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ABSTRACT. This paper studies a class of nonlinear second order difference equations of the type

xn+1 =
f(xn, xn−1)

xn

,

where f is symmetric and monotonic with initial conditions x
−1, x0 being positive real numbers.

Some sufficient conditions under which every positive solution of such equation converges to a period

two solution or to the cycle {0,∞} are established.
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tions, coordinate-wise monotonicity.

1. INTRODUCTION

Nonlinear difference equations appear as discrete analogues and as numerical

solutions of differential and delay differential equations. Such equations also have

direct applications in the modeling of diverse phenomena in various sciences such

as, biology (see [3, 4]), ecology (see [9]), economics (see [8, 11]), medical sciences

(see [13]), military sciences (see [6, 14]). Our objective in the study of difference

equations is to understand as much as possible about the asymptotic behavior (such

as stability, boundedness, convergence, etc.) of solutions without the knowledge of an

explicit formula for the solutions.

In this paper, we study the global behavior of the nonlinear second order differ-

ence equation

(1) xn+1 =
f(xn, xn−1)

xn

, n = 0, 1, 2, . . . ,

where f is symmetric and monotonic and the initial values x
−1, x0 are positive real

numbers. Thus f belongs to the class of coordinate-wise monotonic functions, i.e.,

functions which are monotonic in each coordinate. For more about coordinate-wise
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monotonicity, see [14]. Most of the results about Eq. (1) treat the case when f is a

rational function. For second order rational difference equations, see monograph [10].

For higher order rational difference equations, see [2, 12]. For nonlinear difference

equations see [15, 16].

A solution x̄ of the equation f(x, x) = x2 is a fixed point (or equilibrium) of

Eq. (1). Also the sequence

α, β, α, β, α, β, . . .

where αβ = f(α, β) is a period two solution of Eq. (1). In this note, we obtain

sufficient conditions under which every positive solution of Eq. (1) converges to a

period two solution and study the boundedness and convergence of this equation.

2. CONVERGENCE TO A PERIOD TWO SOLUTION AND

DIVERGENCE TO INFINITY

Lemma 1. Assume that the function f : (0,∞)2 → (0,∞) is differentiable. Then

(i): f satisfies the following functional equation

(2) f(x, y) − f(y, z) = (x − z)g(x, y, z)

where g : (0,∞)3 → [0,∞) and g is continuous if and only if

(a): f is symmetric, i.e., f(x, y) = f(y, x),

(b): f is increasing in both arguments.

(ii): f satisfies Eq. (2) where g : (0,∞)3 → (−∞, 0] and g is continuous if and

only if (a) together with the following hypothesis hold

(c): f is decreasing in both arguments

Proof. We only give the proof of (i). The argument for (ii) is similar and will be

omitted. Suppose that Eq. (2) holds and g is a continuous and nonnegative-valued

function. In Eq. (2) let x = z, which yields f(x, y) = f(y, x), so f is symmetric and

(a) holds. Next Assume that (a, b) ∈ (0,∞)2. By the continuity of g we have

∂f

∂x
(a, b) = lim

x→a

f(x, b) − f(a, b)

x − a
= lim

x→a
g(x, b, a) = g(a, b, a) ≥ 0

so f is increasing relative to the first argument and since f is symmetric it is increasing

relative to the second argument too.

Now assume that conditions (a) and (b) hold. Define the function

g(x, y, z) =











f(x, y) − f(z, y)

x − z
x 6= z

∂f

∂x
(x, y) x = z

so by (a) Eq. (2) holds. Also by the differentiability of f , g is continuous and by (b),

g is a nonnegative-valued function. The proof is complete.
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Lemma 2. Assume that f ∈ C2 and condition (a) in Lemma 1 holds. Then

(i): g is increasing (decreasing) in the first and third arguments in (0,∞)3 if and

only if for every (x, y) ∈ (0,∞)2, ∂2f

∂x2 (x, y) ≥ 0 (∂2f

∂x2 (x, y) ≤ 0).

(ii): g is increasing (decreasing) in the second argument in (0,∞)3 if and only if

for every (x, y) ∈ (0,∞)2, ∂2f

∂x∂y
(x, y) ≥ 0 ( ∂2f

∂x∂y
(x, y) ≤ 0).

