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ABSTRACT. For linear Hamiltonian systems, even for self-adjoint second order differential sys-

tems, we obtain new oscillation results without the assumptions which have been required for related

results given before. The main tool used is a generalized Riccati transformation and the standard

integral averaging technique.
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1. PRELIMINARIES

Consider the linear Hamiltonian system

(1.1)







x′ = A(t)x + B(t)y,

y′ = C(t)x − A∗(t)y,
t ≥ t0,

where A(t), B(t), C(t) are real n × n matrix-valued functions, B, C are Hermitian,

B is positive definite and x, y ∈ Rn. By M∗ we mean the conjugate transpose of the

matrix M .

A Hermitian matrix M ∈ Cn×n is positive semi-definite (positive definite) if

for all u ∈ Cn, u 6= 0, u∗Mu ≥ 0(> 0). A positive semi–definite (positive definite)

Hermitian matrix M will be denoted by M ≥ 0(M > 0), with the usual ordering

of the eigenvalues of M given by λ1(M) ≥ λ2(M) ≥ · · · ≥ λn(M), and as usual

trM =
∑n

i=1 λi(M).

We also consider the corresponding matrix system

(1.2)







X ′ = A(t)X + B(t)Y,

Y ′ = C(t)X − A∗(t)Y,
t ≥ t0.
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A solution (X(t), Y (t)) of system (1.2) is said to be nontrivial, if det X(t) 6= 0 is

fulfilled for at least one t ≥ t0. A nontrivial solution (X(t), Y (t)) of system (1.2) is

said to be conjoined (prepared) if X∗(t)Y (t) − Y ∗(t)X(t) ≡ 0, t ≥ t0. A conjoined

solution (X(t), Y (t)) of (1.2) is said to be a conjoined basis of (1.1) (or (1.2)) if the

rank of the 2n × n matrix
(

X(t)
Y (t)

)

is n.

Two distinct points a, b in [t0,∞) are said to be (mutually) conjugate with respect

to (1.1) if there exists a solution (x(t), y(t)) of (1.1) with x(a) = x(b) = 0 and x(t) 6= 0

(i.e., not equal to the zero vector in Rn) on the subinterval with end-points a and

b. The system (1.1) is said to be disconjugate on a subinterval J of [t0,∞) if no two

distinct points are conjugate. If (1.1) is disconjugate on J and (X(t), Y (t)) is the

conjoined basis of (1.2) satisfying X(a) = 0, U(a) = I, a ∈ J, where by I we men the

n×n identity matrix, then detX(t) 6= 0 for t ∈ J\{a}. A conjoined basis (X(t), Y (t))

of system (1.2) is said to be oscillatory in case the determinant of X(t) vanishes on

[T,∞) for each T ≥ t0.

Let Φ(t) be a fundamental matrix for the linear system v′ = A(t)v. The pair

(A(t), B(t)) is called controllable if the rows of Φ−1(t)B(t) are linearly independent

over any subinterval of [t0,∞) (see [5, p. 36-37] and [9, p. 107]). This definition

coincides with the following fact: if for any solution (x(t), y(t)) of (1.1), one has that

x(t) ≡ 0 on any non-degenerate subinterval J ⊆ [t0,∞) implies x = y ≡ 0 on [t0,∞).

Observe that since B(t) > 0, we have the pair (A(t), B(t)) is controllable. Suppose

there exists an oscillatory conjoined basis of system (1.2), then by Sturm’s separation

theorem [5, Theorem 16, p. 71] and [9, Theorem 7.3.5], we know that each conjoined

basis of system (1.2) is oscillatory, so system (1.1) (or (1.2)) is called oscillatory. Now

the definition of oscillation agrees with the non-disconjugacy of system (1.1) (or (1.2))

on any neighborhood of +∞.

