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wavefronts is shown by using the technique of weak upper and lower solutions and Schauder fixed

point theorem.
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1. INTRODUCTION

Epidemics always happen in the human history. Some of them, especially the

plague epidemics, were threatening scourges not only because of the economic and

demographic aspects caused, but also because of the virulence, frequency or endemic

persistence. In many diseases, an individual can recover and return to the susceptible

state and later become reinfected. The common cold is one of the diseases that most

of us get repeatedly. Different epidemics may have different ability to transmit in the

different stages. For example, typhus, diphtheria and sexual diseases always transmit

only in adult population. Furthermore, since the environment is not often spatially

heterogenous and the infectious agents can move around, the effects of spatial diffusion

cannot be ignored. As a result, a SIS model with age-structure and diffusion is of

significance in describing the dynamic properties of some kinds of epidemics.

There are many phenomena in epidemics where a key element to the developmen-

tal process seems to be the appearance of a traveling wave of infectious concentration

or mechanical deformation. The study of traveling waves is of current research inter-

est and has developed during these 30 years, for example see [3]-[22] and the references

therein. There are also some wonderful research works focus on the traveling waves

and spreading speed for SIS models. In [13], Rass and Radcliffe used an approximate

saddle-point method to obtain the speed of first spread c̄ for some kinds of multi-type

SIS models. Weng and Zhao [18] made use of the theory of monotone semiflow (see

Liang and Zhao [9]) to obtain the minimal wave speed c∗ and spreading speed c∗ for
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a multi-type SIS epidemic model and they showed that c∗ = c∗ = c̄ in their situa-

tion. The models in [13] and [18] are in the form of ordinary differential equations or

integro-differential equations without age-structure.

Gourley and Wu in their recent survey [8] indicated that to model disease spread

represented a very natural attempt to bring the model to the biological reality as the

age involved. Recall that the following model of a single species with age-structure

was first introduced by Aiello and Freedman [2]

(1.1)











du1

dt
= αu2 − γu1 − αe−γτu2(t− τ),

du2

dt
= αe−γτu2(t− τ) − βu2

2,

where α, β, γ and delay τ are positive constants; u1 and u2 denote respectively the

numbers of immature and mature members of the population. The αu2 term is the

birth function and γu1, βu
2
2 represent correspondingly the death function of immature

and mature individuals. τ is the time for a new-born to become mature and hence

the αe−γτu2(t− τ) term is the adult recruitment.

More recently, Gourley and Kuang [7] presented a more realistic model by incor-

porating spatial diffusion and non-local delay into system (1.1):

(1.2)


















∂u1

∂t
= D1

∂2u1

∂x2
+ αu2 − γu1 − αe−γτ

∫ ∞

−∞

1√
4πD1τ

e
−

(x−y)2

4D1τ u2(t− τ, y)dy,

∂u2

∂t
= D2

∂2u2

∂x2
+ αe−γτ

∫ ∞

−∞

1√
4πD1τ

e
−

(x−y)2

4D1τ u2(t− τ, y)dy − βu2
2.

When D1 → 0, that is when the juveniles become immobile, the system (1.2) reduces

to the local problem

(1.3)











∂u1

∂t
= αu2 − γu1 − αe−γτu2(t− τ, x),

∂u2

∂t
= D2

∂2u2

∂x2
+ αe−γτu2(t− τ, x) − βu2

2.

Al-Omari and Gourley [3] established the traveling waves for the second equation of

system (1.3). Gourley and Wu in their survey [8] further emphasized that when the

mobility of the immature could be ignored, a reaction diffusion equation with local

effect was applicable in population biology, spatial biology and disease spread.

In this paper, inspired by the pioneering work of these authors, we incorporate

age-structure and spatial diffusion into a SIS model. To the best of our knowledge,

it is the first time that we present a diffusive SIS model with stage structure. The
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model is taken the following form:

(1.4)


























∂u1

∂t
= B(u2(t, x)) − γu1(t, x) − e−γτB(u2(t− τ, x)),

∂u2

∂t
= D2

∂2u2

∂x2
+ e−γτB(u2(t− τ, x)) − βu2

2(t, x) − U(u2(t, x)) + ry(t, x),

∂y

∂t
= U(u2(t, x)) − by(t, x) − ry(t, x),

for t ∈ R+ := [0,∞), x ∈ R, where u1(t, x), u2(t, x) and y(t, x) denote the densi-

ties of juvenile, susceptible mature and infective individuals at time t and location

x respectively. It is assumed that only the mature individuals are susceptible and

responsible to the reproduction of the population. B(·) is a birth function. The sus-

ceptible individuals, once infected, can act as the infectious agent and then transmit

the infections. Let U(u2) be the force of infection on the mature population due to

a concentration of the infectious agent u2. b, r > 0 denote the death rate and recov-

ery rate of infective individuals, respectively. Note that the system (1.4) models a

dispersal of susceptible mature individuals while ignoring the small mobility of the

juveniles and infective individuals.

The purpose of this paper is to establish the traveling wavefronts for system (1.4).

We show the existence of traveling wavefronts of the mature populations (the last two

equations of system (1.4)) by using the technique of weak upper and lower solutions,

and Schauder fixed point theorem (see [10] and [16]) for the wave speed c > c∗, where

c∗ is a positive constant determined by an eigenvalue-equation. If c = c∗, we also

obtain the existence of traveling wavefronts by using a limit argument similar to [21].

Then we return to the immature equation (the first equation of system (1.4)) and

establish the traveling wavefronts for system (1.4) when c ≥ c∗.

2. EXISTENCE OF TRAVELING WAVEFRONTS

Assume that B(0) = 0 and U(0) = 0. Then (1.4) has two spatially uniform

equilibria E0(0, 0, 0) and E∗(u∗1, u
∗
2, y

∗), where u∗1 > 0, u∗2 > 0, y∗ > 0 satisfies

U(u∗2) = (b+ r)y∗, y∗ =
g(u∗

2)

b
, u∗1 =

B(u∗

2)

γ
(1 − e−γτ ),

and

g(u) = e−γτB(u) − βu2.

We introduce some assumptions.

(H1) g(u) = 0 has a root ū2 > u∗2 with g(u) > 0 when 0 < u < ū2 and g(u) < 0 when

u > ū2.

(H2) B(u) is differentiable and ρ1 ≥ B′(u) > 0 for u ∈ [0, u∗2], some ρ1 > 0; B(u) ≤
B′(0)u for u ∈ [0, u∗2); B

′(0)u− B(u) ≤ κu2 for u ∈ [0, u∗2), some κ > 0.
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(H3) U(u) is differentiable and ρ2 ≥ U ′(u) > 0 for u ∈ [0, u∗2], some ρ2 > 0; U(u) ≤
U ′(0)u for u ∈ [0, u∗2); U

′(0)u− U(u) ≤ βu2 for u ∈ [0, u∗2).

(H4) e−γτB′(0) − b
b+r

U ′(0) > 0.

