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ABSTRACT. It is considered a scalar linear functional dynamic equation in time scale with delayed

argument of the form

(0.1) y∆(t) = b(t)y(τ(t)), t ∈ T ∩ [0, +∞[,

where T, the time scale, is a closed subset of R without upper bound for this case, ∆ is de Hilger’s

derivate, which among other things, unifies difference operator for sequences and the derivate.

The functions b, τ : T → C, τ > 0, are “locally integrable” and satisfy integral smallness

conditions in a sense to be defined later. Asymptotic formulas of solutions of equation (0.1) are

given. They unify and extend asymptotic formulas of difference and differential equations.

AMS (MOS) Subject Classification. 39A10.

1. INTRODUCTION

For differential equations and difference equations, a sort of results about qual-

itative description of their solutions have been obtained (see, for example [9, 10,

12, 13, 14]). There are some of these results which are similar but they have been

proved with different techniques. Those results can be unified and extended by mean

dynamic equations in time scales.

Asymptotic behavior for dynamic equations on time scales is an issue which has

been being recently studied (see [1, 2, 7, 17]).

A time scale T is an arbitrary nonempty closed subset of R. The theory of time

scales was introduced in 1988 by S. Hilger [15] in his Ph.D. Thesis in order to unify

continuous and discrete analysis. Several authors have expounded on various aspects

of this theory, see [4, 8, 16] and the references cited therein.

The Hilger’s derivate or Hilger’s ∆ is an operator ∆ such that if E a complex

Banach space and f is a function f : T → E, f is differentiable in t ∈ T if there is a
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real number f∆(t) such that given ε > 0, there is δ > 0 such that

(1.1) |f(σ(t)) − f(s) − f∆(t)(σ(t) − s)| ≤ ε|σ(t) − s|

where s ∈]t − δ, t + δ[∩T and σ(t) = inf{s ∈ T : s > t}. σ is called the forward jump

function. The backward jump function is given by ρ(t) = sup{s ∈ T : s < t}, for all

t ∈ T. The length of the forward jump is denoted and defined by µ(t) = σ(t) − t.

Consider

(1.2) T =
˙⋃+∞

j=1
([aj , bj] ∪ {pj,0, pj,1, . . . , pj,mj

}),

where bj = pj,0 < pj,1 < · · · < pj,mj
= aj+1. Then, T is a time scale, f∆(t) = df

dt
for

t ∈ [an, bn[ and f∆(pj,k) =
f(pj,k+1)−f(pj,k)

pj,k+1−pj,k
.

Particularly, T = ∪̇
+∞
j=1[aj, bj ] is a time scale with f∆(bj) =

f(aj+1) − f(bj)

aj+1 − bj
, where

bj < aj+1 for all j ∈ N.

When T = hZ with h > 0 the Hilger’s derivate is

f∆(t) =
1

h
(f(t + h) − f(t)),

which is an approximation to the ordinary derivate when h is small enough. Obviously,

the continuous case is the case when the Hilger’s derivate is the ordinary derivate

f∆(t) = df
dt

which is obtained for T = R.

There are examples where time scales can be used. A particular case is Magici-

cada Septendecim which is a specie of insect in the family Cicadidae. It is found in

Canada and the United States. It lives as a larva for 17 years and as an adult for

around a week. Other similar case, worthy to be considered, is the mayfly Stenonema

Canadense. It lives as a larva for 1 year and as an adult for less than a day. In the

both cases, the population can be expressed as a function of the time in a time scale

of the form T =
˙⋃+∞

j=1
Cj , where Cj = Ij∪̇{pj}, Ij is a closed interval which can rep-

resent the life as larvas in both species and pj can represent one unity of time in the

adult life of the species. Those examples can be found in the Christiansen-Fenchel’s

book [11] and M. Bohner and A. Peterson’s book [8, pag. 15, 71]. A model with the

same kind of time scale for an electric circuit can be found in [8, pag. 16].

