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ABSTRACT. We introduce the notion of product ∆-integral of a matrix function defined on

an arbitrary time scale, and thus generalize the classical definition of product integral. We prove

that every Riemann ∆-integrable matrix function is also product ∆-integrable, and investigate the

properties of the indefinite product ∆-integral, including its relation to linear systems of dynamic

equations. Finally, we generalize the notion of the matrix exponential function.
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1. INTRODUCTION

The concept of product integration goes back to V. Volterra (see e.g. [9], [10]).

Given a matrix function A : [a, b] → R
n×n (where R

n×n denotes the set of all real

n × n matrices), a partition a = t0 < t1 < · · · < tm = b, and a collection of tags

ξi ∈ [ti−1, ti], i ∈ {1, . . . , m}, we form the product

(I + A(ξm)(tm − tm−1)) · · · (I + A(ξ1)(t1 − t0))

(where I stands for the identity matrix). The product integral of A over [a, b], which

is classically denoted by the symbol
∏b

a(I + A(t)dt), is defined as the limit of these

products as the norm of the partition approaches zero.

The interest in product integration stems mainly from the fact that if the matrix

function A is a Riemann integrable, then the indefinite product integral

Y (t) =

t
∏

a

(I + A(s)ds), t ∈ [a, b],

is continuous and satisfies the integral equation

Y (t) = I +

∫ t

a

A(s)Y (s)ds.
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Thus, if A is continuous, then Y ′(t) = A(t)Y (t), Y (a) = I, and Y is a fundamental

matrix of the linear system of equations y′(t) = A(t)y(t), where y : [a, b] → R
n.

Product integration has also applications in the theory of stochastic processes,

physics, differential equations in the complex domain, etc. (see e.g. [4], [5], [9]).

A modern and accessible treatment of product integration, which represents an adap-

tation of Lebesgue’s integration theory, is available in [4].

Inspired by the work of M. Bohner and G. Guseinov on Riemann integration

(see [6] and Chapter 5 of [2]), we present a treatment of product integration on time

scales. We assume that the reader is familiar with the basic concepts of the calculus

on time scales (see e.g. Chapter 1 of [1] or [2]). We start by investigating the class of

product ∆-integrable functions and prove that every Riemann ∆-integrable function

is also product ∆-integrable. Then we focus on the properties of the indefinite product

∆-integral. The final section describes one of the differences between the classical and

time scale theories. As a corollary of the previous results, we obtain the existence-

uniqueness theorem for the linear system of dynamic equations y∆(t) = A(t)y(t)

(this result was already proved by different methods in [1] or [3]) and a generalized

definition of the matrix exponential function in terms of the product ∆-integral.

2. BASIC DEFINITIONS

Let T be a time scale. We use the symbol [a, b]T to denote a compact interval

in T, i.e. if a, b ∈ T, then [a, b]T = {t ∈ T; a ≤ t ≤ b}. The open and half-open

intervals are defined in an analoguous way.

A partition of [a, b]T is a finite sequence of points

{t0, t1, . . . , tm} ⊂ [a, b]T, a = t0 < t1 < · · · < tm = b.

Given such a partition, we put ∆ti = ti − ti−1. A tagged partition consists of a

partition and a sequence of tags {ξ1, . . . , ξm} such that ξi ∈ [ti−1, ti) for every i ∈

{1, . . . , m}. The set of all tagged partitions of [a, b]T will be denoted by the symbol

D(a, b). If not stated otherwise, we will always assume that the division points are

called {t0, t1, . . . , tm} and the tags {ξ1, . . . , ξm}.

We say that a tagged partition D′ is a refinement of a tagged partition D provided

that all division points of D are also division points of D′ (the tags in D′ might be

arbitrary); in this case we write D′ ≺ D.

If δ > 0, then Dδ(a, b) denotes the set of all tagged partitions of [a, b]T such that

for every i ∈ {1, . . . , m}, either ∆ti ≤ δ, or ∆ti > δ and σ(ti−1) = ti. Note that in

the latter case, the only way to choose a tag in [ti−1, ti) is to take ξi = ti−1.

The following concept of Riemann ∆-integral represents a time-scale generaliza-

tion of the classical Riemann integral:
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Definition 2.1. A bounded function f : [a, b]T → R is called Riemann ∆-integrable

if there exists a number S ∈ R with the property that for every ε > 0, there exists

a δ > 0 such that |
∑m

i=1 f(ξi)∆ti − S| < ε for every D ∈ Dδ(a, b). The number S is

called the Riemann ∆-integral of f over [a, b]T and we write

∫ b

a

f(t)∆t = S.