We note from (H1) that g(u∗2) > 0 holds. Note that the conditions (H1)-(H4)

imposed on functions B(u), U(u), g(u) are natural, and they are not more restrictive

conditions. For example, if we take birth function B(u) = αu, then (H2) holds

spontaneously. Let U(u) = u
1+u

, then U ′(u) = 1
(1+u)2

. Let ρ2 = 1 and β = 1,

then (H3) holds trivially. In this situation, g(u) = αe−γτu − βu2 and g(u) = 0 has a

positive root ū2 = αe−γτ

β
. Since g(u∗2) > 0, then ū2 > u∗2. The assumption (H1) follows

immediately. Finally, if we choose α > b
b+r

eγτ , then (H4) holds. The assumption (H4)

makes sense in epidemiological respect. The explanation for this is that, no matter

how serious of the disease spread, the species will survive. In fact, since the rate of

adult recruitment is larger than that of infected dying, the mature individuals will be

still capable of producing offspring.

In system (1.4), the last two equations are uncoupled from the first equation and

thus it is sufficient to consider the last two equations in their own:

(2.1)











∂u

∂t
= D2

∂2u

∂x2
+ e−γτB(u(t− τ, x)) − βu2(t, x) − U(u(t, x)) + ry(t, x),

∂y

∂t
= U(u(t, x)) − by(t, x) − ry(t, x),

where we use u to replace u2 for simplicity. Similarly, we use u∗ to replace u∗2 in the

following.

A traveling wave solution of (2.1) is a solution of (2.1) connecting the two equi-

libria (0, 0) and (u∗, y∗) with the form u(t, x) = ψ(x + ct) = ψ(z) and y(t, x) =

φ(x + ct) = φ(z), where z = x + ct and c > 0 is the wave speed. Thus we consider

the wave profile system

(2.2)

{

D2ψ
′′(z) − cψ′(z) + e−γτB(ψ(z − cτ)) − βψ2(z) − U(ψ(z)) + rφ(z) = 0,

−cφ′(z) + U(ψ(z)) − bφ(z) − rφ(z) = 0,

subject to the boundary value conditions

(2.3) lim
z→−∞

(ψ(z), φ(z)) = (0, 0), lim
z→∞

(ψ(z), φ(z)) = (u∗, y∗).

Furthermore, a traveling wavefront of (2.1) is a traveling wave solution (ψ(z), φ(z))

of (2.1) which is nondecreasing. For ecological realism, we mention here that ψ(z) ≥
0, φ(z) ≥ 0 on z ∈ R.

From the second equation of (2.2), we obtain

φ(z) = e−
(b+r)

c
(z−z0)φ(z0) +

1

c

∫ z

z0

e−
(b+r)

c
(z−s)U(ψ(s))ds
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for any z0 ∈ R, z ≥ z0. Since φ(z) and U(ψ(z)) are bounded functions on R, by

taking z0 → −∞, we have from (2.3) that

(2.4) φ(z) =
1

c

∫ z

−∞

e−
(b+r)

c
(z−s)U(ψ(s))ds on z ∈ R.

Substituting (2.4) into the first equation of (2.2), we get

(2.5)

D2ψ
′′(z)−cψ′(z)+e−γτB(ψ(z−cτ))−βψ2(z)−U(ψ(z))+

r

c

∫ z

−∞

e−
(b+r)

c
(z−s)U(ψ(s))ds = 0

on z ∈ R. Define

F [ψ](z) := e−γτB(ψ(z − cτ)) − βψ2(z) − U(ψ(z)) +
r

c

∫ z

−∞

e−
(b+r)

c
(z−s)U(ψ(s))ds.

Then we rewrite (2.5) as

(2.6) D2ψ
′′(z) − cψ′(z) + F [ψ](z) = 0.

Choose a constant h ≥ 2βu∗ + ρ2, where ρ2 is defined in (H3), then another

equivalent form of (2.5) is

(2.7) −D2ψ
′′(z) + cψ′(z) + hψ(z) = Q[ψ](z),

where

Q[ψ](z) := hψ(z) + F [ψ](z).

Define

C[0,u∗](R,R) := {ψ : ψ ∈ C(R,R), 0 ≤ ψ(z) ≤ u∗ on z ∈ R}.
Then we have the following.

Lemma 2.1. Assume that (H1)–(H3) hold. Then

(i) Q[ϕ](z) ≤ Q[ψ](z) on z ∈ R, if ϕ, ψ ∈ C[0,u∗](R,R) with ϕ(z) ≤ ψ(z) on z ∈ R;

(ii) 0 ≤ Q[ψ](z) ≤ hu∗ for any ψ ∈ C[0,u∗](R,R);

(iii) Q[ψ](z) is nondecreasing on z ∈ R, if ψ ∈ C[0,u∗](R,R) is nondecreasing on

z ∈ R.

Proof. (i) If ϕ, ψ ∈ C[0,u∗](R,R) and ϕ(z) ≤ ψ(z) on z ∈ R, then

Q[ϕ](z) −Q[ψ](z)

= [h− β(ϕ(z) + ψ(z))][ϕ(z) − ψ(z)] + e−γτ [B(ϕ(z − cτ)) − B(ψ(z − cτ))]

− [U(ϕ(z)) − U(ψ(z))] +
r

c

∫ z

−∞

e−
(b+r)

c
(z−s)[U(ϕ(s)) − U(ψ(s))]ds.

≤ [h− β(ϕ(z) + ψ(z)) − U ′(ς(z))][ϕ(z) − ψ(z)] ≤ 0,

where ς(z) is a mean-value function between ϕ(z) and ψ(z). Thus the conclusion of

(i) is true.
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(ii) If ψ ∈ C[0,u∗](R,R), then according to (i) and (2.5), we get

0 ≤ Q[ψ](z) ≤ hu∗ + e−γτB(u∗) − β(u∗)2 − U(u∗)

+
r

c

∫ z

−∞

e−
(b+r)

c
(z−s)U(u∗)ds = hu∗,

which implies the conclusion (ii).

(iii) Let z ∈ R and θ > 0 be given. Then

Q[ψ](z + θ) −Q[ψ](z)

= [h− β(ψ(z + θ) + ψ(z)) − U ′(ξ(z, θ))][ψ(z + θ) − ψ(z)]

+ e−γτ [B(ψ(z + θ − cτ)) − B(ψ(z − cτ))]

+
r

c

[
∫ z+θ

−∞

e−
(b+r)

c
(z+θ−s)U(ψ(s))ds−

∫ z

−∞

e−
(b+r)

c
(z−s)U(ψ(s))ds

]

.

≥ r

c

∫ z

−∞

e−
(b+r)

c
(z−s)[U(ψ(s + θ)) − U(ψ(s))]ds ≥ 0,

where ξ(z, θ) is a mean-value function between ψ(z + θ) and ψ(z). Therefore, the

conclusion (iii) follows.