This work concerns asymptotic representations for certain solutions of a class

of delayed equations, which have been called functional dynamic equations on time

scales. These are generalizations of classically-studied delay differential equations or

delay difference equations corresponding to the time scales T = R or T = Z.

The object of study in this work is the asymptotic behavior of the solutions of

the dynamic equation in time scale

(1.3) y∆(t) = b(t)y(τ(t)), t ∈ T ∩ [0, +∞[,
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where T is a time scale such that

(1.4) sup T = +∞,

and it is assumed that:

(H1) b : T ∩ [0, +∞[→ C is a locally integrable function.

(H2)

1. τ : T ∩ [0, +∞[→]0, +∞[ is a locally integrable function;

2. t − τ(t) ≥ 0, for all t ∈ T ∩ [0, +∞[;

3. r0 := sup
t∈T∩[0,+∞[

[t − τ(t)] < +∞;

4. τ is strictly increasing.

Equation (1.3) unifies a class of differential and difference equations with delayed

argument and more general cases.

This work is organized as follows: In the next section some previous facts are

given. Then, the section with a result about asymptotic constancy like [3, 5], the

main result and their respective proofs are presented. Finally, a section with some

corollaries is showed.

2. PRELIMINARIES

Basic properties of the operator ∆ are given in [4, Theorems 3 and 4] and some

properties for its respective integral in time scales can be found in [4, Theorems 6

and 7].

Now, it is presented a little extension of the integral for time scales in order to

obtain Banach spaces with a norm defined in terms of such an integral.

Let f : T → C. A extension for f is denoted as ext1(f), where g := ext1(f) : R →

C is a function such that g(t) = f(t) for all t ∈ T, g(s) = g(t) for all s ∈ [t, σ(t)[ and

t ∈ T whenever µ(t) > 0 and if there is t0 = min T or there is t1 = max T, g(s) = 0 if

s < t0 or s > t1, respectively.

Let A be a Lebesgue measurable subset of R. Lloc
T

(A) denotes the functions

f : T → C such that ext1(f) : R → C is locally integrable in the Lebesgue on A.

When the context is known, Lloc
T

(A) is denoted as Lloc
T

.

If J is a measurable subset of R and f ∈ Lloc
T

(J, E), it is defined
∫

J
f(ζ)∆ζ =

∫

J
ext1(f)(ζ)dζ, where the right side member of the recent equality is

an integral in the Lebesgue sense. Let T, t ∈ R ∪ {±∞} be such that T < t and

f ∈ Lloc
T

(]T, t[, E). Then,
∫ t

T

f(ζ)∆ζ =

∫ t

T

ext1(f)(ζ)dζ,
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where the right side member of the recent equality is an integral in the Lebesgue

sense.

A function F : T → C is called an anti-derivate of f if and only if F∆(t) = f(t)

for all t ∈ T.

Remark 2.1. It can be proved that if f is a rd-continuous function, i.e.,

1. lims→t− f(s) exists when ρ(t) = t,

2. lims→t f(s) = f(t) when σ(t) = t,

then f has an anti-derivate. If it is denoted by F , then

(2.1)

∫ t

T

f(ζ)∆ζ := F (t) − F (T ).

If T is given by (1.2) then a discrete-continuous situation is obtained:

(2.2)

∫ t

T
f(ζ)∆ζ =

∫ bnT

T
f(ζ)dζ +

∑nt−1
j=nT

∑mj

k=1 f(pj,k−1)(pj,k − pj,k−1)

+
∑nt−1

j=nT +1

∫ bj

aj
f(ζ)dζ +

∫ t

ant

f(ζ)dζ,

where for s = T or s = t there is ns ∈ N such that ans
≤ s ≤ bns

. Extensions for

t = pj,k or T = pj,k can be naturally obtained.

If T = {Tn}
+∞
n=1 with Tn+1 > Tn for all n ∈ N then

∫ t

T

f(ζ)∆ζ =
∑

T≤Tj<t

f(Tj)(Tj+1 − Tj).

Obviously, if T = R then the “continuous integral” is obtained, i.e.,
∫ t

T
f(ζ)∆ζ =

∫ t

T
f(ζ)dζ.