In the case when A(t) ≡ 0, system (1.2) reduces to the second order self-adjoint

matrix differential system

(1.3) (P (t)X ′)′ + Q(t)X = 0

with P (t) = B−1(t), Q(t) = −C(t). Oscillation and non-oscillation of system (1.3)

have been extensively studied by many authors [1–8, 10–13, 18, 19], it is studied in

[16] when the system with damping. A discrete version of (1.3) is studied in [14].

Particularly, for the case when P (t) ≡ I, i.e., for the system

(1.4) X ′′ + Q(t)X = 0,

it was conjectured by Hinton and Lewis [8] that (1.4) is oscillatory if

lim
t→∞

λ1

[
∫ t

t0

Q(s)ds

]

= ∞.
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This conjecture was settled with some additional assumptions on the rate of growth

of the trace of
∫ t

0
Q(s)ds by Mingarelli [13], Kwong et al. [11], Butler and Erbe [1, 2],

and Butler et al. [3]. This conjecture was settled by Kwong and Kaper [10] for the

two-demensional case, and by Byers et al. [4] for arbitrary n−dimensional cases.

Oscillation properties for Hamiltonian system (1.2) are widely studied , too (see

[5, 9, 15, 17, 20, 21]). In paper [15], Meng studied the Hamiltonian systems (1.1), and

obtained some new oscillation criteria, here we list the main results of [15] as follows:

We say that a function H = H(t, s) belongs to a function class W, denotes by

H ∈ W, if H ∈ C(D,R+), where D = {(t, s) : t ≥ s ≥ t0} which satisfies

(i) H(t, t) = 0 and H(t, s) > 0 for t0 < s < t < +∞;

(ii) H has a continuous non-positive partial derivative ∂H/∂s satisfying the

condition ∂[H(t, s)k(s)]/∂s = −h(t, s)
√

H(t, s)k(s), for some h ∈ Lloc(D, R), k ∈
C1([t0,∞), (0,∞)).

Theorem 1.1 ([15, Theorem 1]). Suppose that there exist two positive and real-valued

functions φ, θ ∈ C1[t0,∞), such that, for some H ∈ W with k(t) ≡ 1,

(C1) lim sup
t→∞

1

H(t, t0)
λ1

[
∫ t

t0

[H(t, s)C2(s) −
1

4
h2(t, s)B−1

2 (s)]ds

]

= ∞,

where B2(t), C2(t) are given by (C7) and (C8). Then system (1.2) is oscillatory.

Theorem 1.2 ([15, Theorem 3]). Let H, h, φ and θ be as in theorem A, suppose that

(C2) 0 < inf
s≥t0

{

lim inf
t→∞

H(t, s)

H(t, t0)

}

≤ ∞
and

(C3) lim inf
t→∞

1

H(t, t0)

∫ t

t0

H(t, s)tr(C2(s))ds > −∞,

(C4) lim sup
t→∞

1

H(t, t0)

∫ t

t0

h2(t, s)

λn(B2(s))
ds < ∞.

If there exists a function m ∈ C[t0,∞) such that

(C5) lim sup
t→∞

1

H(t, T )
λ1

[
∫ t

T

[H(t, s)C2(s) −
1

4
h2(t, s)B−1

2 (s)]ds

]

≥ m(T ), T ≥ t0,

and

(C6) int∞t0 λn(B2(t))m
2
+(t)dt = ∞,

where m+(t) = max{m(t), 0}, B2(t), C2(t) are the same as in Theorem A. Then

system (1.2) is oscillatory.

The purpose of this paper is to establish some new oscillation criteria for the

Hamiltonian system (1.2) using a generalized Riccati transformation and the standard

integral averaging technique, which allow us to remove conditions (C3) and (C4) in

Theorem B.
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2. MAIN RESULTS

In the sequel, we need the following lemmas:

Lemma 2.1 ([3]). If A is an n × n Hermitian matrix, then

(i) [λ1(A)]2 ≤ λ1(A
2) ≤ tr(A2);

(ii) (trA)2 ≤ ntrA2.

Lemma 2.2 ([15]). If A is an n × n Hermitian matrix and R is an n × n positive

definite Hermitian matrix, then tr(ARA) ≥ λn(R)trA2.