The properties of the Riemann ∆-integral are similar to the properties of the

classical Riemann integral; we will use the following facts (see [6] or Chapter 5 of [2]

for the corresponding proofs):

Theorem 2.2. If f is Riemann ∆-integrable on [a, b]T, then it is also Riemann ∆-

integrable on every subinterval [c, d]T of [a, b]T.

Theorem 2.3. Every rd-continuous function is Riemann ∆-integrable.

Theorem 2.4. The product of two Riemann ∆-integrable functions is again Riemann

∆-integrable.

Theorem 2.5. If f : [a, b]T → R is a Riemann ∆-integrable function, then for every

ε > 0, there exists a δ > 0 such that
∑m

i=1(Mi − mi)∆ti < ε for every D ∈ Dδ(a, b),

where Mi = supu∈[ti−1,ti)
f(u) and mi = infu∈[ti−1,ti) f(u).

Theorem 2.6. Let f : [a, b]T → R be a rd-continuous function. Then the indefinite

integral F (t) =
∫ t

a
f(s)∆s satisfies F∆(t) = f(t) for every t ∈ [a, b).

The Riemann ∆-integral of a matrix function A : [a, b]T → R
n×n, where A =

{aij}
n
i,j=1, is defined in a straightforward way as the matrix

{
∫ b

a

aij(t)∆t

}n

i,j=1

(provided it exists); we denote it by
∫ b

a
A(t)∆t.

To be able to study convergence of matrix functions, we have to introduce a norm

on the space R
n×n. Since all norms on a finite-dimensional space are equivalent, it

usually doesn’t matter which particular norm we choose. However, it is convenient to

take a norm that satisfies ‖I‖ = 1, and ‖A · B‖ ≤ ‖A‖ · ‖B‖ for every A, B ∈ R
n×n.

These conditions are satisfied e.g. by the operator norm

‖A‖ = sup{‖Ax‖; x ∈ R
n, ‖x‖ ≤ 1},

where ‖Ax‖ and ‖x‖ denote the Euclidean norms of vectors in R
n.

We now proceed to the notion of product ∆-integral of a matrix function, a

concept which represents a time-scale generalization of the classical product integral.
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Given a matrix function A : [a, b]T → R
n×n and a tagged partition D ∈ D(a, b),

we denote

P (A, D) =

1
∏

i=m

(I + A(ξi)∆ti) = (I + A(ξm)∆tm) · · · (I + A(ξ1)∆t1).

(The order is important because matrix multiplication is in general not commutative.)

Definition 2.7. A bounded matrix function A : [a, b]T → R
n×n is called product ∆-

integrable if there exists a matrix P ∈ R
n×n with the property that for every ε > 0,

there exists a δ > 0 such that ‖P (A, D)−P‖ < ε for every D ∈ Dδ(a, b). The matrix

P is called the product ∆-integral of A over [a, b]T and we write

b
∏

a

(I + A(t)∆t) = P.

When a = b, we make the agreement that
∏a

a(I + A(t)∆t) = I for every function A.

Theorem 2.8. Let a, b ∈ T, a < b.

(i) If T = R, then A : [a, b]T → R
n×n is product ∆-integrable if and only if it is

product integrable in the classical sense, and then

b
∏

a

(I + A(t)∆t) =

b
∏

a

(I + A(t)dt).

(ii) If h > 0 and T = hZ, then every function A : [a, b]T → R
n×n is product ∆-

integrable and

b
∏

a

(I + A(t)∆t) =

a/h
∏

k=b/h−1

(I + A(kh)h).

Proof. The first part is obvious. To prove the second, we note that if δ ≤ h, then the

only tagged partition D ∈ Dδ(a, b) consists of division points t0 = a, t1 = a + h, . . .,

tm = b and tags ξi = ti−1, and therefore

P (A, D) =
1
∏

i=m

(I + A(ξi)∆ti) =
1
∏

i=m

(I + A(ti−1)h) =

a/h
∏

k=b/h−1

(I + A(kh)h).

Theorem 2.9. Let A : [a, b]T → R
n×n and t ∈ T, a ≤ t ≤ σ(t) ≤ b. Then

σ(t)
∏

t

(I + A(s)∆s) = I + A(t)µ(t).

Proof. The statement is obvious if t is right-dense. Let t be right-scattered and

0 < δ ≤ µ(t). The only tagged partition D ∈ Dδ(t, σ(t)) is t = t0 < t1 = σ(t), ξ1 = t0,

and therefore P (A, D) = I + A(t)µ(t).
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3. PRODUCT ∆-INTEGRABLE FUNCTIONS

The main objective of the present section is to prove that every Riemann ∆-

integrable function is also product ∆-integrable. The basic idea of the proof is due

to L. Schlesinger, who established the result for T = R in [8].