For a function f : T → C such that 1 + µ(t)f(t) 6= 0 for all t ∈ T (regressive),

the solution of the initial value problem

y∆ = f(t)y and y(t0) = 1

exists and it is denoted as y(t) = ef (t, t0) for t ∈ T. Then,

(2.3) ef (t, s) = exp

(
∫ t

s

ξµ(ζ)(f(ζ))∆ζ

)

,

where

ξh(z) =







ln(1+hz)
h

if h > 0

z if h = 0,

for z ∈ Ch := C − {− 1
h
}.

Remark 2.2. For z ∈ C,

lim
h→0+

ξh(z) = z.

Notice that ξh(z) = 0 if and only if z = 0.
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Some examples of (2.3) are:

1. If T is given by (1.2) then

ef(t, T ) = exp

(
∫ bnT

T

f(ζ)dζ

)

[

nt−1
∏

j=nT

mj
∏

k=1

[1 + f(pj,k)(pj,k − pj,k−1)]

]

× exp

(

nt−1
∑

j=nT +1

∫ bj

aj

f(ζ)dζ

)

exp

(

∫ t

ant

f(ζ)dζ

)

,

where for s = T or s = t there is ns ∈ N such that ans
≤ s ≤ bns

. Extensions

for t = pj,k or T = pj,k can be naturally obtained.

2. If T = {Tn}
+∞
n=1 is such that there is r0 > 0 with Tn+1 > Tn for all n ∈ N, then

ef (t, T ) =
∏

T≤Tj<t

(1 + f(Tj)(Tj+1 − Tj)).

3. If T = R, then ef (t, T ) = exp
(

∫ t

T
f(ζ)dζ

)

.

Now, it is created a metric space which will help to prove the main result. Let

(2.4) ‖ν‖t0,0 := sup
t≥t0

∫ τ−1(t)

t

‖ν(ζ)‖∆ζ,

for all ν ∈ Lloc
T

([t0, +∞[, C) and

E(t0) :=
{

ν ∈ Lloc
T

([t0, +∞[, C) : ‖ν‖t0,0 < +∞
}

,

where t0 ∈ T ∩ [0, +∞[, r0 is given in (H2). Then (E(t0), ‖ · ‖t0,0) is a Banach space.

If

B01(t0) := {ν ∈ E(t0) : ‖ν‖t0,0 ≤ 1} ,

(B01(t0), ‖ · ‖t0,0) is a closed subset of the Banach space (E(t0), ‖ · ‖t0,0).

For p ∈ [1, +∞], assume that L
p
T
(t0) denotes the functions f : [t0, +∞[∩T → C

such that ext1(f) ∈ Lp and

1.

(2.5) ‖f‖p =

[
∫ +∞

t0

‖f(ζ)‖p∆ζ

]1/p

< +∞,

for p ∈ [1, +∞[

2. ‖f‖∞ = esssup{‖f(t)‖ : t ∈ [t0, +∞[∩T}.

Remark 2.3. Notice that (Lp
T
(t0), ‖ · ‖p) →֒ (E(t0), ‖ · ‖0) for p ∈ [1, +∞]. For

p ∈ [1, +∞], (Lp
T
, ‖ · ‖p) is a Banach space. If a sequence converges to zero (almost

everywhere) in the norm ‖·‖p, such a sequence converges to zero (almost everywhere)

in the norm ‖ · ‖t0,0.

It is useful to keep in mind some important facts as Hölder’s inequality, i.e, if

p > 1, f ∈ L
p
T

and if g ∈ L
p

p−1

T
then

‖fg‖1 ≤ ‖f‖p‖g‖ p

p−1
;
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if p > 1, f ∈ L
p
T

and if g ∈ L
p
T
, then

fg ∈ L
max{1, p

2}
T

;

if p > 1, f ∈ L
p
T
, then lim

t→+∞
ef (t, τ(t)) − 1 = 0 and ef(t, τ(t)) − 1 ∈ L

p
T
.