Let φ(t) and θ(t) be positive, smooth and real-valued functions on [0, +∞). Since

B(t) > 0, this allows us to make the transformation:

U = φX, V = θY + αB−1X,

where

α =
θ

2
(
φ′

φ
− θ′

θ
).

Then U and V satisfy the following differential system:

(2.1)







U ′ = A(t)U + B1(t)V + 1
2
(φ′

φ
+ θ′

θ
)U,

V ′ = C1(t)U − A∗(t)V + 1
2
(φ′

φ
+ θ′

θ
)V,

where

B1(t) =
φ(t)

θ(t)
B(t),

C1(t) =
θ

φ

{

C(t) +
α

θ
(B−1(t)A(t) + A∗(t)B−1(t)) + (

α

θ
B−1(t))′ − α2

θ2
B−1(t)

}

.

Recalling that Φ(t) is a fundamental matrix of the linear system v′ = A(t)v, set

(C7) B2(t) = Φ−1(t)B1(t)Φ
∗−1(t) =

φ(t)

θ(t)
Φ−1(t)B(t)Φ∗−1(t),

(C8) C2(t) = −Φ∗(t)C1(t)Φ(t).

Then we have the following results.

Theorem 2.3. Suppose that there exist three positive and real-valued functions φ, θ,

k ∈ C1[t0,∞), such that, for some β ≥ 1, and for some H ∈ W,

(2.2) lim sup
t→∞

1

H(t, t0)
λ1

{
∫ t

t0

[

H(t, s)k(s)C2(s) −
β

4
h2(t, s)B−1

2 (s)

]

ds

}

= ∞,

where B2(t), C2(t) are given by (C7) and (C8). Then system (1.2) is oscillatory.

Proof. Suppose to the contrary that there exists a conjoined basis (X(t), Y (t)) of (1.2)

which is not oscillatory. Without loss of generality, we may suppose that det X(t) 6= 0

for t ≥ t0. Define

W (t) = V (t)U−1(t), t ≥ t0.
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From (2.1) we have

W ′(t) = C1(t) − A∗(t)W (t) − W (t)A(t) − W (t)B1(t)W (t).

Let R(t) = Φ∗(t)W (t)Φ(t), by calculation, it follows that R(t) satisfies the following

Riccati equation:

R′(t) = −C2(t) − R(t)B2(t)R(t).

Since B2(t) > 0, let E(t) = [B2(t)]
1/2. Multiplying the Riccati equation, with t

replaced by s, by H(t, s)k(s) and integrating it from T to t, for all t ≥ T ≥ t0, we

obtain
∫ t

T

H(t, s)k(s)C2(s)ds = −
∫ t

T

H(t, s)k(s)R′(s)ds

−
∫ t

T

H(t, s)k(s)[R(s)B2(s)R(s)]ds

= H(t, T )k(T )R(T )−
∫ t

T

H(t, s)k(s)[R(s)B2(s)R(s)]ds

−
∫ t

T

h(t, s)
√

H(t, s)k(s)R(s)ds

= H(t, T )k(T )R(T )−
∫ t

T

H(t, s)k(s)E−1(s)[E(s)R(s)E(s)]2E−1(s)ds

−
∫ t

T

h(t, s)
√

H(t, s)k(s)E−1(s)[E(s)R(s)E(s)]E−1(s)ds

= H(t, T )k(T )R(T ) +
β

4

∫ t

T

h2(t, s)B−1
2 (s)ds

− β − 1

β

∫ t

T

H(t, s)k(s)R(s)B2(s)R(s)ds

−
∫ t

T

E−1(s)

{

√

H(t, s)k(s)

β
E(s)R(s)E(s) +

√
β

2
h(t, s)I

}2

E−1(s)ds

for some β ≥ 1. Hence, we have
∫ t

T

[

H(t, s)k(s)C2(s) −
β

4
h2(t, s)B−1

2 (s)

]

ds ≤ H(t, T )k(T )R(T ), t > T ≥ t0.