Theorem 3.1. A function A : [a, b]T → R
n×n is product ∆-integrable if and only if

for every ε > 0 there is a δ > 0 such that ‖P (A, D1) − P (A, D2)‖ < ε for each pair

of tagged partitions D1, D2 ∈ Dδ(a, b).

Proof. The “only if” part is obvious; we prove the “if” part. For every n ∈ N, we find

a δn > 0 such that ‖P (A, D1) − P (A, D2)‖ < 1/n for each pair D1, D2 ∈ Dδn
(a, b).

We define

Xn = {P (A, D); D ∈ Dδn
(a, b)}.

According to the assumption, each of the sets Xn is bounded. Therefore the inter-

section
⋂∞

i=1 Xn is nonempty, and contains a matrix P ∈ R
n×n. Given ε > 0, we find

n ∈ N such that 1/n < ε, and put δ = δn. Then every D ∈ Dδ(a, b) belongs to Xn,

and thus ‖P (A, D) − P‖ ≤ 1/n < ε. This proves that
∏b

a(I + A(t)∆t) = P .

Definition 3.2. Given an interval I ⊆ T and a matrix function A : I → R
n×n, the

oscillation of A on I is defined as the number

ω(A, I) = sup
u,v∈I

‖A(u) − A(v)‖.

Lemma 3.3. If A : [a, b]T → R
n×n is Riemann ∆-integrable, then for every ε > 0,

there exists a δ > 0 such that
∑m

i=1 ω(A, [ti−1, ti))∆ti < ε for every D ∈ Dδ(a, b).

Proof. Assume that A = {aij}
n
i,j=1. For each pair i, j ∈ {1, . . . , n}, the function aij is

Riemann ∆-integrable, and thus for every ε > 0, there exists a δ > 0 such that

m
∑

i=1

sup
u,v∈[ti−1,ti)

|aij(u) − aij(v)|∆ti

=

m
∑

i=1

(

sup
u∈[ti−1,ti)

aij(u) − inf
v∈[ti−1,ti)

aij(v)

)

∆ti < ε

for every D ∈ Dδ(a, b) and i, j ∈ {1, . . . , n} (see Theorem 2.5). If ‖A‖1 denotes the

matrix norm
∑n

i,j=1 |aij| and I is an arbitrary interval, then

sup
u,v∈I

‖A(u) − A(v)‖1 = sup
u,v∈I

n
∑

i,j=1

|aij(u) − aij(v)| ≤
n
∑

i,j=1

sup
u,v∈I

|aij(u) − aij(v)|.

Consequently,
m
∑

i=1

sup
u,v∈[ti−1,ti)

‖A(u) − A(v)‖1∆ti
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≤

m
∑

i=1

n
∑

i,j=1

sup
u,v∈[ti−1,ti)

|aij(u) − aij(v)|∆ti ≤ n2ε.

The result follows from the fact that the norms ‖ · ‖1 and ‖ · ‖ are equivalent.

Lemma 3.4. Let A : [a, b]T → R
n×n be a matrix function, which satisfies ‖A(t)‖ ≤ M

for every t ∈ [a, b]T. If {[ui, vi)}
m
i=1 is a system of disjoint intervals in [a, b]T and

ξi ∈ [ui, vi) for every i ∈ {1, . . . , m}, then
∥

∥

∥

∥

∥

m
∏

i=1

(I + A(ξi)(vi − ui))

∥

∥

∥

∥

∥

≤ eM(b−a).

Proof.
∥

∥

∥

∥

∥

m
∏

i=1

(I + A(ξi)(vi − ui))

∥

∥

∥

∥

∥

≤

m
∏

i=1

‖I + A(ξi)(vi − ui)‖

≤
m
∏

i=1

(1 + M(vi − ui)) ≤
m
∏

i=1

eM(vi−ui) ≤ eM(b−a).

Lemma 3.5. Let A : [a, b]T → R
n×n be a matrix function, which satisfies ‖A(t)‖ ≤ M

for every t ∈ [a, b]T. If δ > 0 and if D, D′ ∈ Dδ(a, b) are such that D′ ≺ D, then

‖P (A, D) − P (A, D′)‖ ≤ eM(b−a)
∑

i∈{1,...,m},
∆ti≤δ

(

ω(A, [ti−1, ti))∆ti + (M∆ti)
2eM∆ti

)

,

where {t0, . . . , tm} are division points of the partition D. In case the function A is

product ∆-integrable, then also
∥

∥

∥

∥

∥

P (A, D) −
b
∏

a

(I + A(t) ∆t)

∥

∥

∥

∥

∥

≤ eM(b−a)
∑

i∈{1,...,m},
∆ti≤δ

(

ω(A, [ti−1, ti))∆ti + (M∆ti)
2eM∆ti

)

.