3. ASYMPTOTIC CONSTANCY AND MAIN RESULT

3.1. Previous asymptotic assumptions and facts. The following lemma is about

asymptotic constancy and it is motivated by Atkinson-Haddock [3]. It is given in order

to lead, via change of variables, to the asymptotic formula of the linear dynamic

equation (1.3).

Lemma 3.1. Consider the functional dynamic equation

(3.1) x∆(t) = f(t, x(t), x(τ(t))), t ∈ T ∩ [0, +∞[,

where T is a time scale which satisfies (1.4), τ satisfies (H2), f : [0, +∞[×C×C → C

is a locally integrable function in the first variable such that

|f(t, z1, z2)| ≤ γ(t)|z1 − z2|,

for all z1, z2 ∈ C and γ : [0, +∞[∩T → R is a locally integrable function such that

Θ = sup
t≥t0

∫ τ−1(t)

t

γ(s)∆s < 1,

for t0 large enough. Then every solution of the equation (3.1) is asymptotically con-

stant as t → +∞. Clearly, every constant function is a solution of (3.1).

Proof. Let x be a solution of the equation (3.1). By integrating equation (3.1) from

t∗ to T , it is obtained
∫ T

t∗
|x∆(t)|∆t ≤

∫ T

t∗
γ(t)

∫ t

τ(t)

|x∆(s)|∆s∆t.

By an analogous procedure to the proof of [3, Lemma 2.1],

∫ T

t∗
|x∆(t)|∆t ≤

∫ T

τ(t∗)

|x∆(s)|

∫ τ−1(s)

s

γ(t)∆t∆s.

So,

∫ T

t∗
|x∆(s)|

[

1 −

∫ τ−1(s)

s

γ(t)∆t

]

∆s ≤

∫ t∗

τ(t∗)

|x∆(s)|

∫ τ−1(s)

s

γ(t)∆t∆s.

By making t∗ = t0 and T → +∞,

lim sup
T→+∞

K(T ) ≤
1

1 − Θ

∫ t0

τ(t0)

|x∆(s)|

∫ τ−1(s)

s

γ(t)∆t∆s,



ASYMPTOTIC BEHAVIOR 171

where K(T ) =

∫ T

t0

|x∆(s)|∆s. It can be noticed that K(T ) is an increasing and

bounded function of T . So, K(T ) converges to a constant limit as T → +∞. Hence

x∆ ∈ L1
T
. Therefore x is asymptotically constant as t → +∞.

3.2. Main result. The following result, uses Lemma 3.1 and a linear transformation

involving a type of exponential function on the time scale to reduce the problem to

that of showing asymptotic constancy (that every solution tends to a constant plus

o(1) ) as t → +∞.

Proposition 3.2. Consider the linear functional dynamic equation (1.3), with the

assumptions (1.4), (H1) and (H2). Assume that

(3.2) Θ = sup
t≥t0+r0

∫ τ−1(t)

t

|b(ζ)| sup
ν∈B01(t0)

e‖ν‖(σ(ζ), τ(ζ))∆ζ < 1,

where t0 ≥ 0 is such that and [t0 − r0, t0]∩T 6= φ. Then, every solution y(t) of (1.3),

defined for t ∈ T ∩ [t0, +∞[, has the following asymptotic formula

(3.3) y(t) = eν∞(t, t0)(c + o(1)),

as t → +∞, where

(3.4) ν∞(t) = b(t) +

+∞
∑

j=1

∆j(t),

∆j(t) = b(t)[eµj
(τ(t), t) − eµj−1

(τ(t), t)],

µj(t) = b(t)eµj−1
(τ(t), t), for all t ≥ t0 +jr0, µj(t) = 0 for all t ∈ [t0, t0 +jr0[, µ0 = 0,

j ∈ N and the series (3.4) are defined as the limit of partial sums in the norm ‖ · ‖t0,0

given by (2.4). Conversely, given c ∈ C there is a solution y = y(t) of (1.3) satisfying

(3.3).