This implies that for all t ≥ t0,
∫ t

t0

[

H(t, s)k(s)C2(s) −
β

4
h2(t, s)B−1

2 (s)

]

ds ≤ H(t, t0)k(t0)R(t0).

It follows that

λ1

[
∫ t

t0

(H(t, s)k(s)C2(s) −
β

4
h2(t, s)B−1

2 (s))ds

]

≤ λ1[H(t, t0)k(t0)R(t0)]

= H(t, t0)k(t0)λ1[R(t0)].



730 L. LI, F. MENG, AND Z. ZHENG

This gives

lim sup
t→∞

1

H(t, t0)
λ1

[
∫ t

t0

(H(t, s)k(s)C2(s) −
β

4
h2(t, s)B−1

2 (s))ds

]

≤ k(t0)λ1[R(t0)] < ∞,

which contradicts (2.2). This completes the proof of the Theorem.

Under modifications of the hypotheses of Theorem 2.3, we obtain the following

results (Corollary 2.4; Theorem 2.5 and Corollary 2.6).

Corollary 2.4. In Theorem 2.3, if the condition (2.2) is replaced by the conditions

lim sup
t→∞

1

H(t, t0)
λ1

[
∫ t

t0

h2(t, s)B−1
2 (s)ds

]

< ∞

and

lim sup
t→∞

1

H(t, t0)
λ1

[
∫ t

t0

H(t, s)k(s)C2(s)ds

]

= ∞,

where B2(t), C2(t) are the same as in Theorem 2.3. Then system (1.2) is oscillatory.

Theorem 2.5. Suppose that there exist three positive and real-valued functions φ, θ, k ∈
C1[t0,∞), such that, for some β ≥ 1, and for some H ∈ W,

(2.3) lim sup
t→∞

1

H(t, t0)

∫ t

t0

[

H(t, s)k(s)tr[C2(s)] −
β

4
h2(t, s)tr[B−1

2 (s)]

]

ds = ∞,

where B2(t), C2(t) are the same as in Theorem 2.3. Then system (1.2) is oscillatory.

Corollary 2.6. In Theorem 2.5 if the condition (2.3) is replaced by the conditions

lim sup
t→∞

1

H(t, t0)

∫ t

t0

h2(t, s)tr[B−1
2 (s)]ds < ∞

and

lim sup
t→∞

1

H(t, t0)

∫ t

t0

H(t, s)k(s)tr[C2(s)]ds = ∞,

where B2(t), C2(t) are the same as in Theorem 2.3. Then system (1.2) is oscillatory.

Theorem 2.7. Let the functions H, h, φ, θ and k be as in Theorem 2.3, and suppose

(2.4) 0 < inf
s≥t0

{

lim inf
t→∞

H(t, s)

H(t, t0)

}

≤ ∞.

If there exists a function m ∈ C[t0,∞) such that

(2.5) lim sup
t→∞

1

H(t, T )

∫ t

T

[

H(t, s)k(s)tr[C2(s)] −
β

4
h2(t, s)tr[B−1

2 (s)]

]

ds ≥ m(T )

for all t ≥ T ≥ t0, and for some β > 1. Moreover,

(2.6)

∫ ∞

t0

λn(B2(t))m
2
+(t)

k(t)
dt = ∞,

where m+(t) = max{m(t), 0}, B2(t), C2(t) are the same as in Theorem 2.3. Then

system (1.2) is oscillatory.
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Proof. Assume to the contrary that (1.2) is non-oscillatory. Followed the proof of

Theorem 2.3, for some β > 1, we obtain
∫ t

T

H(t, s)k(s)C2(s)ds ≤ H(t, T )k(T )R(T ) +
β

4

∫ t

T

h2(t, s)B−1
2 (s)ds

− β − 1

β

∫ t

T

H(t, s)k(s)R(s)B2(s)R(s)ds.