Proof. Every partition D′ such that D′ ≺ D can be obtained from D by a sequence

of refinements

D = D0 → D1 → D2 → · · · → Dm = D′,

where Di ∈ D(a, b) and Di ≺ Di−1 for every i ∈ {1, . . . , m}, and Di−1 and Di

coincide everywhere on [a, b]T except the interval [ti−1, ti) (i.e. the i-th refinement is

performed only on [ti−1, ti)). We now fix i ∈ {1, . . . , m}, and analyze the refinement

Di−1 → Di. It is easy to observe that if ∆ti > δ, then σ(ti−1) = ti, which means

that it is impossible to refine [ti−1, ti), and P (A, Di−1) = P (A, Di). Now, suppose

that ∆ti ≤ δ. We write Di−1 = DI ∪ D1
II ∪ DIII and Di = DI ∪ D2

II ∪ DIII , where

DI ∈ D(a, ti−1), DIII ∈ D(ti, b), and D1
II , D2

II ∈ D(ti−1, ti) are such that D2
II ≺ D1

II .

We know that D1
II consists of two division points ti−1, ti, and a single tag ξi ∈ [ti−1, ti).
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Assume that the division points of D2
II are ti−1 = u0 < u1 < · · · < ul = ti, and that

the corresponding tags are ηj ∈ [uj−1, uj). Consequently,

‖P (A, Di−1) − P (A, Di)‖ = ‖P (A, DIII)(P (A, D2
II) − P (A, D1

II))P (A, DI)‖

≤ ‖P (A, DIII)‖ ·

∥

∥

∥

∥

∥

1
∏

j=l

(I + A(ηj)∆uj) − I − A(ξi)∆ti

∥

∥

∥

∥

∥

· ‖P (A, DI)‖.

We know that ‖P (A, DIII)‖ · ‖P (A, DI)‖ ≤ eM(b−a) (see Lemma 3.4), and
∥

∥

∥

∥

∥

1
∏

j=l

(I + A(ηj)∆uj) − I − A(ξi)∆ti

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

l
∑

j=1

(A(ηj) − A(ξi))∆uj

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∥

l
∑

p=2

∑

1≤rp<···<r1≤l

A(ηr1
) · · ·A(ηrp

)∆ur1
· · ·∆urp

∥

∥

∥

∥

∥

∥

≤ ω(A, [ti−1, ti))∆ti +

l
∑

p=2

∑

1≤rp<···<r1≤l

Mp ∆ur1
· · ·∆urp

= ω(A, [ti−1, ti))∆ti +

l
∏

j=1

(1 + M∆uj) − 1 −

l
∑

j=1

M∆uj

≤ ω(A, [ti−1, ti))∆ti + eM∆ti − 1 − M∆ti

≤ ω(A, [ti−1, ti))∆ti + (M∆ti)
2eM∆ti .

(The last inequality follows from ex − 1 − x ≤ x2ex, which holds for every x ≥ 0.)

Consequently,

‖P (A, D) − P (A, D′)‖ ≤

m
∑

i=1

‖P (A, Di−1) − P (A, Di)‖

=
∑

i∈{1,...,m},
∆ti≤δ

‖P (A, Di−1) − P (A, Di)‖

≤ eM(b−a)
∑

i∈{1,...,m},
∆ti≤δ

(

ω(A, [ti−1, ti))∆ti + (M∆ti)
2eM∆ti

)

.

The second part of the theorem follows from the fact that if A is product ∆-integrable,

then D′ can be chosen so that P (A, D′) is arbitrarily close to
∏b

a(I + A(t) ∆t).

Lemma 3.6. If A : [a, b]T → R
n×n is Riemann ∆-integrable, then for every ε > 0,

there exists a δ > 0 such that if D, D′ ∈ Dδ(a, b) and D′ ≺ D, then ‖P (A, D) −

P (A, D′)‖ < ε.

Proof. Assume that ‖A(t)‖ ≤ M for every t ∈ [a, b]T. For a given ε > 0, we find a

δ > 0 such that

(b − a)δM2e2M(b−a) < ε/2
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and
m
∑

i=1

ω(A, [ti−1, ti))∆ti <
ε

2eM(b−a)

for every D ∈ Dδ(a, b) (see Lemma 3.3). Thus, if D ∈ Dδ(a, b), then

eM(b−a)
∑

i∈{1,...,m},
∆ti≤δ

ω(A, [ti−1, ti))∆ti < ε/2,

eM(b−a)
∑

i∈{1,...,m},
∆ti≤δ

(M∆ti)
2eM∆ti ≤ eM(b−a)δM2eMδ

m
∑

i=1

∆ti

≤ δM2e2M(b−a)(b − a) < ε/2.