Proof. Using Lemma 1 we have

g(x, y, z) =







f(x,y)−f(z,y)
x−z

x 6= z

∂f

∂x
(x, y) x = z

Now suppose x 6= z. Then using mean value theorem there exist ηxyz between x and

z and ξxyz between ηxyz and x so that

gx(x, y, z) =
fx(x, y)(x − z) − f(x, y) + f(y, z)

(x − z)2
=

fx(x, y)(x − z) + (z − x)fx(ηxyz, y)

(x − z)2

=
fx(x, y) − fx(ηxyz, y)

x − z
=

(x − ηxyz)fxx(ξxyz, y)

(x − z)

and for x = z, gx(x, y, z) = fxx(x, y). Therefore, g is increasing (decreasing) in the

first argument if and only if fxx(x, y) ≥ 0 (fxx(x, y) ≤ 0) for every (x, y) ∈ (0,∞)2.

Since g is symmetric relative to the first and third arguments similar argument holds

for the third argument too.

Again assume x 6= z. Then using mean value theorem there exists ηxyz between

x and z so that

gy(x, y, z) =
fx(y, x) − fx(y, z)

x − z
= fxy(y, ηxyz)

and for x = z, gy(x, y, z) = fxy(x, y). Therefore, g is increasing (decreasing) in the

second argument if and only if fxy(x, y) ≥ 0 (fxy(x, y) ≤ 0) for every (x, y) ∈ (0,∞)2.

The proof is complete.

Theorem 1. Assume that f : (0,∞)2 → (0,∞) is differentiable and hypothesis (a)

and (b) in lemma 1 hold and the sequence {xn} of positive values satisfies Eq. (1).

Let ρ = f(x0, x−1) − x0x−1, l = min{x
−1, x0} and define

S = {(x, y, z, w)| l ≤ z ≤ x, l ≤ w ≤ y}, A = {(x, y, z)| l ≤ x, y, z, z ≤ x}

Then

(i): If ρ ≤ 0 then the sequence {xn} converges to a period 2 solution.

(ii): If ρ > 0 and there exists 0 < U < 1 such that for (x, y, z, w) ∈ S

lim sup
g(x, y, z)g(y, z, w)

xy
< U

as (x, y, z, w) → (µ,∞, µ,∞) for all µ > 0 and as (x, y, z, w) → (∞,∞,∞,∞),

then the sequence {xn} converges to a period 2 solution.
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(iii): If ρ > 0 and there exists L > 1 such that for (x, y, z, w) ∈ S

lim inf
g(x, y, z)g(y, z, w)

xy
> L as (x, y, z, w) → (µ,∞, µ,∞) ∀µ > 0

and
fx(µ, η)fx(η, µ)

µη
> L, ∀µ, η > 0

then the sequence {xn} diverges to infinity.

(iv): If ρ > 0 and there exists L > 1 such that for (x, y, z) ∈ A

lim inf
g(x, y, z)

x
> 0 as (x, y, z) → (∞, µ,∞) ∀µ > 0

and for all x, y > 0
fx(x, y)

x
> L

then the sequence {xn} diverges to infinity.

Proof. Subtracting xn−1 from the left and right hand sides of Eq. (1), we obtain

xn+1 − xn−1 =
f(xn, xn−1) − xnxn−1

xn

.

From the fact that

xnxn−1 = f(xn−1, xn−2),

and by (2), we have for n ≥ 1 that

(3) xn+1 − xn−1 =
f(xn, xn−1) − f(xn−1, xn−2)

xn

=
(xn − xn−2)g(xn, xn−1, xn−2)

xn

.

So the signum of xn − xn−2 is invariant for all n ≥ 1 since g is positive-valued (by

Lemma 1).

Now assume that ρ ≤ 0. Then both of subsequences of even and odd terms

are decreasing. Hence, the sequence {xn} converges to a period 2 solution and (i) is

verified.

Next, assume that ρ > 0. thus, both of subsequences {x2n} and {x2n+1} are

strictly increasing by Lemma 1(note that by Lemma 1 g(x, y, z) > 0 if x 6= z).

Also note that by (3) and the fact that ρ > 0, xn ≥ l for all n ≥ −1. Therefore

(x2n, x2n−1, x2n−2, x2n−3) ∈ S for all n ≥ 1.

Suppose that the hypothesis in (ii) hold. We claim that the sequence {xn} con-

verges to a period 2 solution. Assume for the sake of contradiction that this is not

true. So, either both of subsequences of even and odd terms diverges to infinity or, one

of them is convergent and the other one is divergent. Without loss of generality one

can assume that either x2n+1 → ∞ and x2n → ∞ or, x2n+1 → ∞ and x2n → µ > 0.