So, for all t > T ≥ t0, we have

lim sup
t→∞

1

H(t, T )

∫ t

T

[

H(t, s)k(s)C2(s) −
β

4
h2(t, s)B−1

2 (s)

]

ds

≤ k(T )R(T ) − β − 1

β
lim inf

t→∞

1

H(t, T )

∫ t

T

H(t, s)k(s)R(s)B2(s)R(s)ds.

So we get

lim sup
t→∞

1

H(t, T )

∫ t

T

[

H(t, s)k(s)tr[C2(s)] −
β

4
h2(t, s)tr[B−1

2 (s)]

]

ds

≤ k(T )tr[R(T )] − β − 1

β
lim inf

t→∞

1

H(t, T )

∫ t

T

H(t, s)k(s)tr [R(s)B2(s)R(s)] ds.

For all T ≥ t0 and for any β > 1, by (2.5) we have

k(T )tr[R(T )] ≥ m(T ) +
β − 1

β
lim inf

t→∞

1

H(t, T )

∫ t

T

H(t, s)k(s)tr [R(s)B2(s)R(s)] ds.

So

(2.7) k(T )tr[R(T )] ≥ m(T ) or nk(T )tr[R2(T )] ≥ m2
+(T )

k(T )
,

and

lim inf
t→∞

1

H(t, t0)

∫ t

t0

H(t, s)k(s)tr [R(s)B2(s)R(s)] ds(2.8)

≤ β

β − 1
[k(t0)tr(R(t0)) − m(t0)] < ∞.

Now, we claim that

(2.9)

∫ ∞

t0

k(s)λn[B2(s)]tr[R
2(s)]ds < ∞.

Suppose to the contrary that
∫ ∞

t0

k(s)λn[B2(s)]tr[R
2(s)]ds = ∞.

By (2.4), there is a positive constant ξ satisfying

(2.10) inf
s≥t0

{

lim inf
t→∞

H(t, s)

H(t, t0)

}

> ξ > 0.
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Let η be any arbitrary positive number, then there exists a t1 > t0 such that, for all

t ≥ t1,
∫ t

t0

k(s)λn[B2(s)]tr[R
2(s)]ds ≥ η

ξ
.

For the convenience, let

p(t) =
1

H(t, t0)

∫ t

t0

H(t, s)k(s)λn[B2(s)]tr[R
2(s)]ds,

then, for t ≥ t1, we have

p(t) =
1

H(t, t0)

∫ t

t0

H(t, s)d

{
∫ s

t0

k(τ)λn[B2(τ)]tr[R2(τ)]dτ

}

=
1

H(t, t0)

∫ t

t0

−∂H(t, s)

∂s

{
∫ s

t0

k(τ)λn[B2(τ)]tr[R2(τ)]dτ

}

ds

≥ 1

H(t, t0)

∫ t

t1

−∂H(t, s)

∂s

{
∫ s

t0

k(τ)λn[B2(τ)]tr[R2(τ)]dτ

}

ds

≥ η

ξ

1

H(t, t0)

∫ t

t1

−∂H(t, s)k(s)

∂s
ds

=
η

ξ

H(t, t1)

H(t, t0)
.

By (2.10), there exists a t2 ≥ t1 such that, for all t ≥ t2,

H(t, t1)

H(t, t0)
≥ ξ,

which implies p(t) ≥ η for all t ≥ t2. Since η is arbitrary, we have

lim
t→∞

p(t) = ∞,

which implies

lim inf
t→∞

p(t) = lim
t→∞

p(t) = ∞.

Then we obtain

lim inf
t→∞

1

H(t, t0)

∫ t

t0

H(t, s)k(s)tr[R(s)B2(s)R(s)]ds

≥ lim inf
t→∞

1

H(t, t0)

∫ t

t0

H(t, s)k(s)λn[B2(s)]tr[R
2(s)]ds

= lim inf
t→∞

p(t) = ∞,

which contradicts (2.8), thus (2.9) holds. Then by (2.7) we get
∫ ∞

t0

m2
+(t)

k(t)
λn[B2(t)]dt ≤ n

∫ ∞

t0

k(t)tr[R2(t)]λn[B2(t)]dt < ∞,

which contradicts (2.6). This completes the proof.
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Remark 2.8. Let β = 1, k(t) ≡ 1, t ∈ [t0,∞) in Theorem 2.3, Theorem 2.3 reduces to

Theorem A; we obtain the same result in Theorem 2.7 without the two assumptions

(C3) and (C4) in Theorem B. Therefore, Theorem 2.3 (2.5) and Theorem 2.7 are

generalizations and improvements of [15, Theorem 1, 3], respectively.