By Lemma 3.5, this means that if D′ ≺ D, then ‖P (A, D) − P (A, D′)‖ < ε.

Theorem 3.7. Every Riemann ∆-integrable function is product ∆-integrable.

Proof. Choose ε > 0. According to Lemma 3.6, there exists a δ > 0 such that

‖P (A, D)−P (A, D′)‖ < ε/2 whenever D, D′ ∈ Dδ(a, b) and D′ ≺ D. Consider a pair

of tagged partitions D1, D2 ∈ Dδ(a, b). These partitions have a common refinement,

i.e. a partition D such that D ≺ D1, D ≺ D2 (the tags in D can be chosen arbitrarily).

Then

‖P (A, D1) − P (A, D2)‖ ≤ ‖P (A, D1) − P (A, D)‖ + ‖P (A, D) − P (A, D2)‖ < ε.

The statement of the theorem therefore follows from Theorem 3.1.

Example 3.8. Every constant function A is Riemann ∆-integrable, and therefore

also product ∆-integrable. If T = hZ, then (see Theorem 2.8)

b
∏

a

(I + A∆t) = (I + Ah)(b−a)/h.

Now, let T = R. For every m ∈ N, let Dm be a tagged partition that divides [a, b]T

into m subintervals of length (b − a)/m (the tags can be arbitrary). Then

b
∏

a

(I + A∆t) = lim
m→∞

P (A, Dm) = lim
m→∞

(

I +
A(b − a)

m

)m

= eA(b−a).

Theorem 3.9. If A : [a, b]T → R
n×n is Riemann ∆-integrable and c ∈ [a, b]T, then

b
∏

a

(I + A(t)∆t) =

b
∏

c

(I + A(t)∆t) ·

c
∏

a

(I + A(t)∆t).
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Proof. For every k ∈ N, put δk = 1/k and choose a pair of tagged partitions

D1
k ∈ Dδk

(a, c), D2
k ∈ Dδk

(c, b). Letting Dk = D1
k ∪ D2

k, we obtain a sequence of

tagged partitions {Dk}
∞
k=1 of interval [a, b]T such that Dk ∈ Dδk

(a, b). Note also that

P (A, Dk) = P (A, D2
k)P (A, D1

k). Consequently,

b
∏

a

(I + A(t)∆t) = lim
k→∞

P (A, Dk) = lim
k→∞

P (A, D2
k) · lim

k→∞
P (A, D1

k)

=
b
∏

c

(I + A(t)∆t) ·
c
∏

a

(I + A(t)∆t).

4. INDEFINITE PRODUCT INTEGRAL

This section focuses on the properties of the indefinite product ∆-integral, i.e. the

integral considered as a function of its upper bound. The proofs in the case T = R

were given by L. Schlesinger (see [8]).

Theorem 4.1. If A : [a, b]T → R
n×n is Riemann ∆-integrable, then the indefinite

product ∆-integral

Y (t) =

t
∏

a

(I + A(s)∆s), t ∈ [a, b]T,

is continuous on [a, b]T.

Proof. Let t0 ∈ [a, b) be a right-dense point; we prove that Y is right-continuous at

t0 (left-continuity at left-dense points is proved in a similar way). Let t0 ≤ t0 + h ≤

b. Assume that ‖A(t)‖ ≤ M for every t ∈ [a, b]T. Lemma 3.5 applied to interval

[t0, t0 + h]T with δ = h gives
∥

∥

∥

∥

∥

I + A(t0)h −
t0+h
∏

t0

(I + A(s) ∆s)

∥

∥

∥

∥

∥

≤ eMh(ω(A, [t0, t0 + h))h + (Mh)2eMh).

Since ω(A, [t0, t0 + h)) ≤ 2M , we obtain

lim
h→0+

t0+h
∏

t0

(I + A(s) ∆s) = I.

Therefore (see Theorem 3.9)

lim
h→0+

(Y (t0 + h) − Y (t0)) = Y (t0)

(

t0+h
∏

t0

(I + A(s) ∆s) − I

)

= 0.
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Theorem 4.2. If A : [a, b]T → R
n×n is Riemann ∆-integrable, then the indefinite

product ∆-integral

Y (t) =

t
∏

a

(I + A(s)∆s), t ∈ [a, b]T,

satisfies

Y (t) = I +

∫ t

a

A(s)Y (s)∆s, t ∈ [a, b]T.