Thus, for every ǫ > 0 there exists N ∈ N such that for all n ≥ N

(4)
g(x2n, x2n−1, x2n−2)g(x2n−1, x2n−2, x2n−3)

x2nx2n−1

< (U + ǫ)
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Therefore by (4) and (3) one can write for n ≥ N that

x2n+1 − x2n−1 = (x2n−1 − x2n−3)
g(x2n, x2n−1, x2n−2)g(x2n−1, x2n−2, x2n−3)

x2nx2n−1

≤ (x2n−1 − x2n−3)(ǫ + U),

and therefore by induction one can write for n ≥ N that

x2n+1 − x2n−1 < (U + ǫ)n−N+1(x2N−1 − x2N−3)

Choose 0 < ǫ < 1 − U . Thus for all n ≥ N

x2n+1 < (x2n+1 − x2n−1) + (x2n−1 − x2n−3) + . . . + (x2N−1 − x2N−3) + x2N−3

≤ (x2N−1 − x2N−3)

n−N+1
∑

i=0

(U + ǫ)i + x2N−3

< (x2N−1 − x2N−3)

∞
∑

i=0

(U + ǫ)i + x2N−3

= (x2N−1 − x2N−3).
1

1 − (U + ǫ)
+ x2N−3

which contradicts the fact that the subsequence {x2n+1} is unbounded. One can prove

(iii) with an analysis similar to that of (ii). Just note that by the continuity of g

lim inf
(x,y,z,w)→(µ,η,µ,η)

g(x, y, z)g(y, z, w)

xy
=

fx(µ, η)fx(η, µ)

µη

Now assume that the hypothesis in (iv) are held. For the sake of contradiction

assume that the sequence {xn} does not diverge to infinity. then there are two possible

cases to consider:

Case I: One of subsequences of even and odd terms is convergent and the other

one is divergent. Without loss of generality assume that x2n+1 → ∞, x2n → µ > 0.

Now, we claim that

lim inf
n→∞

(x2n+1 − x2n−1) = 0

otherwise

lim inf
n→∞

(x2n+2 − x2n) ≥ lim inf
n→∞

(x2n+1 − x2n−1). lim inf
n→∞

g(x2n+1, x2n, x2n−1)

x2n+1

> 0

which simply is a contradiction. Thus there exists a subsequence {x2nk+1 − x2nk−1}

of the sequence {x2n+1 − x2n−1} such that limk→∞
x2nk+1 − x2nk−1 = 0. Now, using

mean value theorem we have

g(x2nk+1, x2nk
, x2nk−1)

x2nk+1
=

fx(ξk, x2nk
)

x2nk+1
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where x2nk−1 < ξk < x2nk+1. Since limk→∞
(x2nk+1 − ξk) = 0 then for every ǫ > 0

there exists N ∈ N such that for all k ≥ N , x2nk+1 − ξk < ǫ. Thus for k ≥ N

g(x2nk+1, x2nk
, x2nk−1)

x2nk+1
>

fx(ξk, x2nk
)

ξk + ǫ
=

fx(ξk, x2nk
)

ξk

.
ξk

ξk + ǫ
> L.

ξk

ξk + ǫ
.

Similarly, one can write

g(x2nk
, x2nk−1, x2nk−2)

x2nk

=
fx(δk, x2nk−1)

x2nk

=
fx(δk, x2nk−1)

δk

.
δk

x2nk

> L.
δk

x2nk

,

where x2k−2 < δk < x2nk
. So for k ≥ N

x2nk+2 − x2nk
= (x2nk

− x2nk−2).
g(x2nk+1, x2nk

, x2nk−1)

x2nk+1
.
g(x2nk

, x2nk−1, x2nk−2)

x2nk

(5)

> (x2nk
− x2nk−2).L

2.
ξk

ξk + ǫ
.

δk

x2nk

.

Note that the sequence {ξk} diverges increasingly to infinity and limk→∞
(x2nk

−δk) =

0. Therefore,

lim
k→∞

ξk

ξk + ǫ
.

δk

x2nk

= 1

This together with the fact that L > 1 and (5) implies that the subsequence {x2nk
}

is unbounded which is a contradiction.