Remark 2.9. Different choices of H , h, k, φ and θ give many new criteria for the

oscillation of system (1.2).

We observe that only the ratio α/θ and φ/θ are involved in the coefficients of the

formulaes, and α(t) = θ{1
2
log[φ(t)/θ(t)]}′. Therefore, choose

a(t) =
θ(t)

φ(t)
= exp

(

−2

∫ t

t0

f(s)ds

)

,

where f ∈ C1[t0,∞), then

α(t)

θ(t)
= f(t),

α(t)

φ(t)
= a(t)f(t),

and

B1(t) =
1

a(t)
B(t), B2(t) =

1

a(t)
Φ−1(t)B(t)Φ∗−1(t),

C1(t) = a(t)
{

C(t) + f(t)
[

B−1(t)A(t) + A∗(t)B−1(t)
]

+ [f(t)B−1(t)]′ − f 2(t)B−1(t)
}

.

In other words, to carry out the transformation, we need only to choose one appro-

priate smooth function f(t).

Let k(t) ≡ 1, H(t, s) = (t − s)λ, t ≥ s ≥ t0, then we have h(t, s) = λ(t − s)
λ−2

2 ,

where λ > 1 is a constant, and for any s ≥ t0, we have

lim
t→∞

H(t, s)

H(t, t0)
= lim

t→∞

(t − s)λ

(t − t0)λ
= 1.

Consequently, using Theorem 2.7, we have the following corollary:

Corollary 2.10. Let λ > 1 be a constant and suppose that there exists a function

m ∈ C[t0,∞) such that, for some β > 1,

lim sup
t→∞

1

tλ

∫ t

T

[

(t − s)λtr[C2(s)] −
βλ2

4
(t − s)λ−2tr[B−1

2 (s)]

]

ds ≥ m(T ), t ≥ T ≥ t0,

and (2.10) hold, where B2(t), C2(t) are the same as in Theorem 2.3. Then system

(1.2) is oscillatory.

Example 2.11. Let t ∈ (0,∞), consider the linear Hamiltonian system

(2.11)






X ′ = 1
2t(3+sin t)2

Y,

Y ′ =
[

(1 + sin t)2(1 + t − 10
t
) + 1

2t
(3 + sin t)2 + 2 cos t(3 + sin t) − 3t

2
− 3

2
− 27

2t

]

X,

where

A(t) ≡ 0, B(t) =
1

2t(3 + sin t)2
I,
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C(t) =

[

(1 + sin t)2(1 + t − 10

t
) +

1

2t
(3 + sin t)2 + 2 cos t(3 + sin t) − 3t

2
− 3

2
− 27

2t

]

I

are 2×2-matrices, and B(t), C(t) are Hermitian. In this case Φ(t) ≡ I, choose λ = 2,

f(t) = −1/2t, then f ′(t) = 1/2t2, a(t) = t, by direct calculation, we get

B2(t) =
1

2t2(3 + sin t)2
I,

C2(t) =
1

2

[

20(1 + sin t)2 + 3t2 + 3t + 27 − 2(t + t2)(1 + sin t)2
]

I.

Let β = 6, these yield

lim sup
t→∞

1

t2
tr

[
∫ t

T

((t − s)2C2(s) − 6B−1
2 (s))ds

]

= lim sup
t→∞

1

t2

∫ t

T

(t − s)2
[

20(1 + sin s)2 + 3s2 + 3s + 27 − 2(s + s2)(1 + sin s)2
]

− (t − s)26s2(3 + sin s)2ds

, m(T ) =
123

4
− 113

2
T − T cos T sin T − T 2 cos T sin T − 4T cos T +

21

2
cos T sin T

− T cos2T − 4T 2 cos T + 8T sin T + 48 cosT + 4 sin T − 1

2
cos2T.

