≤ L0(t) +
(
L1(t) + L2(t)

) t∫

0

ψ(s)ds = ψ(t).

Next we put ∆ = {x ∈ C(R+, E) : ‖x(t)‖ ≤ ψ(t) for t ≥ 0}. Obviously the set ∆

is convex and closed. Now we prove F (∆) ⊂ ∆. Taking x ∈ ∆ and keeping in mind

(H3), increasing of ψ and (3.1) we get

‖(Fx)(t)‖ ≤ L0(t) + L1(t)

t∫

0

‖x(s)‖ds+ L2(t)

t∫

0

‖x(h(s, x(s)))‖ds

≤ L0(t) + L1(t)

t∫

0

ψ(s)ds+ L2(t)

t∫

0

ψ(s)ds ≤ ψ(t).
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Now we show that the set F (∆) is equicontinuous on compact intervals of R+.

To prove this fact let us fix x ∈ ∆, T > 0, ε > 0 and take t1, t2 ∈ [0, T ] such that

|t1 − t2| ≤ ε.

‖(Fx)(t1) − (Fx)(t2)‖ = ‖f
(
t1,

t1∫

0

x(s)ds,

t1∫

0

x(h(s, x(s)))ds
)

− f
(
t2,

t2∫

0

x(s)ds,

t2∫

0

x(h(s, x(s)))ds
)
‖ ≤ νT (f, ε)

where

νT (f, ε) = sup{‖f(t1, x1, y1) − f(t2, x2, y2)‖ : t1, t2 ∈ [0, T ],

|t1 − t2| ≤ ε, x1, x2 ∈ B(Tψ(T )), ‖x1 − x2‖ ≤ εψ(T ),

y1, y2 ∈ B(Tψ(T )), ‖y1 − y2‖ ≤ εψ(T )}.

Taking into account the uniform continuity of the function f = f(t, x, y) on the set

[0, T ]×B(Tψ(T ))×B(Tψ(T )) we conclude that νT (f, ε) → 0 as ε→ 0 what confirms

that F (∆) is equicontinuous on compact intervals [0, T ].

In what follows we show that F is continuous on ∆. To do this let us take

x, xn ∈ ∆ such that xn → x in C(R+, E) i.e. according to (A), xn → x uniformly on

[0, T ] for any T > 0. We will prove that Fxn → Fx uniformly on [0, T ]. Let us fix

T > 0 and take t ∈ [0, T ].

‖(Fx)(t) − (Fxn)(t)‖ = ‖f
(
t,

t∫

0

x(s)ds,

t∫

0

x(h(s, x(s)))ds
)

− f
(
t,

t∫

0

xn(s)ds,

t∫

0

xn(h(s, xn(s)))ds
)
‖

≤ νT
(
f, T · sup

s≤T

‖x(s) − xn(s)‖

+ T · νT
1 (h, x, T · sup

s≤T

‖x(s) − xn(s)‖)
)

where

νT (f, δ) = sup{‖f(t, x1, y1) − f(t, x2, y2)‖ : t ∈ [0, T ], x1, x2 ∈ B(Tψ(T )),

‖x1 − x2‖ ≤ δ, y1, y2 ∈ B(Tψ(T )), ‖y1 − y2‖ ≤ δ}

and

νT
1 (h, x, δ) = sup{‖x(h(s, y1)) − x(h(s, y2))‖ : s ∈ [0, T ], y1, y2 ∈ B(Tψ(T )),

‖y1 − y2‖ ≤ δ}.
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In view of uniform continuity of f and h on bounded sets we get that Fxn → Fx

uniformly on [0, T ]. Let us put Ω = ConvF (∆). In view of Lemma 2.3 we obtain

that Ω is equicontinuous on compact intervals of R+.

In what follows we show that the continuous mapping F : Ω → Ω fulfils the

assumptions of Lemma 2.1. To prove this fact fix T > 0 and denote M = sup{K1(t)+

K2(t) : t ≤ T}. Moreover, we define a mapping H : C(R+, E) → C(R+, E) by

(Hx)(t) = x(h(t, x(t))).

Let fix X ⊂ Ω and let us observe that

(3.2) ConvX(t) ⊂ Conv(X(t)).

The proof is standard and will be omitted.

In further investigations we need the following inequality

(3.3) α
(
H(X)(t)

)
≤ sup{α(X(s)) : s ≤ t}.

To prove this let us fix ε > 0. Since X is equicontinuous we can choose enough dense

a sequence {ti}i=n
i=0 , 0 = t0 < t1 < · · · < tn = T such that ‖x(s1) − x(s2)‖ ≤ ε for

s1, s2 ∈ [ti−1, ti] and any x ∈ X. Hence, in view of (H2) and properties of measure α,

we infer that

α
(
H(X)(t)

)
≤ α

(⋃

s≤t

X(s)
)

= α
( n⋃

i=1

⋃

s∈[ti−1,ti]

X(s)
)

= max



α(

⋃

s∈[ti−1,ti]

X(s)) : i = 1, . . . , n





≤ sup{α(X(s)) : s ≤ t} + 2ε.

Free choice of ε > 0 implies (3.3).