Case II: Both of subsequences of even and odd terms are convergent. Assume

that x2n → µ, x2n+1 → η. Then by the continuity of g

lim
n→∞

g(xn+1, xn, xn−1)g(xn, xn−1, xn−2)

xn+1xn

=
fx(µ, η).fx(η, µ)

µη
> L2

which implies that the sequence {xn} is unbounded, a contradiction. The proof is

complete.

Corollary 1. Assume that hypothesis in Theorem 1 are held. Assume also that

f ∈ C2 and for every (x, y) ∈ (0,∞)2 both of partial derivatives ∂2f

∂x2 and ∂2f

∂x∂y
are

positive or negative. Then section (ii) in Theorem 1 could be replaced by the following

more simpler section: If ρ > 0 and there exists 0 < U < 1 such that

lim sup
fx(x, y).fx(y, x)

xy
< U as (x, y) → (µ,∞) ∀µ > 0

then the sequence {xn} converges to a period 2 solution.

Proof. Let (x, y, z, w) ∈ S. If both of partial derivatives ∂2f

∂x2 and ∂2f

∂x∂y
are positive

then by Lemma 2 g is increasing in all of it’s arguments and we have

g(x, y, z)g(y, z, w)

xy
≤

f(x, y, x)g(y, x, y)

xy
=

fx(x, y)fx(y, x)

xy
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Next, if both of partial derivatives ∂2f

∂x2 and ∂2f

∂x∂y
are negative then by Lemma 2 g

is decreasing in all of it’s arguments and we have

g(x, y, z)g(y, z, w)

xy
≤

g(z, w, z)g(w, z, w)

zw
=

fx(z, w)fx(w, z)

zw

which completes our proof.

Example 1. Let f(x, y) = axy

x+y
which defines the following difference equation

(6) xn+1 =
axn−1

xn + xn−1

Eq. (6) was investigated in [10] where it was shown that every solution of Eq. (6)

converges to a period two solution.

Clearly conditions (a) and (b) in lemma 1 are held and

g(x, y, z) =
ay2

(x + y)(y + z)
.

Therefore

(i). If ρ = ax0x
−1

x0+x
−1

− x0x−1 ≤ 0, i.e., x0 + x
−1 ≤ a then by Theorem 1(i) both of

subsequences of even and odd terms are convergent decreasingly. So Eq. (6)

converges to a period two solution.

(ii). If ρ > 0, i.e., x0 +x
−1 > a then since g(x, y, z)g(y, x, w)/xy → 0 as (x, y, z, w) →

(µ,∞, µ,∞) or (∞,∞,∞,∞) for every µ > 0, by Theorem 1(ii) both of subse-

quences of even and odd terms are convergent increasingly. Therefore, Eq. (6)

converges to a period two solution again.

Example 2. Consider the difference equation

(7) xn+1 = a
x2

n + x2
n−1

xn

, a > 0, a 6=
1

2
.

which is obtained from Eq. (1) by setting f(x, y) = a(x2 + y2). Conditions (a) and

(b) in lemma 1 are simply held and

g(x, y, z) = a(x + z).

Thus

(i). If ρ = a(x2
−1 +x2

0)−x
−1x0 ≤ 0 then using Theorem 1(i) both of subsequences of

even and odd terms are convergent decreasingly and therefore Eq. (7) converges

to a period two solution.

(ii). If ρ > 0 and a < 1
2

then for points (x, y, z) ∈ S

g(x, y, z)g(y, z, w)

xy
= a2 x + z

x
.
y + w

y
< 4a2 < 1

thus by Theorem 1(ii) both of subsequences of even and odd terms are convergent

increasingly. Hence, Eq. (7) again converges to a period two solution. This result
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could be obtained by Corollary 1 since fxx(x, y) = 2a ≥ 0, fxy(x, y) = 0. Note

that
fx(x, y)fx(y, x)

xy
=

(2ax)(2ay)

xy
= 4a2 < 1

So if a < 1
2

then by Corollary 1 similar result obtains.

(iii). ρ > 0 and a > 1
2
. Note that lim inf g(x, y, z)/x = a(x+z)/x = a+a lim inf z/x >

0 as (x, y, z) → (∞, µ,∞) for every µ > 0 and for points (x, y, z) ∈ A

fx(x, y)

x
=

2ax

x
= 2a > 1

thus by Theorem 1(iv) Eq. (7) diverges to infinity.