Recall that for any ϕ, ψ ∈ C[0,u∗](R,R) with ϕ(z) ≤ ψ(z), if there exists a ℓ > 0

such that F [ϕ](0) − F [ψ](0) + ℓ[ϕ(0) − ψ(0)] ≤ 0, then the reaction term in (2.6)

satisfies the quasi-monotonic nondecreasing condition [19]. We have from the first

conclusion of Lemma 2.1 that the reaction term in (2.6) is in fact quasi-monotonic

nondecreasing, namely, for ℓ ≥ h,

F [ϕ](0) − F [ψ](0) + ℓ[ϕ(0) − ψ(0)] = Q[ϕ](0) −Q[ψ](0) + (ℓ− h)[ϕ(0) − ψ(0)] ≤ 0

if ϕ(z) ≤ ψ(z). The quasi-monotonicity condition previously used in different context

by, for example, Ahmad and Vatsala in [1], Martin and Smith in [11], Wu and Zou

in [19], Ma in [10]. Assume that a system has only two equilibria. A monotone itera-

tion scheme could be established and the iterative sequence converges to a traveling

wavefront connecting these two equilibria provided that the reaction term satisfies the

quasi-monotonicity condition along with the existence of a pair of weak upper and

lower solutions. Please see [19] and [10] for details. Based on this idea, we therefore

are able to consider the nondecreasing solution of (2.6) satisfying

(2.8) lim
z→−∞

ψ(z) = 0 and lim
z→∞

ψ(z) = u∗

under some conditions given below. However, if the reaction term does not satisfy

the quasi-monotonicity condition, then non-monotone traveling waves can appear.

For example, T. Faria and S. Trofimchuk in [6] studied a delayed reaction-diffusion

equation with a reaction term loss of quasi-monotonicity property and proved that the

traveling waves oscillated infinite about the positive equilibrium. They further proved
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that for large negative values of wave variable, the traveling wave is asymptotically

equivalent to an increasing exponential function.

Note that the algebra equation −D2χ
2 + cχ + h = 0 has two roots given by

χ1 =
c−

√
c2 + 4D2h

2D2
< 0, χ2 =

c+
√
c2 + 4D2h

2D2
> 0.

Define an operator Λ : C[0,u∗](R,R) → C2(R,R) by

Λ[ψ](z) :=
1

D2(χ2 − χ1)

{
∫ z

−∞

eχ1(z−s)Q[ψ](s)ds+

∫ ∞

z

eχ2(z−s)Q[ψ](s)ds

}

.

Then Λ : C[0,u∗](R,R) → C2(R,R) is a well defined map, and satisfies

(2.9) −D2(Λ[ψ])′′ + c(Λ[ψ])′ + hΛ[ψ] = Q[ψ]

for any ψ ∈ C[0,u∗](R,R). Furthermore, any fixed point of Λ is a solution of (2.7). The

following lemma can be derived straightly from Lemma 2.1, and we omit the details

of the proof.

Lemma 2.2. Assume that (H1)–(H3) hold. Then

(i) Λ[ϕ](z) ≤ Λ[ψ](z) on z ∈ R, if ϕ, ψ ∈ C[0,u∗](R,R) with ϕ(z) ≤ ψ(z) on z ∈ R;

(ii) 0 ≤ Λ[ψ](z) ≤ u∗ for any ψ ∈ C[0,u∗](R,R);

(iii) Λ[ψ](z) is nondecreasing on z ∈ R, if ψ ∈ C[0,u∗](R,R) is nondecreasing on

z ∈ R.

Let σ > 0 be such that σ < min{−χ1, χ2,
b+r
c
}. Denote

Bσ(R,R) =

{

ψ ∈ C(R,R) : sup
z∈R

|ψ(z)|e−σ|z| <∞
}

with the norm |ψ|σ = sup
z∈R

|ψ(z)|e−σ|z|. Then it is easy to verify that (Bσ(R,R), | · |σ)
is a Banach space.

Lemma 2.3. Assume that (H1)–(H3) hold. Then Λ : Bσ(R,R) → Bσ(R,R) is con-

tinuous with respect to the norm | · |σ in Bσ(R,R).

Proof. To start with, we show that Q : C[0,u∗](R,R) → Bσ(R,R) is a well defined

map. For any ψ ∈ C[0,u∗](R,R), by the conclusion (ii) of Lemma 2.1, we have

|Q[ψ](z)|e−σ|z| ≤ hu∗. Then |Q[ψ]|σ = sup
z∈R

∣

∣Q[ψ](z)
∣

∣e−σ|z| ≤ hu∗ < ∞ and thus

Q[ψ] ∈ Bσ(R,R). We now check that Q : C[0,u∗](R,R) → Bσ(R,R) is continuous with

respect to the norm | · |σ in Bσ(R,R). Indeed, for any ϕ, ψ ∈ C[0,u∗](R,R), we have

|Q[ϕ](z) −Q[ψ](z)|e−σ|z| ≤ |h− β(ϕ(z) + ψ(z)) − U ′(ς(z))||ϕ(z) − psi(z)|e−σ|z|

+ e−γτ |B(ϕ(z − cτ)) −B(ψ(z − cτ))|e−σ|z|

+
r

c
e−σ|z|

∫ z

−∞

e−
(b+r)

c
(z−s)|U(ϕ(s)) − U(ψ(s))|ds(2.10)
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≤ h|ϕ− ψ|σ + e−γτρ1|ϕ(z − cτ) − ψ(z − cτ)|e−σ|z|

+
r

c
e−σ|z|e−

(b+r)
c

zρ2

∫ z

−∞

e
(b+r)

c
s|ϕ(s) − ψ(s)|ds.

For any ε > 0, choose δ > 0 such that

(2.11) δ < min

{

ε

3h
,
ε

3ρ1

e(γ−σc)τ ,
ε(b+ r − cσ)

3rρ2

}

.

If |ϕ− ψ|σ < δ, then

(2.12) |ϕ(z − cτ) − ψ(z − cτ)| ≤ δeσ|z|eσcτ on z ∈ R.

Similarly, |ϕ(z) − ψ(z)| ≤ δeσ|z| on z ∈ R. Then, for any z ≥ 0, we have

r

c
e−σ|z|e−

(b+r)
c

zρ2

∫ z

−∞

e
(b+r)

c
s|ϕ(s) − ψ(s)|ds ≤ r

c
e−σ|z|e−

(b+r)
c

zρ2δ

∫ z

−∞

e
(b+r)

c
seσ|s|ds

=
r

c
e−σ|z|e−

(b+r)
c

zρ2δ

[
∫ 0

−∞

e
(b+r)

c
se−σsds+

∫ z

0

e
(b+r)

c
seσsds

]

=
2cσrρ2δ

(b+ r − cσ)(b+ r + cσ)
e−(σ+ b+r

c
)z +

rρ2δ

b+ r + cσ

≤ 2cσrρ2δ

(b+ r − cσ)(b+ r + cσ)
+

rρ2δ

b+ r + cσ
=

rρ2δ

b+ r − cσ
.

If z < 0, then

r

c
e−σ|z|e−

(b+r)
c

zρ2

∫ z

−∞

e
(b+r)

c
s|ϕ(s) − ψ(s)|ds ≤ r

c
e−σ|z|e−

(b+r)
c

zρ2δ

∫ z

−∞

e( b+r
c

−σ)sds

=
r

c
e−σ|z|e−

(b+r)
c

zρ2
cδ

b+ r − cσ
e( b+r

c
−σ)z =

rρ2δ

b+ r − cσ
.