Proof. Let T be the expression (T ν)(t) = 0 if t0 ≤ t < t0 + r0 and

(T ν)(t) = b(t)eν(τ(t), t),

for t ≥ t0 + r0. From (3.2), T (B01(t0)) ⊆ B01(t0). So, the restriction T : B01(t0) →

B01(t0) is well defined.

T : B01(t0) → B01(t0) is a contraction in (B01(t0), ‖ · ‖t0,0). In fact, for ν1, ν2 ∈

B01(t0), by the Mean Value Theorem,

|eν1(t, s) − eν2(t, s)| ≤ sup
ν∈B01(t0)

e‖ν‖(t, s)‖ν1 − ν2‖t0,0,

for ν1, ν2 ∈ B01(t0) and t ≥ s. Then,

|(T ν1)(t) − (T ν2)(t)| ≤ |b(t)||eν1(τ(t), t) − eν2(τ(t), t))|

≤ |b(t)| sup
ν∈B01(t0)

e‖ν‖(t, τ(t))‖ν1 − ν2‖t0,0
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≤ |b(t)| sup
ν∈B01(t0)

e‖ν‖(σ(t), τ(t))‖ν1 − ν2‖t0,0,

if t ≥ t0 + r0 and (T ν1)(t) − (T ν2)(t) = 0 if t0 ≤ t < t0 + r0 since |ν1|, |ν2| ≤ ν∞. So,

|(T ν1)(t) − (T ν2)(t)| ≤ |b(t)| sup
ν∈B01(t0)

e‖ν‖(σ(t), τ(t))‖ν1 − ν2‖t0,0,

for all t ≥ t0. Therefore,

(3.5) ‖(T ν1) − (T ν2)‖t0,0 ≤ Θ‖ν1 − ν2‖t0,0,

for all ν1, ν2 ∈ B01(t0), where Θ is given in (3.2) and T is a contraction.

Since (B01(t0), ‖ · ‖t0,0) is a complete metric space, by the Banach Fixed Point

theorem, there is a unique function ν∞ ∈ B01(t0) such that T ν∞ = ν∞. The change

of variables

y(t) = eν∞(t, t0)z(t),

is made in (1.3) and the equation

z∆(t) =
1

1 + µ(t)ν∞(t)
[b(t)eν∞(τ(t), t)[z(τ(t)) − z(t)]

+ [(T ν∞)(t) − ν∞(t)]z(t)] ,

is obtained for t ≥ t0 + r0, i.e., z = z(t) satisfies the equation

(3.6) z∆(t) = b(t)eν∞(τ(t), σ(t))[z(τ(t)) − z(t)], t ≥ t0 + r0.

Clearly every constant function is a solution of (3.6). By Lemma 3.1 and condition

(3.2), every solution of (3.6) is asymptotically constant. Therefore, every solution

y = y(t) of the equation (1.3), defined for t ∈ T ∩ [t0, +∞[, has the asymptotic

formula

(3.7) y(t) = eν∞(t, t0)(c + o(1)),

as t → +∞. Conversely, given any c ∈ C there is a solution of (1.3) which satisfies

(3.7). Since T : B01(t0) → B01(t0) is a contraction,

lim
n→+∞

‖T n(0) − ν∞‖t0,0 = 0.

Notice that T n(0) can be written as the partial sum

T n(0) = T (0) +
n
∑

j=2

(T j(0) − T j−1(0)).

Now T (0) = b(t), T j+1(0) − T j(0) = ∆j(t), where

∆j(t) = b(t)[eµj
(τ(t), t) − eµj−1

(τ(t), t)],

µj(t) = b(t)eµj−1
(τ(t), t), for all t ≥ t0 + jr0, µj(t) = 0 for all t ∈ [t0, t0 + jr0[, µ0 = 0

and j ∈ N. So, a formula of ν∞ in (3.3) is obtained.
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As it can be seen in [6, 18], condition (3.2) is a condition of non oscillation for

equation (1.3).