Example 3. Consider the difference equation

(8) xn+1 =
a(xn + xn−1) + b(sin xn + sin xn−1) + c

xn

, a, b, c > 0, a ≥ b

which is obtained from Eq. (2) by setting f(x, y) = a(x + y) + b(sin x + sin y + c).

Conditions (a) and (b) in lemma 1 are simply held and

g(x, y, z) =







a + b sin x−sin z
x−z

x 6= z

a + b cos x x = z

Thus

(i). If ρ = a(x
−1+x0)+b(sin x

−1+sin x0)+c−x
−1x0 ≤ 0 then by part (i) in Theorem 1

both of subsequences of even and odd terms are convergent decreasingly. Hence,

Eq. (8) converges to a period two solution.

(ii). If ρ > 0 since g(x, y, z)g(y, x, w)/xy → 0 as (x, y, z, w) → (µ,∞, µ,∞) or

(∞,∞,∞,∞) for every µ > 0 then by part (ii) in Theorem 1 both of sub-

sequences of even and odd terms are convergent increasingly. Hence, Eq. (8)

again converges to a period two solution.

Example 4. Set f(x, y) =
√

ax2 + bxy + ay2 which satisfies conditions (a) and (b)

in Lemma 1. So we have the following difference equation

(9) xn+1 =

√

ax2
n + bxnxn−1 + ax2

n−1

xn

, a, b > 0

with

g(x, y, z) =
ax + by + az

√

ax2 + bxy + ay2 +
√

ay2 + byz + az2
.

Therefore

(i). If ρ =
√

ax2
−1 + bx

−1x0 + ax2
0 − x

−1x0 ≤ 0 then by Theorem 1(i) Eq. (9) con-

verges to a period two solution with decreasing subsequences of even and odd

terms.
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(ii) If ρ > 0 then g(x, y, z)g(y, z, w)/xy → 0 as (x, y, z, w) → (µ,∞, µ,∞) or

(∞,∞,∞,∞) for every µ > 0. So, by Theorem 1(ii) Eq. (9) converges to a

period two solution with increasing subsequences of even and odd terms.

Example 5. Let f(x, y) = exp x + exp y and note that conditions (a) and (b) in

Lemma 1 are simply satisfied. Thus the following difference equation is obtained by

Eq. (1)

(10) xn+1 =
exp xn + exp xn−1

xn

with

g(x, y, z) =







exp x−exp z

x−z
x 6= z

exp x. x = z

Note that ρ = exp x
−1 + exp x0 − x

−1x0 > 0 for every x
−1, x0 > 0. Also for points

(x, y, z) ∈ A

g(x, y, z)

x
=

exp x − exp z

x(x − z)
=

∑

∞

i=1
(xi

−zi)
i!

x(x − z)
>

(x3 − z3)

3!x(x − z)
=

x2 + xz + z2

3!x

thus g(x,y,z)
x

→ ∞ as (x, y, z) → (∞, µ,∞). Also for all x, y > 0

fx(x, y)

x
=

exp x

x
≥ exp 1 > 1

Therefore, by Theorem 1(iv) every positive solution of Eq. (10) diverges to infinity.

Lemma 3. Assume that the function f : (0,∞)2 → (0,∞) is differentiable and

conditions (a) and (c) in Lemma 1 hold. Assume also that the sequence {xn} of

positive numbers satisfies Eq. (1). Let ρ = f(x0, x−1) − x0x−1. Then

(i): If ρ > 0, then the subsequence of odd terms is increasing and another one is

decreasing.

(ii): If ρ < 0, then the subsequence of even terms is increasing and another one is

decreasing.

(iii): The solution {xn} either converges to a period two solution or converges to

{0,∞}.

Proof. By Lemma 1, g is a negative-valued function. Using this and Eq. (3)

parts (i) and (ii) are easily proved. It remains to verify (iii). If ρ = 0 then using

Eq. (3), Eq. (1)converges to the period two solution (x
−1, x0). Now, assume that

ρ 6= 0. Thus one of cases (i) and (ii) occurs and in both of them one of subsequences

of even and odd terms is increasing and another one is decreasing. Without loss

of generality assume that ρ > 0. Thus, four cases are possible, i.e., (x2n+1, x2n) →

(p, q), p < ∞, q > 0 or, (x2n+1, x2n) → (∞, 0) or, (x2n+1, x2n) → (p, 0), p < ∞ or,