Hence, for any z ∈ R, we obtain

(2.13)
r

c
e−σ|z|e−

(b+r)
c

zρ2

∫ z

−∞

e
(b+r)

c
s|ϕ(s) − ψ(s)|ds ≤ rρ2δ

b+ r − cσ
.

In view of (2.10)–(2.13), we have

|Q[ϕ](z)−Q[ψ](z)|e−σ|z| ≤ h|ϕ−ψ|σ+ρ1δe
(σc−γ)τ +

rρ2δ

b+ r − cσ
< ε if |ϕ1−ϕ2|σ < δ.

Hence, Q is continuous with respect to the norm | · |σ in Bσ(R,R).

We now show that Λ is continuous with respect to the norm | · |σ in Bσ(R,R).

For any z ≥ 0, we get

|Λ[ϕ](z) − Λ[ψ](z)|

≤ 1

D2(χ2 − χ1)

{

∫ z

−∞

eχ1(z−s)|Q[ϕ](s) −Q[ψ](s)|ds

+

∫ ∞

z

eχ2(z−s)|Q[ϕ](s) −Q[ψ](s)|ds
}



TRAVELING WAVEFRONTS FOR A SIS EPIDEMIC MODEL 133

≤ 1

D2(χ2 − χ1)

{
∫ z

−∞

eχ1(z−s)+σ|s|ds+

∫ ∞

z

eχ2(z−s)+σ|s|ds

}

|Q[ϕ] −Q[ψ]|σ

=
1

D2(χ2 − χ1)

{

∫ 0

−∞

eχ1(z−s)−σsds

+

∫ z

0

eχ1(z−s)+σsds +

∫ ∞

z

eχ2(z−s)+σsds

}

|Q[ϕ] −Q[ψ]|σ

=
1

D2(χ2 − χ1)

[

χ2 − χ1

(σ − χ1)(χ2 − σ)
eσz +

2σ

χ2
1 − σ2

eχ1z

]

|Q[ϕ] −Q[ψ]|σ.

Therefore, for z ≥ 0, it follows

(2.14)

|Λ[ϕ](z)−Λ[ψ](z)|e−σ|z| ≤ 1

D2(χ2 − χ1)

[

χ2 − χ1

(σ − χ1)(χ2 − σ)
+

2σ

χ2
1 − σ2

]

|Q[ϕ]−Q[ψ]|σ.

If z < 0, then

|Λ[ϕ](z) − Λ[ψ](z)|

≤ 1

D2(χ2 − χ1)

{

∫ z

−∞

eχ1(z−s)−σsds +

∫ 0

z

eχ2(z−s)−σsds

+

∫ ∞

0

eχ2(z−s)+σs

}

|Q[ϕ] −Q[ψ]|σ

=
1

D2(χ2 − χ1)

[

χ2 − χ1

−(σ + χ1)(χ2 + σ)
e−σz +

2σ

χ2
2 − σ2

eχ2z

]

|Q[ϕ] −Q[ψ]|σ.

Hence, for z < 0, it follows

(2.15)

|Λ[ϕ](z)−Λ[ψ](z)|e−σ|z| ≤ 1

D2(χ2 − χ1)

[

χ2 − χ1

−(σ + χ1)(χ2 + σ)
+

2σ

χ2
2 − σ2

]

|Q[ϕ]−Q[ψ]|σ.

(2.14)–(2.15) lead to that Λ is continuous with respect to the norm | · |σ in Bσ(R,R).

Definition 2.4. A function ̟ ∈ C(R,R) is called a weak upper-solution of (2.6) if

it is twice differentiable on R except for on Σ := {z1, z2, . . . , zm}, and satisfies

(2.16) D2̟
′′(z) − c̟′(z) + F [̟](z) ≤ 0 on z ∈ R \ Σ.

A weak lower-solution of (2.6) is defined in a similar way with a reversing inequality

in (2.16).

Definition 2.5. A function ϑ ∈ C2(R,R) is called an upper solution of (2.6) if it

satisfies

(2.17) D2ϑ
′′(z) − cϑ′(z) + F [ϑ](z) ≤ 0 on z ∈ R.

A lower solution of (2.6) is defined in a similar way with a reversing inequality in

(2.17).
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Lemma 2.6. If ̟ ∈ C(R,R) is a weak upper-solution (weak lower-solution) of (2.6)

and ̟′(z+) ≤(≥)̟′(z−) on z ∈ R, then Λ[̟](z) ≤ (≥)̟(z) on z ∈ R, and further

ϑ = Λ̟ is an upper (a lower) solution of (2.6).

Proof. We only verify the conclusion for the upper solution. Assume that z0 = −∞ <

z1 < z2 < · · · < zm < zm+1 = ∞. According to Lemma 2.2 and the definition of Λ̟,

we see that Λ̟ ∈ C[0,u∗](R,R) ∩ C2(R,R). Since

−D2̟
′′(z) + c̟′(z) + h̟(z) ≥ Q[̟](z) on z ∈ R \ Σ,

for any z ∈ (zk, zk+1), k = 0, 1, . . . , m, we obtain

Λ[̟](z) ≤ 1

D2(χ2 − χ1)

{

∫ z

−∞

eχ1(z−s)[−D2̟
′′(s) + c̟′(s) + h̟(s)]ds(2.18)

+

∫ ∞

z

eχ2(z−s)[−D2̟
′′(s) + c̟′(s) + h̟(s)]ds

}

= ̟(z) +
1

χ2 − χ1

{

k
∑

l=1

eχ1(z−zl)[̟′(z+
l ) −̟′(z−l )]

+

m
∑

l=k+1

eχ2(z−zl)[̟′(z+
l ) −̟′(z−l )]

}

≤ ̟(z).

Furthermore, since Λ[̟] and ̟ is continuous on z ∈ R, letting z → z+
k in the

inequality (2.18), we have

Λ[̟](zk) ≤ ̟(zk)

for any zk ∈ Σ.

Therefore, Λ[̟](z) ≤ ̟(z) on z ∈ R, which together with Lemma 2.1 and (2.9)

implies that

D2(Λ[̟])′′(z) − c(Λ[̟])′(z) + F [Λ[̟]](z)

= D2(Λ[̟])′′(z) − c(Λ[̟])′(z) − hΛ[̟](z) +Q[Λ[̟]](z)

≤ D2(Λ[̟])′′(z) − c(Λ[̟])′(z) − hΛ[̟](z) +Q[̟](z) = 0.

Thus, Λ̟ is an upper solution of (2.6).

Remark 2.7. Let

(2.19) w̄(z) :=

{

e−z, z > 0,

ez, z ≤ 0.