Proof. It is sufficient to prove the statement for t = b. Assume that ‖A(t)‖ ≤ M for

every t ∈ [a, b]T. For every ε > 0, it is possible to find a δ > 0 such that the following

five inequalities hold for every D ∈ Dδ(a, b):

‖P (A, D)− Y (b)‖ <
ε

4
,

(b − a)δM2eM(b−a) <
ε

8M(b − a)eM(b−a)
,

m
∑

i=1

ω(A, [tk−1, tk))∆tk <
ε

8M(b − a)eM(b−a)
,

m
∑

i=1

ω(Y, [tk−1, tk))∆tk <
ε

4M
,

∥

∥

∥

∥

∥

m
∑

i=1

A(ξi)Y (ξi)∆ti −

∫ b

a

A(s)Y (s)∆s

∥

∥

∥

∥

∥

<
ε

4
.

(Y is continuous, and therefore both Y and AY are Riemann ∆-integrable. The third

and the fourth inequality follow from Lemma 3.3.) Take arbitrary D ∈ Dδ(a, b) and

define

Y k =
1
∏

i=k

(I + A(ξi)∆ti), k = 0, . . . , m.

Note that Y 0 = I, Y m = P (A, D),

Y k − Y k−1 = A(ξk)Y
k−1∆tk, k = 1, . . . , m,

P (A, D) − I =
m
∑

k=1

(Y k − Y k−1) =
m
∑

k=1

A(ξk)Y
k−1∆tk.
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We use this equality in the following estimate:
∥

∥

∥

∥

Y (b) − I −

∫ b

a

A(t)Y (t) ∆t

∥

∥

∥

∥

≤ ‖Y (b) − P (A, D)‖

+

∥

∥

∥

∥

P (A, D) − I −

∫ b

a

A(t)Y (t) ∆t

∥

∥

∥

∥

<
ε

4
+

∥

∥

∥

∥

∥

m
∑

k=1

A(ξk)Y
k−1∆tk −

∫ b

a

A(t)Y (t) ∆t

∥

∥

∥

∥

∥

≤
ε

4
+

∥

∥

∥

∥

∥

m
∑

k=1

A(ξk)(Y
k−1 − Y (tk−1))∆tk

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

m
∑

k=1

A(ξk)(Y (tk−1) − Y (ξk))∆tk

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

m
∑

k=1

A(ξk)Y (ξk)∆tk −

∫ b

a

A(t)Y (t) ∆t

∥

∥

∥

∥

∥

<
ε

4
+ M

m
∑

k=1

∥

∥Y k−1 − Y (tk−1)
∥

∥∆tk + M
m
∑

k=1

ω(Y, [tk−1, tk))∆tk +
ε

4

<
3ε

4
+ M

m
∑

k=1

∥

∥Y k−1 − Y (tk−1)
∥

∥∆tk.

To obtain an estimate for the remaining sum, we apply Lemma 3.5 to interval

[a, tk−1]T, where k ∈ {1, . . . , m}:

‖Y k−1 − Y (tk−1)‖ ≤ eM(b−a)
∑

j∈{1,...,k},
∆tj≤δ

(ω(A, [tj−1, tj))∆tj + (M∆tj)
2eM∆tj )

≤ eM(b−a)
m
∑

i=1

(

ω(A, [tj−1, tj))∆tj + eM(b−a)(b − a)δM2
)

<
ε

4M(b − a)
.

Substituting this inequality in the previous one gives
∥

∥

∥

∥

Y (b) − I −

∫ b

a

A(t)Y (t) ∆t

∥

∥

∥

∥

< ε,

which completes the proof.

Corollary 4.3. If A : [a, b]T → R
n×n is rd-continuous, then Y ∆(t) = A(t)Y (t) for

every t ∈ [a, b).

Corollary 4.4. If A : [a, b]T → R
n×n is rd-continuous and y0 ∈ R

n, then the vector

function

y(t) =
t
∏

a

(I + A(s)∆s)y0
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is a solution of the dynamic equation y∆(t) = A(t)y(t) such that y(a) = y0.

5. REGRESSIVE FUNCTIONS

The results that we have obtained up to this point were quite similar to the

classical theory. We now turn our attention to the main difference between the

classical product integral and its time scale generalization.

It is known that if T = R and A : [a, b]T → R
n×n is a Riemann integrable

function, then
∏b

a(I + A(t)∆t) is always a regular matrix. However, this statement

is not true for a general time scale. Indeed, if t ∈ T is a right-scattered point, then

by Theorem 2.9,
σ(t)
∏

t

(I + A(s)∆s) = I + A(t)µ(t),

but the right side need not be regular (e.g. if A(t) = (−1/µ(t))I).

Definition 5.1. A function A : T → R
n×n is called regressive if the matrix I +

A(t)µ(t) is regular for every t ∈ T.