Next let us put A = sup{α(X(s)) : s ≤ T}. Obviously A < ∞. Bearing in

mind the inclusion F (X) ⊂ f
(
t,

t∫
0

X(s)ds,
t∫

0

H(X)(s)ds
)
, (H4), Lemma 2.2, (3.3)

and above denotations we get for any t ≤ T

α
(
F̂ 1(X)(t)

)
≤ α

(
f
(
t,

t∫

0

X(s)ds,

t∫

0

H(X)(s)ds
))

≤ K1(t)

t∫

0

α(X(s))ds+K2(t)

t∫

0

α
(
H(X)(s)

)
ds

≤ K1(t)tA+K2(t)tA = AMt.

Hence, in view of (3.2) we get

α
(
ConvF̂ 1(X)(t)

)
≤ AMt.
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Applying above inequality and arguing in the same way as above we have

α
(
F̂ 2(X)(t)

)
≤ α

(
f
(
t,

t∫

0

ConvF̂ 1(X)(s)ds,

t∫

0

H
(
ConvF̂ 1(X)(s)

)
ds

))

≤ K1(t)

t∫

0

α
(
ConvF̂ 1(X)(s)

)
ds+K2(t)

t∫

0

α
(
H

(
ConvF̂ 1(X)(s)

))
ds

≤ K1(t)

t∫

0

AMsds +K2(t)

t∫

0

AMsds ≤ AM2t2/2!,

α
(
ConvF̂ 2(X)(t)

)
≤ AM2t2/2!.

By the method of mathematical induction, we can prove

α
(
F̂ n(X)(t)

)
≤ AMntn/n!.

Hence

sup
t≤T

α
(
F̂ n(X)(t)

)
≤ AMnT n/n! → 0 as n→ ∞.

Thus, joining the properties of F and Ω, and taking into account Lemma 2.1 we

infer that the operator F has at least one fixed point in Ω.

The proof of our theorem is complete.

Remark 3.2. Let us observe that if E = R then the assumption H4 is obviously

fulfilled and the uniform continuity of f and h can be replaced by continuity, so we

can formulate H1 −H4 in the next, simpler form:

(i) the function f : R+ ×R×R → R is continuous and there exist three continuous

functions L0, L1, L2 : R+ → R+ such that

|f(t, x, y)| ≤ L0(t) + L1(t)|x| + L2(t)|y|

for t ∈ R+ and x, y ∈ R,

(ii) the function h : R+ × R → R+ is continuous and h(t, x) ≤ t for t ∈ R+ and

x ∈ R.

As an immediately consequence of Theorem 3.1 we get.

Theorem 3.3. Under the assumptions (i)–(ii) the equation (1.1) has at least one

solution x ∈ C(R+).

Remark 3.4. Keeping in mind that the solutions x of Eq. (1.1) belong to ∆ and

applying exact formula for solution of linear equation we get following estimation

||x(t)|| ≤ exp
( t∫

0

(L1(s) + L2(s))ds
) t∫

0

L0(s) exp
( s∫

0

(L1(τ) + L2(τ))dτ
)
ds.
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Remark 3.5. Let us observe that above Theorem 3.3 improves Theorem 3.1 [4] in

which authors assumed additionally that

(3.4) lim
t→∞

t(L1(t) + L2(t)) = 0,

(3.5) lim
t→∞

L0(t) exp(−
t∫

0

L0(s)ds) = 0,

and there exists a continuous function g : R+ → R+ such that

(3.6) g(t) → ∞ as t→ ∞ and g(t) ≤ h(t, x) for t ∈ R+ and x ∈ R.

Example 3.6. Consider the following functional equation

(3.7) x(t) =
√
t| sin t|(t+1)4 + t

t∫

0

x(s)ds+ t2
t∫

0

x
( 2s2

1 + s2 + x2(s)

)
ds,

for t ≥ 0.

Observe that this equation is a special case of (1.1), where

f(t, x, y) =
√
t| sin t|(t+1)4 + tx+ t2y and h(t, x) = 2t2/(1 + t2 + x2).

We show that equation (3.7) satisfies the assumptions of Theorem 3.3 with

L0(t) =
√
t| sin t|(t+1)4 , L1(t) = t, L2(t) = t2. In fact, let us observe that

|f(t, x, y)| ≤
√
t| sin t|(t+1)4 + t|x| + t2|y| = L0(t) + L1(t)|x| + L2(t)|y|.

This shows that assumptions (i) is satisfied. Moreover, we have

h(t, x) = 2t2/(1 + t2 + x2) ≤ 2t2/(1 + t2) ≤ t for all t ∈ R+

and (ii) is also fulfilled. Hence, on the basis of Theorem 3.3 we deduce that equation

(3.7) has at least one solution x = x(t) in the space C(R+).

Let us observe that functions L1(t), L2(t) and h(t, x) do not satisfy conditions

(3.4) and (3.6). We show that (3.5) also is not satisfied. We apply easy to prove

inequality (simple proof is omitted)

∞∫

0

sinn tdt ≤
√

2π/n for n ∈ N.

∞∫

0

L0(t)dt =
∞∑

k=1

kπ∫

(k−1)π

√
t| sin t|(t+1)4 ≤

∞∑

k=1

kπ∫

(k−1)π

√
kπ| sin t|((k−1)π+1)4

=

∞∑

k=1

π∫

0

√
kπ(sin t)k4 ≤ π

∞∑

k=1

√
2k/k2 <∞

what, together with the equality lim sup
t→∞

L0(t) = ∞ implies that (3.5) is not satisfied.
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