Boumenir and Nguyen in Remark 5 [4] thought that the function w̄ in (2.19) could

serve as a counterexample to the identity (see (2.18) here or the proof of Lemma 2.5
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in [10])

1

D2(χ2 − χ1)

[
∫ z

−∞

eχ1(z−s)ϕ(s)ds+

∫ ∞

z

eχ2(z−s)ϕ(s)ds

]

(2.20)

= w(z) +
1

χ2 − χ1

{

k
∑

l=1

eχ1(z−zl)[w′(z+
l ) − w′(z−l )]

+

m
∑

l=k+1

eχ2(z−zl)[w′(z+
l ) − w′(z−l )]

}

,

where w is a piecewise C2 solution of

D2w
′′(z) − cw′(z) − hw(z) = −ϕ(z) on R \ {z1, z2, · · · , zm}.

In the particular case when D2 = 1, χ1 = −1, χ2 = 1, c = 0, h = 1, m = 1, z1 = 0,

then the function w̄ in (2.19) defines a solution of w′′(z) − w(z) = 0 for all z 6= 0.

Boumenir and Nguyen [4] concluded that the left-hand side of (2.20) was zero since

ϕ = 0 while the right-hand side of (2.20) was

w̄(z) +
1

2

{

k
∑

l=1

e−z[w̄′(0+) − w̄′(0−)] +

m
∑

l=k+1

ez[w̄′(0+) − w̄′(0−)]

}

= w̄(z) +
1

2

[

k
∑

l=1

e−z(−2) +
m

∑

l=k+1

ez(−2)

]

= w̄(z) − e−z − ez 6= 0.

However, they neglected the behavior of the segmented function w̄ in (2.19) and made

a mistake in the identity deduced above. In the Appendix of this article, we will show

that the function w̄ in (2.19) cannot serve as a counterexample to the identity (2.20)

here.

Theorem 2.8. Assume that (H1)–(H3) hold. If (2.6) has an upper solution ϑ̄ ∈
C[0,u∗](R,R) ∩ C2(R,R) and a lower solution ϑ ∈ C[0,u∗](R,R) ∩ C2(R,R) such that

ϑ̄ 6= û∗, ϑ 6= 0̂ and sup
s≤z

ϑ(s) ≤ ϑ̄(z) on z ∈ R. Then there exists at least one monotone

solution of (2.6) satisfying (2.8), where û∗ and 0̂ denote the constant functions on

z ∈ R with the value u∗ and 0, respectively.

Proof. Define the following set

Γ =











ψ ∈ C[0,u∗](R,R);

(i) ψ is nondecreasing on R;

(ii) ϑ(z) ≤ ψ(z) ≤ ϑ̄(z) on z ∈ R;

(iii) |ψ(z1) − ψ(z2)| ≤ 4hu∗

D2(χ2−χ1)
|z1 − z2| for z1, z2 ∈ R.











We first show that Γ is a subset of Bσ(R,R). For any ψ ∈ Γ, we have |ψ(z)| ≤ u∗ on

z ∈ R. It then follows that |ψ|σ = sup
z∈R

|ψ(z)|e−σ|z| ≤ u∗ <∞ and thus Γ ⊆ Bσ(R,R).

Also, Γ is a convex closed subset in Bσ(R,R). Moreover, we can verify that Γ is a
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compact set in Bσ(R,R). Indeed, let{ψn(z)} ⊂ Γ be a sequence. For any given ε > 0,

choose T > 0 large enough such that

(2.21) sup
|z|≥T

|ψi(z) − ψj(z)|e−σ|z| ≤ 2u∗e−σT <
ε

2
.

Since {ψn(z)} is uniformly bounded and equi-continuous on [−T, T ], by Arzerà-Ascoli

theorem, {ψn(z)} has a subsequence which is convergent on [−T, T ] with respect to

the supremum norm. For convenience, we still denote this subsequence by {ψn(z)}.
Then {ψn(z)} is a Cauchy sequence on [−T, T ] with respect to the supremum norm.

Therefore, there exists N > 0 such that

sup
|z|≤T

|ψi(z) − ψj(z)|e−σ|z| ≤ sup
|z|≤T

|ψi(z) − ψj(z)| <
ε

2
for i, j > N.

This, together with (2.21), leads to the conclusion that {ψn(z)} is a Cauchy sequence

in Bσ(R,R). As Bσ(R,R) is a Banach space, hence {ψn(z)} is convergent in Bσ(R,R).

In view of the definition of upper solution and lower solution, we can show that

Λ[ϑ̄](z) ≤ ϑ̄(z), Λ[ϑ](z) ≥ ϑ(z) on z ∈ R.

Let ϕ(z) = sup
s≤z

ϑ(s). Then ϕ(z) is nondecreasing on R and

ϑ(z) ≤ ϕ(z) ≤ ϑ̄(z) on z ∈ R.

By Lemma 2.2 and the above inequalities, we obtain

(2.22) ϑ(z) ≤ Λ[ϑ](z) ≤ Λ[ϕ](z) ≤ Λ[ϑ̄](z) ≤ ϑ̄(z) on z ∈ R.

For any z1, z2 ∈ R, assuming that z1 ≥ z2, recall that |Q[ϕ](z)| ≤ hu∗ on z ∈ R (see

Lemma 2.1), χ1 < 0 and then

∣

∣

∫ z1

−∞

eχ1(z1−s)Q[ϕ](s)ds−
∫ z2

−∞

eχ1(z2−s)Q[ϕ](s)ds
∣

∣

≤
∣

∣

∫ z1

z2

eχ1(z1−s)Q[ϕ](s)ds| + |
∫ z2

−∞

[eχ1(z1−s) − eχ1(z2−s)]Q[ϕ](s)ds
∣

∣

≤ hu∗(z1 − z2) +

∫ z2

−∞

[eχ1(z2−s) − eχ1(z1−s)]Q[ϕ](s)ds

≤ hu∗(z1 − z2) + hu∗
∫ z2

−∞

[eχ1(z2−s) − eχ1(z1−s)]ds

= hu∗(z1 − z2) + hu∗(eχ1z2 − eχ1z1)

∫ z2

−∞

e−χ1sds

= hu∗(z1 − z2) + hu∗(eχ1z2 − eχ1z1) · (− 1

χ1

)e−χ1z2

= hu∗(z1 − z2) +
hu∗

−χ1

[

1 − eχ1(z1−z2)
]

≤ hu∗(z1 − z2) + hu∗(z1 − z2) = 2hu∗(z1 − z2),
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where we use the inequality ex ≥ 1 + x for any x ∈ R. In a similar way, we have
∣

∣

∣

∣

∫ ∞

z1

eχ1(z1−s)Q[ϕ](s)ds−
∫ ∞

z2

eχ1(z2−s)Q[ϕ](s)ds

∣

∣

∣

∣

≤ 2hu∗(z1 − z2).

Therefore,

∣

∣Λ[ϕ](z1) − Λ[ϕ](z2)
∣

∣ =
1

D2(χ2 − χ1)
|
∫ z1

−∞

eχ1(z1−s)Q[ϕ](s)ds−
∫ z2

−∞

eχ1(z2−s)Q[ϕ](s)ds

+

∫ ∞

z1

eχ1(z1−s)Q[ϕ](s)ds−
∫ ∞

z2

eχ1(z2−s)Q[ϕ](s)ds|

≤ 4hu∗

D2(χ2 − χ1)
|z1 − z2| on z ∈ R.