We have seen that regressivity is a necessary condition for the product ∆-integral

to be regular, and we now show that the condition is also sufficient. Note that if

T = R, then every matrix function is regressive; if T = Z, then a matrix function

A : T → R
n×n is regressive if the matrix I + A(t) is regular for every t ∈ T, which is

equivalent to the condition that for every t ∈ T, −1 is not an eigenvalue of A(t).

Lemma 5.2. If A1, . . . , Am ∈ R
n×n are arbitrary matrices, then

∥

∥

∥

∥

∥

1
∏

k=m

(I + Ak) − I

∥

∥

∥

∥

∥

≤ exp

(

m
∑

k=1

‖Ak‖

)

− 1.

Proof.

∥

∥

∥

∥

∥

1
∏

k=m

(I + Ak) − I

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

m
∑

j=1





∑

1≤ij<···<i1≤m

Ai1 · · ·Aij





∥

∥

∥

∥

∥

∥

≤
m
∑

j=1





∑

1≤ij<···<i1≤m

‖Ai1‖ · · · ‖Aij‖





≤

m
∑

j=1

1

j!





m
∑

i1,...,ij=1

‖Ai1‖ · · · ‖Aij‖





=
m
∑

j=1

1

j!
(‖A1‖ + · · · + ‖Am‖)

j ≤ exp

(

m
∑

k=1

‖Ak‖

)

− 1.
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If we now take an arbitrary A : [a, b]T → R
n×n, D ∈ D(a, b), and put Ak =

A(ξk)∆tk, we obtain
∥

∥

∥

∥

∥

1
∏

k=m

(I + A(ξk)∆tk) − I

∥

∥

∥

∥

∥

≤ exp

(

m
∑

k=1

‖A(ξk)‖∆tk

)

− 1.

Corollary 5.3. If A : [a, b]T → R
n×n is Riemann ∆-integrable, then

∥

∥

∥

∥

∥

b
∏

a

(I + A(t)∆t) − I

∥

∥

∥

∥

∥

≤ exp

(
∫ b

a

‖A(t)‖∆t

)

− 1.

Lemma 5.4. If A ∈ R
n×n satisfies ‖A − I‖ < 1, then A is regular.

Proof. The condition ‖A − I‖ < 1 implies that the infinite series
∑∞

k=0(I − A)k is

absolutely convergent; let B be the sum of the series. If

Sl =
l
∑

k=0

(I − A)k,

then Sl+1 = I + (I − A)Sl = I + Sl(I − A). Passing to the limit l → ∞, we obtain

B = I + (I − A)B = I + B(I − A), i.e. BA = AB = I.

The basic idea of the following proof is due to P. R. Masani, who established the

result for T = R in his paper [7].

Theorem 5.5. If A : [a, b]T → R
n×n is a regressive Riemann ∆-integrable function,

then
∏b

a(I + A(t)∆t) is a regular matrix.

Proof. Assume that ‖A(t)‖ ≤ M for every t ∈ [a, b]T. Choose δ > 0 such that eMδ < 2

and let D ∈ Dδ(a, b). Then

b
∏

a

(I + A(t)∆t) =
1
∏

i=m

ti
∏

ti−1

(I + A(t)∆t).

Choose i ∈ {1, . . . , m}. If ∆ti ≤ δ, then (see Corollary 5.3)
∥

∥

∥

∥

∥

∥

ti
∏

ti−1

(I + A(t)∆t) − I

∥

∥

∥

∥

∥

∥

≤ exp

(
∫ ti

ti−1

‖A(t)‖∆t

)

− 1 ≤ eMδ − 1 < 1,

and
∏ti

ti−1
(I + A(t)∆t) is a regular matrix according to Lemma 5.4. If ∆ti > δ, then

σ(ti−1) = ti, and (see Theorem 2.9)
∏ti

ti−1
(I + A(t)∆t) = I + A(ti−1)µ(ti−1), which is

again a regular matrix. Thus the statement follows from the fact that a product of

regular matrices is a regular matrix.

To conclude the present section, we now show that the well-known existence-

uniqueness theorem for a linear system of dynamic equations y∆(t) = A(t)y(t) (see [1]

or [3]) can be obtained as a simple corollary of our previous results.
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Definition 5.6. If a < b, we define
∏a

b (I +A(t)∆t) =
(

∏b
a(I + A(t)∆t)

)−1

provided

the right-hand side exists.

Theorem 5.7. If A : T → R
n×n is a regressive rd-continuous function and t0 ∈ T,

then the function

Y (t) =
t
∏

t0

(I + A(s)∆s), t ∈ T,

represents the unique solution of the dynamic equation Y ∆(t) = A(t)Y (t) such that

Y (t0) = I.