It is easy to verify that (2.10) holds. Therefore, system (2.11) is oscillatory by Corol-

lary 2.10. However, we can easily find that

lim sup
t→∞

1

H(t, t0)

∫ t

t0

h2(t, s)

λn(B2(s))
ds = lim sup

t→∞

1

t2

∫ t

t0

4

λn(B2(s))
ds = ∞,

so condition (C4) in Theorem B is not satisfied.

Let k(t) = 1
t2

, H(t, s) = (t − s)2, t ≥ s ≥ t0, then we have h(t, s) = 2
s2 , and for

any s ≥ t0, we have

lim
t→∞

H(t, s)

H(t, t0)
= lim

t→∞

(t − s)2

(t − t0)2
= 1.

Consequently, using Theorem 2.7, we have the following corollary:

Corollary 2.12. Suppose that there exists a function m ∈ C[t0,∞) such that, for

some β > 1,

lim sup
t→∞

1

t2

∫ t

T

[

(t − s)2 1

s2
tr[C2(s)] −

β

s4
tr[B−1

2 (s)]

]

ds ≥ m(T ), t ≥ T ≥ t0,

and (2.10) hold, where B2(t), C2(t) are the same as in Theorem 2.3. Then system

(1.2) is oscillatory.

Example 2.13. Let t ∈ (0,∞), consider the linear Hamiltonian system

(2.12)






X ′ = 1
t5(3+sin t)2

Y,

Y ′ =
[

(1 + sin t)2(t3 + t2 − 10t) + 9
4
t3(3 + sin t)2 + t4 cos t(3 + sin t) − 3

2
t3 − 3

2
t2 − 27

2
t
]

X,
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where

A(t) ≡ 0, B(t) =
1

t5(3 + sin t)2
I,

C(t) =

[

(1 + sin t)2(t3 + t2 − 10t) +
9

4
t3(3 + sin t)2 + t4 cos t(3 + sin t)

− 3

2
t3 − 3

2
t2 − 27

2
t

]

I

are 2 × 2-matrices, and B(t), C(t) are Hermitian. In this case Φ(t) ≡ I, choose

f(t) = −1/2t, then f ′(t) = 1/2t2, a(t) = t, by direct calculation, we get

B2(t) =
1

t6(3 + sin t)2
I,

C2(t) =
1

2

[

20t2(1 + sin t)2 + 3t4 + 3t3 + 27t2 − 2(t3 + t4)(1 + sin t)2
]

I.

Let β = 3, these yield

lim sup
t→∞

1

t2

∫ t

T

[

(t − s)2 1

s2
tr[C2(s)] −

β

s4
tr[B−1

2 (s)]

]

ds

= lim sup
t→∞

1

t2

∫ t

T

(t − s)2
[

20(1 + sin s)2 + 3s2 + 3s + 27 − 2(s + s2)(1 + sin s)2
]

− 6s2(t − s)2(3 + sin s)2ds

, m(T ) =
123

4
− 113

2
T − T cos T sin T − T 2 cos T sin T − 4T cos T +

21

2
cos T sin T

− T cos2T − 4T 2 cos T + 8T sin T + 48 cosT + 4 sin T − 1

2
cos2T.

It is easy to verify that (2.10) holds. Therefore, system (2.12) is oscillatory by Corol-

lary 2.12. However, we note that

lim sup
t→∞

1

H(t, t0)

∫ t

t0

h2(t, s)

λn(B2(s))
ds = ∞,

so condition (C4) in Theorem B is not satisfied.

Examples 2.11 and 2.13 show that Theorem B cannot be applied to system (2.11)

or system (2.12), obviously our results are superior to the results obtained before.
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