Now we have shown Λ[ϕ] ∈ Γ, and thus Γ is not empty. On the other hand, we have

from (2.22) and Lemma 2.2 that Λ[Γ] ⊂ Γ. Therefore, using Schauder fixed point

theorem, we conclude that Λ has a fixed point ψ ∈ Γ which is a solution of (2.6).

In what follows, we show that ψ also satisfies (2.8). Since ψ is nondecreasing and

Λ[ψ] = ψ, we get

0 ≤ ψ−∞ := lim
z→−∞

ψ(z) = lim
z→−∞

Λ[ψ](z) ≤ inf
z∈R

ϑ̄(z),

sup
z∈R

ϑ(z) ≤ ψ∞ := lim
z→∞

ψ(z) = lim
z→∞

Λ[ψ](z) ≤ u∗.

Let ψ̂−∞ and ψ̂∞ be the constant functions on z ∈ R with the value ψ−∞ and ψ∞,

respectively. We can show

(2.23) ψ̂−∞ = Λ[ψ̂−∞], ψ̂∞ = Λ[ψ̂∞].

Indeed, we only need to check

(2.24) lim
z→−∞

Λ[ψ](z) = Λ[ψ̂−∞], lim
z→∞

Λ[ψ](z) = Λ[ψ̂∞].

We only verify the first equality in (2.24). Making use of L’Hôspital’s rule again,

we obtain

lim
z→−∞

Λ[ψ](z) =
1

D2(χ2 − χ1)
lim

z→−∞

{

∫ z

−∞
e−χ1sQ[ψ](s)ds

e−χ1z
+

∫ ∞

z
e−χ2sQ[ψ](s)ds

e−χ2z

}

=
1

D2(χ2 − χ1)

{

lim
z→−∞

Q[ψ](z)

−χ1

+ lim
z→−∞

−Q[ψ](z)

−χ2

}

(2.25)

=
1

D2(χ2 − χ1)
· χ1 − χ2

χ1χ2

lim
z→−∞

Q[ψ](z)

=
−1

D2χ1χ2
lim

z→−∞
Q[ψ](z).

On the other hand, we have

Λ[ψ̂−∞] =
Q[ψ̂−∞]

D2(χ2 − χ1)

{
∫ z

−∞

eχ1(z−s)ds+

∫ ∞

z

eχ2(z−s)

}

ds(2.26)
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=
Q[ψ̂−∞]

D2(χ2 − χ1)
· χ1 − χ2

χ1χ2

=
−Q[ψ̂∞]

D2χ1χ2

.

In view of L’Hôspital’s rule, we get

lim
z→−∞

r

c

∫ z

−∞

e−
b+r

c
(z−s)U(ψ(s))ds = lim

z→−∞

r

b+ r
U(ψ(z)) =

r

b+ r
U(ψ−∞).

Since

Q[ψ](z) = hψ(z)+e−γτB(ψ(z−cτ))−βψ2(z)−U(ψ(z))+
r

c

∫ z

−∞

e−
(b+r)

c
(z−s)U(ψ(s))ds,

we obtain

lim
z→−∞

Q[ψ](z) = hψ−∞ + e−γτB(ψ−∞)− βψ2
−∞ −U(ψ−∞) +

r

b+ r
U(ψ−∞) = Q[ψ̂−∞].

Now we have from (2.25)–(2.26) that (2.24), and thus (2.23) holds. That is, ψ̂−∞ and

ψ̂∞ are fixed points of Λ. Since Λ has only two constant fixed points 0̂ and û∗, we

have ψ̂−∞ = 0̂ and ψ̂∞ = û∗. The proof is complete.

Theorem 2.9. Assume that (H1)–(H3) hold. If (2.6) has a weak upper-solution

ψ̄ ∈ C[0,u∗](R,R) and a weak lower-solution ψ ∈ C[0,u∗](R,R) such that

(i) ψ̄ 6= û∗, ψ 6= 0̂ and sup
s≤z

ψ(s) ≤ ψ̄(z) on z ∈ R,

(ii) ψ̄′(z+) ≤ ψ̄′(z−) and ψ′(z+) ≥ ψ′(z−) on z ∈ R,

then there exists at least one monotone solution of (2.6) satisfying (2.8).

Proof. Let ϑ̄(z) = Λ[ψ̄](z), ϑ(z) = Λ[ψ](z). Then by Lemma 2.6 and (ii) of Theorem

2.9 , we see that ϑ̄(z) ∈ C[0,u∗](R,R), ϑ(z) ∈ C[0,u∗](R,R) and ϑ̄, ϑ are a pair of upper

and lower solutions of (2.6). Furthermore, they satisfy

ψ(z) ≤ ϑ(z), ϑ̄(z) ≤ ψ̄(z) on z ∈ R.

Define ψ̆(z) = sup
s≤z

ψ(s). Then ψ̆(z) is nondecreasing on R and ψ(z) ≤ ψ̆(z) ≤

ψ̄(z) on z ∈ R. It follows from Lemma 2.2 and (i) of Theorem 2.9 that Λ[ψ̆](z) is

nondecreasing on R, and

sup
s≤z

ϑ(s) ≤ sup
s≤z

Λ[ψ̆](s) = Λ[ψ̆](z) ≤ Λ[ψ̄](z) = ϑ̄(z) on z ∈ R.

According to Theorem 2.8, the proof is complete.

Corollary 2.10. Suppose that the conditions in Theorem 2.8 or 2.9 hold, then there

exists at least one monotone solution of (2.2) satisfying (2.3).

Proof. Since (2.6) exists at least a monotone solution ψ(z) satisfying (2.8), we only

need to show that φ is nondecreasing and satisfies the boundary conditions. Let θ > 0

be given. By (2.4) and the nondecreasing property of ψ and U , we see that

φ(z + θ) − φ(z)
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=
1

c

[
∫ z+θ

−∞

e−
(b+r)

c
(z+θ−s)U(ψ(s))ds−

∫ z

−∞

e−
(b+r)

c
(z−s)U(ψ(s))ds

]

.

=
1

c

∫ z

−∞

e−
(b+r)

c
(z−s)[U(ψ(s + θ)) − U(ψ(s))]ds ≥ 0.

Substituting ψ(z) into (2.4) and applying L’Hôspital’s rule, then limz→−∞ φ(z) = 0

and limz→∞ φ(z) = y∗. This completes the proof.

In order to construct a pair of appropriate weak upper and lower solutions for

(2.6), we linearize (2.6) at ψ = 0 to obtain

D2ψ
′′(z) − cψ′(z) + e−γτB′(0)ψ(z − cτ) − U ′(0)ψ(z)

+
rU ′(0)

c

∫ z

−∞

e−
(b+r)

c
(z−s)ψ(s)ds = 0.

The corresponding characteristic equation is

△(λ, c) := D2λ
2 − cλ+ e−γτB′(0)e−λcτ − U ′(0) +

rU ′(0)

cλ+ b+ r
= 0.