Remark 3.3. For making easier the understanding of the asymptotic formula (3.3),

consider νn(t) = 0 for t ∈ [t0, t0 + r0[ and

νn(t) = b(t) +

n
∑

j=1

∆j(t),

for t ≥ t0 + r0 and n ∈ N in Proposition 3.2. Then, given n0 ∈ N, νn(t) = νn0(t) for

all t ∈ [t0, t0 + n0r0[ and n ≥ t0 + n0. So, (3.3) may be written as an step asymptotic

function:

y(t) = eνnt
(t, t0)(c + o(1)),

as t → +∞, where nt ∈ N is such that t0 ≤ t < t0 + ntr0.

Remark 3.4. If b ∈ L
p
T
(t0) for some p > 1 then (3.2) is satisfied for t0 large enough.

Let n ∈ N∪ {0} be such that p ∈]2n, 2n+1]. By Remark 2.3,
∑+∞

j=n+1 ∆j ∈ L1. So, ν∞

in (3.3) may be written as:

y(t) = eνn
(t, t0)(c + o(1)),

as t → +∞, where

νn(t) = b(t) +

n
∑

j=1

∆j(t).

4. APPLICATIONS

4.1. Large enough limit points in a time scale. Assume that T is a time scale

satisfying (1.4) such that given t0 ∈ T, there is a limit point t∞ ∈ T with t∞ ≥ t0.

Then (3.2) becomes,

(4.1) Θ = e sup
t≥r0

∫ τ−1(t)

t

|b(ζ)|∆ζ < 1.

In fact, given a limit point t∞ ∈ T, there is a sequence (νn)+∞
n=1 where t∞ ∈

+∞
⋂

n=1

supp(νn)

such that lim
n→+∞

e‖νn‖(σ(t), τ(t)) = e. In this case, condition (4.1) can be expressed as

(4.2) sup
t≥t0

∫ τ−1(t)

t

|b(ζ)|∆ζ <
1

e
,

for t0 large enough.
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4.2. Case T is given by (1.2). If T is given by (1.2), T has large enough limit

points. Then, (3.2) becomes (4.2). By applying of the formula in (2.2), the following

result is obtained:

Corollary 4.1. Consider the linear functional differential equation

(4.3) y∆(t) = b(t)y(τ(t)), t ≥ 0

where

b : [0, +∞[∩T → C

is a locally integrable function such that

sup
t≥t0

[

∫ bnt

t

b(ζ)dζ +

n
τ−1(t)−1
∑

j=nt

mj
∑

k=1

b(pj,k−1)(pj,k − pj,k−1)(4.4)

+

n
τ−1(t)−1
∑

j=nt+1

∫ bj

aj

b(ζ)dζ +

∫ τ−1(t)

ant

b(ζ)dζ

]

<
1

e
,

for t0 large enough, where for s = t or s = τ−1(t) there is ns ∈ N such that ans
≤ s ≤

bns
.

Then, every solution of (4.3) has the following asymptotic formula

y(t) = exp

(
∫ bnt0

t0

[b(ζ) + ∆j(ζ)]dζ

)

(4.5)

×





n
τ−1(t)−1
∏

j=nt0

mj
∏

k=1

[1 + [b(pj,k−1) + ∆j(pj,k−1)](pj,k − pj,k−1)]





× exp





n
τ−1(t)−1
∑

j=nt0+1

∫ bj

aj

[b(ζ) + ∆j(ζ)]dζ





× exp

(

∫ τ−1(t)

ant0

[b(ζ) + ∆j(ζ)]dζ

)

(c + o(1)),

as t → +∞, where bj = pj,0 < pj,1 < · · · < pj,mj
= aj+1,

∆j(t) = b(t)
[

eµj
(τ(t), t) − eµj−1

(τ(t), t)
]

,

µj(t) = b(t)eµj−1
(τ(t), t), for all t ≥ t0 + jr0, µj(t) = 0 for all t < t0 + jr0, µ0 = 0 and

j ∈ N. Conversely, given c ∈ C there is a solution y = y(t) of (4.3) satisfying (4.5).