(x2n+1, x2n) → (∞, q), q > 0. We show that only the first two cases occurs and this

completes our proof.
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Now if (x2n+1, x2n) → (p, 0), p < ∞ then

lim
n→∞

f(x2n, x2n−1) = lim
n→∞

x2n+1x2n = 0,

using the fact that x2n−1 < p and x2n > 0 for all n ∈ N and by the fact that f is

decreasing we have for all x > p, y > 0 that

f(x, y) < lim
n→∞

f(x2n, x2n−1) = 0

which simply is a contradiction. Next suppose (x2n+1, x2n) → (∞, q), q > 0. Thus

lim
n→∞

f(x2n, x2n−1) = lim
n→∞

x2n+1x2n = ∞

again using the fact that q < x2n for all n ∈ N and by the fact that f is decreasing

we have for all x < q, y > 0 that

f(x, y) > lim
n→∞

f(x2n, x2n−1) = lim
n→∞

x2n+1x2n = ∞

which again is a contradiction. The proof is complete.

Theorem 2. Suppose f : (0,∞)2 → (0,∞) is differentiable and conditions (a) and

(c) in Lemma 1 hold. Assume also that the sequence {xn} of positive numbers satisfies

Eq. (1). Let ρ = f(x0, x−1) − x0x−1. Then

(i): If ρ = 0 then the sequence {xn} converges to the period two point (x
−1, x0).

(ii): If there exists L > 1 such that for every period two points (p, q) of Eq. (1)

fx(p, q)fx(q, p)

pq
> L

then the subsequence of odd terms diverges increasingly to ∞ and the other subse-

quence converges decreasingly to 0 when ρ > 0 and the subsequence of even terms

diverges increasingly to ∞ and the other subsequence converges decreasingly to

0 when ρ < 0.

(iii): If there exists 0 < U < 1 such that for every (x, y, z, w) ∈ C

lim sup
g(x, y, z)g(y, z, w)

xy
< U as (x, y, z, w) → (0,∞, 0,∞)

then the sequence {xn} converges to a period two solution with increasing odd

terms and decreasing even terms when ρ > 0 and increasing even terms and

decreasing odd terms when ρ < 0 where

C = {(x, y, z, w) | xy = f(y, z), yz = f(z, w), 0 < x ≤ z, w ≤ y}

(iv): Assume that f ∈ C2. If for every (x, y) ∈ (0,∞)2, ∂2f

∂x2 (x, y) ≥ 0, ∂2f

∂x∂y
(x, y) ≥

0 and also there exists 0 < U < 1 such that for period two points (p, q)

lim sup
fx(p, q)fx(q, p)

pq
< U as (p, q) → (0,∞)
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then the sequence {xn} converges to a period two solution with increasing odd

terms and decreasing even terms when ρ > 0 and increasing even terms and

decreasing odd terms when ρ < 0.

Proof. (i) is easily proved using Eq. (3). So assume that ρ 6= 0. Then using

Lemma 2 there are only two possible scenarios: either the sequence {xn} converges

to a period two solution or, it converges to {0,∞}. Now if hypothesis in (ii) hold

then the first scenario is not possible. Otherwise, suppose that (x2n, x2n−1) → (p, q).

Then using Eq. (3)

(11) xn+1 − xn−1 = (xn−1 − xn−3)
g(xn, xn−1, xn−2)g(xn−1, xn−2, xn−3)

xnxn−1

also by the continuity of g

lim
n→∞

g(xn, xn−1, xn−2)g(xn−1, xn−2, xn−3)

xnxn−1
=

fx(p, q)fx(q, p)

pq
> L

this together the fact that L > 1 and Eq. (11) implies that {xn} is unbounded which

is a contradiction. Therefore, {xn} converges to {0,∞}.

Next assume that hypothesis in (iii) hold. We claim that the second scenario

does’nt occur. For the sake of contradiction, and without loss of generality suppose

that {x2n} converges decreasingly to 0 and {x2n+1} diverges increasingly to ∞(Note

that this occurs when ρ > 0. The proof for the case ρ < 0 is similar and will be

omitted). Therefore, (x2n, x2n−1, x2n−2, x2n−3) ∈ C for all n ≥ 1 and Eq. (3) yields

x2n+1 − x2n−1 = (x2n−1 − x2n−3)
g(x2n, x2n−1, x2n−2)g(x2n−1, x2n−2, x2n−3)

x2nx2n−1

this together with the fact that 0 < U < 1 and an analysis precisely similar to that

of Theorem 1(ii) implies that {x2n+1} is bounded, a contradiction.