Proof. Equation Y (t0) = I is clearly satisfied. We also know that Y ∆(t) = A(t)Y (t)

holds for t > t0, but we have to prove it for every t ∈ T. Put

Z(t) =

t
∏

a

(I + A(s)∆s), t ∈ T.

Then

Y (t) =
t
∏

t0

(I + A(s)∆s)

=
t
∏

t0

(I + A(s)∆s)

t0
∏

a

(I + A(s)∆s)
a
∏

t0

(I + A(s)∆s) = Z(t)C,

where C =
∏a

t0
(I + A(s)∆s). Therefore

Y ∆(t) = (Z(t)C)∆ = A(t)Z(t)C = A(t)Y (t), t ∈ T
κ.

To prove uniqueness, consider a matrix function W : T → R
n×n such that W∆(t) =

A(t)W (t) and W (t0) = I. Using the standard rules for calculating ∆-derivatives (see

Theorem 5.3 in [1]), we obtain

(Y −1)∆ = −(Y σ)−1Y ∆Y −1 = −(Y σ)−1A,

(Y −1W )∆ = (Y −1)σW∆ + (Y −1)∆W = (Y −1)σAW − (Y σ)−1AW = 0.

This means that Y −1W is a constant function, and because its value at t0 is I, we

have Y (t) = W (t) for every t ∈ T.

Theorem 5.8. If A : T → R
n×n is a regressive rd-continuous function, t0 ∈ T and

y0 ∈ R
n, then the vector function

y(t) =

t
∏

t0

(I + A(s)∆s)y0

represents the unique solution of the dynamic equation y∆(t) = A(t)y(t) such that

y(t0) = y0.
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Proof. We only have to prove the uniqueness. Assume to the contrary the existence

of solutions y1, y2 : T → R
n such that y1(t0) = y2(t0), but y1(t) 6= y2(t) for some

t 6= t0. Then the function z(t) = y1(t) − y2(t) satisfies z∆(t) = A(t)z(t), z(t0) = 0,

z(t) 6= 0. Now, consider the function

Z(t) =

t
∏

t0

(I + A(s)∆s), t ∈ T.

Let W be a matrix function obtained by adding the vector function z to every column

of Z. Then Z∆(t) = A(t)Z(t) and W∆(t) = A(t)W (t) for every t ∈ T
κ, Z(t0) =

W (t0), but Z(t) 6= W (t), which contradicts Theorem 5.7.

Using the method of variation of constants, it is easy to extend the last result

to the nonhomogeneous case y∆(t) = A(t)y(t) + f(t). Since the details are given in

Chapter 5 of [1], we don’t repeat them here.

6. CONCLUSION AND OPEN QUESTIONS

The indefinite product ∆-integral might be viewed as a generalization of the

matrix exponential function:

Theorem 6.1. Let T be a time scale and A : T → R
n×n a regressive Riemann

∆-integrable function. Then the function

eA(t, t0) =

t
∏

t0

(I + A(s)∆s), t0, t ∈ T,

has the following properties:

(i) e0(t, s) ≡ I and eA(t, t) ≡ I,

(ii) eA(σ(t), s) = (I + A(t)µ(t))eA(t, s),

(iii) eA(t, s)−1 = eA(s, t),

(iv) eA(t, s)eA(s, r) = eA(t, r).

The theorem follows easily from our previous results. The matrix exponential

function corresponding to a rd-continuous regressive function A was introduced in

Chapter 5 of [1]; in our approach, we require the function A to be only Riemann

∆-integrable and regressive.

The whole theory of product ∆-integral presented in this paper can be easily

modified to obtain the corresponding notion of product ∇-integral, which provides a

solution to the equation y∇(t) = A(t)y(t).

The classical theory of product integration is concerned not only with functions

A : [a, b] → R
n×n, but more generally with functions A : [a, b] → X, where X is

an arbitrary Banach algebra with a unit element. The corresponding results due to

P. R. Masani can be found in [7] and [9]. Some theorems and proofs from our paper
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are still valid in this general setting; however, the proof of Lemma 3.3 fails. This

leads to the following two questions:

• If X is a Banach algebra and A : [a, b]T → X is a Riemann ∆-integrable (i.e.

Graves integrable) function, does it follow that A is product ∆-integrable?

• If the answer to the previous question is affirmative, does the indefinite product

∆-integral Y satisfy the integral equation

Y (t) = 1 +

∫ t

a

A(s)Y (s)∆s

(where 1 is the unit element of X)?

By expanding the product integral in the Peano-Baker series, which clearly satisfies

the above integral equation, Masani obtained positive answers to both questions in

the case T = R. It seems plausible that this method might be generalized to an

arbitrary time scale (the Peano-Baker series on time scales was already investigated

in the paper [3]).
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