This equation is central to the identification of the speeds c > 0 for which wave

solutions exist. By direct calculations, we have

△(λ, 0) = D2λ
2 + e−γτB′(0) − b

b+ r
U ′(0) > 0 for any λ ≥ 0 if (H4) holds,

∂2△(λ, c)

∂λ2
= 2D2 + c2τ 2e−γτB′(0)e−λcτ +

2c2rU ′(0)

(cλ+ b+ r)3
> 0 for any λ > 0,

△(0, c) = e−γτB′(0) − b

b+ r
U ′(0) > 0 if (H4) holds,

△(λ,∞) = −∞ for any given λ > 0,

△(∞, c) = ∞ for any given c > 0,

∂△(λ, c)

∂c
= −λ− λτe−γτB′(0)e−λcτ − rU ′(0)λ

(cλ+ b+ r)2
< 0 for λ > 0.

Thus, we obtain the following observations.

Lemma 2.11. Assume that (H4) holds, then there exists a pair of (λ∗, c∗) such that

(i) △(λ∗, c∗) = 0, ∂△(λ∗,c∗)
∂λ

= 0;

(ii) △(λ, c) > 0 for 0 < c < c∗ and λ > 0;

(iii) △(λ, c) = 0 has two zeros 0 < λ1 < λ2 < ∞ for c > c∗. Furthermore, there

exists ε0 > 0 such that for any ε ∈ (0, ε0) with 0 < λ1 < λ1 + ε < λ2, we have

△(λ1 + ε, c) < 0 for c > c∗.

Let c > c∗, define ψ̄(z) = min
{

u∗eλ1z, u∗
}

and ψ(z) = max
{

0, µ(1 −Meεz)eλ1z
}

for all z ∈ R, where 0 < µ < u∗ and M ≥ 1 is to be determined later.

Lemma 2.12. ψ̄(z) and ψ(z) are a pair of weak upper-solution and weak lower-

solution of (2.6).
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Proof. For ψ̄, we have two cases:

(i) If z > 0, then ψ̄(z) = u∗, ψ̄(z − cτ) ≤ u∗. It follows that

D2ψ̄
′′(z) − cψ̄′(z) + F [ψ̄](z) ≤ e−γτB(u∗) − β(u∗)2 − U(u∗)

+
r

c

∫ z

−∞

e−
(b+r)

c
(z−s)U(u∗)ds

= by∗ − (b+ r)y∗ +
rU(u∗)

b+ r
= −ry∗ + ry∗ = 0.

(ii) If z < 0, then ψ̄(z) = u∗eλ1z, ψ̄(z − cτ) = u∗eλ1(z−cτ). It follows that

D2ψ̄
′′(z) − cψ̄′(z) + F [ψ̄](z)

≤ u∗eλ1z
[

D2λ
2
1 − cλ1 + e−γτB′(0)e−λ1cτ

]

− β(u∗)2e2λ1z − U ′(0)u∗eλ1z

+ β(u∗)2e2λ1z +
r

c

∫ z

−∞

e−
(b+r)

c
(z−s)U ′(0)u∗eλ1sds

= u∗eλ1z

[

D2λ
2
1 − cλ1 + e−γτB′(0)e−λ1cτ − U ′(0) +

rU ′(0)

cλ1 + b+ r

]

+ (β − β)(u∗)2e2λ1z

= u∗eλ1z△(λ1, c) = 0.

Hence, ψ̄(z) is a weak upper-solution of (2.6).

Now we verify that ψ(z) is a weak lower-solution of (2.6). Let z∗ := −1
ε
lnM ≤ 0.

We have to verify the cases z > z∗ and z < z∗ separately.

(i) If z ≥ z∗, then ψ(z) = 0. It follows that

D2ψ
′′(z) − cψ′(z) + F [ψ](z)

= e−γτB(ψ(z − cτ)) +
r

c

∫ z

−∞

e−
(b+r)

c
(z−s)U(ψ(s))ds ≥ 0.

(ii) If z < z∗, then ψ(z) = µ(1−Meεz)eλ1z. For any µ < u∗, it is easy to see that

(see [14, p.444]) ψ2(z) ≤ (µ)2e(λ1+ε)z ≤ (u∗)2e(λ1+ε)z for any z ∈ R. Thus

D2ψ
′′(z) − cψ′(z) + F [ψ](z)

≥ D2ψ
′′(z) − cψ′(z) + e−γτB′(0)ψ(z − cτ) − e−γτκψ2(z − cτ) − βψ2(z)

− U ′(0)ψ(z) +
r

c

∫ z

−∞

e−
(b+r)

c
(z−s)

[

U ′(0)ψ(s) − βψ2(s)
]

ds

≥ µeλ1z

[

D2λ
2
1 − cλ1 + e−γτB′(0)e−λ1cτ − U ′(0) +

rU ′(0)

cλ1 + b+ r

]

−Mµe(λ1+ε)z

[

D2(λ1 + ε)2 − c(λ1 + ε) + e−γτB′(0)e−(λ1+ε)cτ

− U ′(0) +
rU ′(0)

c(λ1 + ε) + b+ r

]
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− e−γτκµ2
[

1 −Meε(z−cτ)
]2

e2λ1(z−cτ) − βµ2(1 −Meεz)2e2λ1z − βr(u∗)2e(λ1+ε)z

c(λ1 + ε) + b+ r

≥ µeλ1z△(λ1, c) −Mµe(λ1+ε)z△(λ1 + ε, c) − (e−γτκ+ β)µ2e2λ1z − βr(u∗)2e(λ1+ε)z

b+ r
.

Fix any 0 < ε ≤ λ1 such that λ1 < ε + λ1 < 2λ1 and △(λ1 + ε, c) < 0. Note

z < z∗ < 0, then e2λ1z ≤ e(ε+λ1)z. Hence

D2ψ
′′(z) − cψ′(z) + F [ψ](z)

≥ −Mµe(λ1+ε)z△(λ1 + ε, c) − µ2e(ε+λ1)z(e−γτκ+ β) − βr(u∗)2e(λ1+ε)z

b+ r

= e(λ1+ε)z

[

−µM△(λ1 + ε, c) − µ2(e−γτκ + β) − βr(u∗)2

b+ r

]

≥ 0,

provided M is sufficiently large. By cases (i) and (ii), it then follows that there exist

positive numbers µ, ε and M such that ψ(z) is a weak lower-solution of (2.6). This

completes the proof.

Now we give the following theorem.

Theorem 2.13. Assume that (H1) − (H4) hold, then for any c ≥ c∗, (2.1) has a

monotone wavefront connecting (0, 0) and (u∗, y∗).

Proof. The conclusion for c > c∗ can be obtained from the above discussions. We

only need to establish the existence of wavefronts when c = c∗. Let {ck} ⊂ (c∗, c∗ +1)

with ck → c∗ as k → ∞. Since ck > c∗, Eq. (2.6) with c = ck admits a nondecreasing

solution ψk(z) such that limz→−∞ ψk(z) = 0 and limz→∞ ψk(z) = u∗. By the spatial

translation invariance of (2.1) [5], we may assume that ψk(0) = u∗

2
for any k ≥ 1.