Extensions for t = pj,k or τ−1(t) = pj,k can be naturally obtained.
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4.3. Case T = R. The following corollary is an obvious consequence of the Corol-

lary 4.1.

Corollary 4.2 (See [10, (2004)]). Consider the linear functional differential equation

(4.6) y′(t) = b(t)y(τ(t)), t ≥ 0

where

b : [0, +∞[→ C

is a locally integrable function such that

(4.7) sup
t≥t0

∫ τ−1(t)

t

|b(s)|ds <
1

e
,

for t0 large enough. Then, every solution of (4.6) has the following asymptotic for-

mula

(4.8) y(t) = exp

(

∫ t

r0

[

b(s) +
+∞
∑

j=1

∆j(s)

]

ds

)

(c + o(1)),

as t → +∞, where

∆j(t) = b(t)[e
R τ(t)

t
µj(ζ)dζ − e

R τ(t)
t

µj−1(ζ)dζ ],

µj(t) = b(t)e
R τ(t)

t
µj−1(ζ)dζ , for all t ≥ jr0, µj(t) = 0 for all t ∈ [0, jr0[, µ0 = 0 and

j ∈ N. Conversely, given c ∈ C there is a solution y = y(t) of (4.6) satisfying (4.8).

Remark 4.3. Haddock-Sacker [14] proposed a conjecture which they proved for a

scalar delay differential equation of the form

x′(t) = λ0(t)x(t) + b̃(t)x(t − r0),

where e
−

R t

t−r0
λ0(s)ds

b̃(t) ∈ L2. By mean the change of variables x = exp
(

∫ t

r0
λ0(s)ds

)

y,

it is obtained the delay differential equation

y′(t) = b(t)y(t − r0),

where b = e
−

R t

t−r0
λ0(s)ds

b̃(t). From Remark 3.4, (4.8) can be written as

y(t) = exp

(
∫ t

r0

b(s)ds

)

(c + o(1)),

as t → +∞ which is the scalar Haddock-Sacker result.



176 S. CASTILLO AND M. PINTO

4.4. Case T = Z. Consider T = Z and τ(n) = n − k. Then,

sup

{

n−1
∏

ζ=n−k

[1 + v(ζ)] :

n+k−1
∑

ζ=n

|v(ζ)| ≤ 1

}

=

(

1 +
1

k

)k

.

So, the relation (3.2) becomes

(4.9) sup
n≥n0

n−1
∑

ζ=n−k

|b(ζ)| <

(

k

k + 1

)k+1

,

where n0 ∈ N is so large as it would be necessary. So, the following corollary is

obtained as a consequence of Proposition 3.2.

Corollary 4.4. Consider the linear functional differential equation

(4.10) ∆y(n) = b(n)y(n − k),

where ∆y(n) = y(n + 1)− y(n), k ∈ N, (b(n))+∞
n=0 is a sequence of real numbers which

satisfies (4.9) for n0 large enough. Then, every solution of (4.10) has the following

asymptotic formula

(4.11) y(n) =

[

n−1
∏

ζ=N

[

1 +

(

ζ−1
∏

l=j−k

b(l)

)

+
+∞
∑

j=1

∆j(ζ)

]]

(c + o(1)),

as n → +∞, where

∆j(n) = b(n)

[

n
∏

ζ=n−k

1

1 + µj(ζ)
−

n
∏

ζ=n−k

1

1 + µj−1(ζ)

]

,

µj(n) = b(n)
∏n

ζ=n−k
1

1+µj−1(ζ)
, for all n ≥ jk, µj(n) = 0 for all n < jk, µ0 = 0 and

j ∈ N. Conversely, given c ∈ C there is a solution y = y(n) of (4.10) satisfying

(4.11).

Remark 4.5. The reader can compare the smallness condition (4.9) with those ones

by Győri-Pituk’s [13, Theorem 1]. They ask in their Theorem 1 a condition like (4.9)

and a ℓp smallness condition. They get a recursive asymptotic formula as it is done

here. Fon N large enough, ℓp smallness condition implies (4.9).
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