Finally, assume that hypothesis in (iv) hold. Define

M =

{

g(x, y, z)g(y, z, w)

xy
| (x, y, z, w) ∈ C

}

.

Now assume that (x, y, z, w) ∈ C. Since ∂2f

∂x2 (x, y) ≥ 0, ∂2f

∂x∂y
(x, y) ≥ 0 in (0,∞)2

then by Lemma 2 g is increasing in all of it’s arguments in (0,∞)3. This fact and

also the fact that g is a negative-valued function yield

g(x, y, z)g(y, z, w)

xy
≤

g(x, w, x)g(w, x, w)

xw
=

fx(x, w)fx(w, x)

xw

this means that the maximum point for the set M occurs when x = z and w = y. Also

for such a point we have xw = f(w, x), i.e., (x, w) is a period two point. Therefore

(12) sup M ≤ sup T

where

T =

{

fx(x, w)fx(w, x)

xw
| x, w > 0, (x, w) is a period 2 point

}
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Now we claim that the sequence {xn} converges to a period two point. For the

sake of contradiction, and without loss of generality assume that {x2n} converges

decreasingly to 0 and {x2n+1} diverges increasingly to ∞. (Again note that this

occurs when ρ > 0. The proof for the case ρ < 0 is similar and will be omitted).

Thus (x2n, x2n−1, x2n−2, x2n−3) ∈ C for all n ≥ 2 and by (11) one can write

lim sup
n→∞

g(x2n, x2n−1, x2n−2)g(x2n−1, x2n−2, x2n−3)

x2nx2n−1
≤ lim sup

(x,w)→(0,∞)

T ≤ U

this together with the fact that 0 < U < 1 and an analysis precisely similar to that

of Theorem 1(ii) implies that the subsequence {x2n+1} is bounded which simply is a

contradiction. The proof is complete.

Example 6. Consider the following difference equation

(13) xn+1 =
1

xs+1
n

+
1

xnxs
n−1

which is obtained from Eq. (1) with

f(x, y) =
1

xs
+

1

ys
, s ≥ 0

conditions (a) and (c) in Lemma 1 are simply held. Also fxx(x, y) = s(s+1)
xs+2 ≥

0, fxy(x, y) = 0. Now assume that (p, q) is a period two point for Eq. (13). Then

pq = 1
ps + 1

qs and we have

fx(p, q)fx(q, p)

pq
=

s2

(pq)s+2
=

s2

( 1
ps + 1

qs )s+2
→ 0 as (p, q) → (0,∞)

So all the conditions in Theorem 2(iv) are held. Therefore, Eq. (13) converges to a

period two solution.

Example 7. Let f(x, y) = 1
(xy)s , s ≥ 0, s 6= 1. Note that this function satisfies

conditions (a) and (c) in Lemma 1 and defines the following difference equation

(14) xn+1 =
1

xs+1
n xs

n−1

assume that (p, q) is a period 2 solution of Eq. (13). Then pq = 1 and we can write

fx(p, q)fx(q, p)

pq
=

s2

(pq)s+2
= s2,

Now if ρ = 1−(x0x
−1)s+1

xs+1

0
xs

−1

= 0, i.e., x0x−1 = 1 then by Theorem 2(i) Eq. (14)

converges to the period 2 point (x0, x−1). Next if ρ 6= 0, s > 1 then by Theorem

2(ii) Eq. (14) converges to {0,∞}, i.e., one of subsequences of even and odd terms

converges to 0 and the other one diverges to ∞, based on ρ is positive or negative.

Finally if ρ 6= 0, s < 1 then since fxx(x, y) = s(s+1)
xs+2ys ≥ 0, fxy(x, y) = s2

(xy)s+1 ≥ 0

by Theorem 2(iv) Eq. (14) converges to a period 2 solution.
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3. CONCLUSION

In this paper, we have studied a class of nonlinear second-order difference equa-

tions which cover a very wide class of difference equations. We have obtained sufficient

conditions under which every positive solution of this equation converges to a period

two solution. Also we have discussed the boundedness, permanence, and convergence

properties of the solutions. In the end, we have verified the obtained results through

some comprehensive examples. The authors truly believe that these results can be

conveniently extended to the following higher order difference equation

xn+1 =
f(xn, . . . , xn−m)

xn

, m > 1.
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