Clearly, |ψk(z)| ≤ u∗ for any z ∈ R, k ≥ 1, and ψk(z) satisfies

(2.27) ψk(z) :=
1

D2(χk
2 − χk

1)

[
∫ z

−∞

eχk
1(z−s)Q[ψk](s)ds+

∫ ∞

z

eχk
2(z−s)Q[ψk](s)ds

]

,

where

χk
1 =

ck −
√
ck2 + 4D2h

2D2
< 0, χk

2 =
ck +

√
ck2 + 4D2h

2D2
> 0.

Since {ψk(z)} is uniformly bounded and equi-continuous on R, using Arzerà-Ascoli

theorem and the standard diagonal method, we can obtain a subsequence of {ψk(z)},
still denoted by {ψk(z)}, such that ψk(z) → ψ∗(z) as k → ∞ uniformly for z in any

bounded subset of R. Clearly, ψ∗(z) is nondecreasing and ψ∗(0) = u∗

2
. By using the

dominated convergence theorem and (2.27), it yields that

ψ∗(z) :=
1

D2(χ∗
2 − χ∗

1)

[
∫ z

−∞

eχ∗

1(z−s)Q[ψ∗](s)ds +

∫ ∞

z

eχ∗

2(z−s)Q[ψ∗](s)ds

]

,

where

χ∗
1 =

c∗ −
√

c∗2 + 4D2h

2D2

< 0, χ∗
2 =

c∗ +
√

c∗2 + 4D2h

2D2

> 0.
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Since limz→±∞ ψ∗(z) exist, L’Hôspital rule implies limz→−∞ ψ∗(z) = 0 and

limz→∞ ψ∗(z) = u∗. Substituting ψ∗(z) into (2.4) to obtain φ∗(z), by using L’Hôspital’s

rule, it is easy to see that limz→−∞ φ∗(z) = 0 and limz→∞ φ∗(z) = y∗. Thus the proof

is complete.

In what follows, we turn to study the immature equation. For convenience, we

use v to replace u1. Then the immature equation reads

(2.28)
∂v

∂t
= B(u(t, x)) − γv(t, x) − e−γτB(u(t− τ, x)).

Assume that c ≥ c∗. Let u(t, x) = ψ(z), v(t, x) = V (z) with z = x + ct. Then we

have the following result.

Theorem 2.14. For any c ≥ c∗, Eq. (2.28) has a traveling wavefront V (z) with

limz→−∞ V (z) = 0 and limz→∞ V (z) = v∗ when u(t, x) = ψ(z) with z = x+ ct.

Proof. If u(t, x) = ψ(z) with z = x+ ct, then the wave profile equation of (2.28) is

(2.29) cV ′(z) = −γV (z) +B(ψ(z)) − e−γτB(ψ(z − cτ)).

Eq. (2.29) has a solution given by

V (z) = e−
γ

c
(z−z0)V (z0) +

1

c

∫ z

z0

e−
γ

c
(z−s)[B(ψ(s)) − e−γτB(ψ(s− cτ))]ds

for any z ≥ z0. Since V (z) and B(ψ(z)) are bounded on R, letting z0 → −∞, we

have

V (z) =
1

c

∫ z

−∞

e−
γ

c
(z−s)[B(ψ(s)) − e−γτB(ψ(s− cτ))]ds.

Applying L’Hôspital rule, then limz→−∞ V (z) = 0 and limz→∞ V (z) = v∗.

Finally, combining the Theorems 2.13 and 2.14, we obtain the main result in this

article.

Theorem 2.15. Assume that (H1)-(H4) hold, then for any c ≥ c∗, system (1.4) has

a traveling wavefront connecting (0, 0, 0) and (u∗1, u
∗
2, y

∗).

3. CONCLUSIONS AND REMARKS

We show the existence of traveling wavefronts as c ≥ c∗ for a SIS epidemic model

with stage structure. From the characteristic equation, we see that c∗ depends on

the model parameters D2, γ, τ, r, b and birth function B(·), infection function U(·)
in a complicated way. We believe that an appropriate parameter choice can be an

implication for control or eradicate the disease transmission. Since system (2.1) gen-

erates a monotone semiflow, we can use the theory developed in [9] to show that c∗

is the spreading speed for the solution with initial data having compact supports.

This, together with Theorem 2.13, implies that c∗ is also the minimum wave speed

for traveling wavefronts. We will do this work in a forthcoming paper.
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4. APPENDIX

Note that the left-hand side of (2.20) is zero since ϕ = 0. We will show that the

right-hand side of (2.20) must be also zero. We consider two cases.

(i) If z > 0, then according to (2.19), w̄(z) = e−z. Since w̄(z) and w̄′(z) are

bounded, it follows that

1

D2(χ2 − χ1)

[
∫ z

−∞

eχ1(z−s)ϕ(s)ds+

∫ ∞

z

eχ2(z−s)ϕ(s)ds

]

=
1

2
[

∫ z

−∞

e−(z−s)(−w̄′′(s) + w̄(s))ds+

∫ ∞

z

e(z−s)(−w̄′′(s) + w̄(s))ds]

=
1

2
[

∫ 0

−∞

e−(z−s)(−w̄′′(s) + w̄(s))ds+

∫ z

0

e−(z−s)(−w̄′′(s) + w̄(s))ds]

+
1

2

[
∫ ∞

z

e(z−s)(−w̄′′(s) + w̄(s))ds

]

=
1

2

[

−e−zw̄′(0−) + e−zw̄(0) − w̄′(z) + e−zw̄′(0+) + w̄(z) − e−zw̄(0) + w̄′(z) + w̄(z)
]

=
1

2

[

e−z(w̄′(0+) − w̄′(0−)) + 2w̄(z)
]

=
1

2

[

e−z(−2) + 2e−z
]

= 0.

(ii) If z ≤ 0, then w̄(z) = ez. Similarly, it follows that

1

D2(χ2 − χ1)

[
∫ z

−∞

eχ1(z−s)ϕ(s)ds+

∫ ∞

z

eχ2(z−s)ϕ(s)ds

]

=
1

2
[

∫ z

−∞

e−(z−s)(−w̄′′(s) + w̄(s))ds+

∫ ∞

z

e(z−s)(−w̄′′(s) + w̄(s))ds]

=
1

2
[

∫ z

−∞

e−(z−s)(−w̄′′(s) + w̄(s))ds]

+
1

2
[

∫ 0

z

e(z−s)(−w̄′′(s) + w̄(s))ds+

∫ ∞

0

e(z−s)(−w̄′′(s) + w̄(s))ds]

=
1

2

[

−w̄′(z) + w̄(z) − ezw̄′(0−) + w̄′(z) − ezw̄(0) + w̄(z) + ezw̄′(0+) + ezw̄(0)
]

=
1

2

[

ez(w̄′(0+) − w̄′(0−)) + 2w̄(z)
]

=
1

2
[ez(−2) + 2ez] = 0.

Therefore, the right-hand side of (2.20) is zero and this implies that the identity

(2.20) is correct. The function w̄ in (2.19) introduced in Boumenir and Nguyen [4]

cannot serve as a counterexample to the identity (2.18) here and thus Lemma 2.6 can

be used to prove our main result.
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