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ABSTRACT. In this article, we show that the oscillation of all solutions to the neutral equation

n m

[ (t) = RN (2 (t = r)) + D Pi(t) Fi(w(t —m)) =Y Qi (1) Gy ((t —0;)) =0

i=1 j=1
is implied by the oscillation of all solutions to the linear equation

m

[a:(t)—m:(t—li)]l—i-z Z z(t—oj) =

In these equations, R,F;, (Q; are positive and continuous functions, and &, 7;, 0; are positive constants

that represent delays.

Key Words. Oscillation, Nonlinear, Linearized, Neutral, Delay, Positive and Negative Coefficients

AMS (MOS) Subject Classification. 34K40, 34K99, 34C10

1. INTRODUCTION

There is a lot of interest in the oscillation of solutions to delay differential equa-
tions, mainly because of their applications in physics, ecology, biology, etc. In partic-

ular, we are interested in the oscillation of solutions to

(1.1) [z (t) = R(t)N (z (t — k) +ZP z(t—7))

_ZQ] z(t—o5)) =0,

which is a neutral delay equation with several positive and negative coefficients. This
equation includes the equation studied by Q. Chuanxi and G. Ladas [2], L. Erbe et
al [6, page 185] and 0. Ocalan et al [12]. Their equation is

[2(t) = RON (@t —r)]+ PO F(z(t—7) - Q)G (x(t—0)) =0,
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which is the same as (1.1), only with n = m = 1. When N, F;, G, are identity functions
n (1.1), we obtain

(12) [z(@t)—R@)x(t— k)] +ZP z(t—7)— ZQ] z(t—o;) =0

for which oscillation and non-oscillation has been studied by Z. Luo and J. Shen [10].
When n =m =1 in (1.2), we have

[z(t)-Rt)z(t—r)] +Pt)xt—-—7)—Qt)x(t—0)=0
which was studied in [2, 7,9, 11, 13, 14]. As far as we know, this is the first publication
on the oscillation of solutions to (1.1); therefore our results are new.

As usual we call a function is oscillatory if it has arbitrary large zeros otherwise

we call it nonoscillatory.

In Section 2 we will associate (1.1) with
(1.3) [z (t) —rz (t — k)] + Zpix (t—m)— Z gr(t—o0;)=0
i=1 Jj=1

which is a linear autonomous neutral equation. In (1.3), coefficients are as follows:
ro=limsup R(t), p;:= li{n inf P;(t) and ¢; :=limsup@;(t)

t—o00 —0 t—o0
fori=1,2,...,n,7=1,2,...,m. Under the following hypothesis (1.1) is associated
with (1.3).

(Hy) R, PZ,Q] € C([to,0),R*) and N, F;,G; € C(R,R) for i = 1,2,...,n and
1,2,..

(H2) k>0 and r,7 € (0,1) where 7 := liminf, . R ().
(

(

Hs3) 0 N( ) <1 for s # 0 and lim,_, N (s)
s

Hy) There exits J; sets for i = 1,2,...,u, where u < n such that

=1.

OJi:{l,Q,...,m} and ﬁJi:@.
i=1

j=1

(Hia) 11 < i < uthen 7y > 05 > 0 for j € J; else 7; > 0,

(Hy;0) ¢ >0for j=1,2,...,m
If1<i<wthenp;—> ., ¢ >0elsep; >0,

(Hy; ¢) There exists positive constants M; such that

G, (s)

O<G()<Mfors7£0hm =1forj=1,2,.
s

F
If 1 <i<wthen Fj(s) > G, (s) for j € J; else lim,_,oc ——
(Hyd) 1>7r+ 370> Mg, (1 — 0j).
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2. LINEARIZED OSCILLATION OF EQUATION (1.1)
In this section, we give two general lemmas and prove our objective.

Lemma 2.1. Assume that v € (0,1], k > 0, (Hy;a) and (Hy;b) holds. If every

solution of

(2.1) [z (t) —ra (t — K)] + Zpix (t—m)— Z gr(t—o;)=0

i=1

oscillates then there exits a positive o such that

(g +¢)z(t—0;)=0

Ms

(2.2) [z (t) = (r—e)z (t — k)] +Z x(t—m)—

1

J

is oscillatory, where €,&;,(; € [0,e9) fori=1,...,nandj=1,...,m.

Proof. To prove this lemma, it suffices to show that the characteristic equation of
(2.2) has no real roots. The assumption that every solution of (2.1) oscillates implies
that

FO) =X —rde ™+ Zpie_m - Z gje 1 =
j=1

i=1
has no real roots. By (Hy;a) and (Hy;b) we have that

FO)=A—rXe™™ + z“: (pie_h — Z qje_A"J) + z": pie i

i=1 jeT; i=u+l

50 lim|y—oc [ (A) = 0o. Then f(X) > 0 holds for A € R. Now define

Pi— 2 jesn s, 1<i<u

M :=min f(A), vi:=

and

L 1 — MK — AT —Aoj
5'_M1I2<H{TUZ} and g (\) == <|)\| +Ze +Ze )

Clearly 6 > 0. Observing that

n m

FO)=gN) =A=(FA+5ANe™ +> (p—8)e™ = (g +8)e 7,
i=1 j=1
we have limy— (f (A) — g (X)) = oo. In particular there exits a A\g > 0 such that
fA)—g(A) > n%n for [A| > Ag. Now set gy := d min {1, Wﬂg(—ko)} To complete
the proof, it suffices to show that for any ¢,&;,(; € [0,¢¢) for i = 1,...,n and for

7=1....m

h ()\) =A - (T - 5) Ae M + Z (pi - gz) e i — Z (q]' + CJ) e N — ()
i=1 =
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has no real roots which is the characteristic equation of (2.2). In fact, for |A\| > Ag

h(\) = f(A\) +exe™? Z e T — Z Cje_Mj
j=1

> FO) = e = 3 g = 3 G
i=1 J=1

and for [A| < Ao

thZfCU—aoQ%MM“+2}W”+§:@Wﬁ
i=1 j=1

M
= f(\) — X)) >M—9
F ) = 20g (<o) = M —6———
_ r M
(n+m+1)(n+m)
> M — M > 0.

(n+m+1)(n+m)
U

Lemma 2.2. Assume that & > 0,0;,5;,v > 0, (Hg;a), R € C([T,0),(0,00)),
Fy,G; € C(RY,RT) forj=1,....m, k =u-+1,....,n. And furthermore, G;, Hy
functions are nondecreasing in a neighborhood of the origin. Define M = max {k,7i}

and suppose that the integral inequality

z(t)>R(t)z(t—/{)—|—kZ vk/t Fi (2 (s))ds
(23) . o .
2.3 N ;Z <aj /t_ "G (2(s))ds + 5 /t_ G, (2 (s)) ds)

has a solution z € C ([T — M,00),R") such that lim;_., z (t) = 0. Then the corre-
sponding integral equality

yt)=RMOyt—r)+ Y %/too Fi (y (s))ds
(2.4) . e .
+ZZ<%/_ Gj(y(S))dS+ﬁ][_ G](y(s))ds)

has a solution y € C ([T — M, 00) ,R") such that lim;_.. y (t) = 0.

Proof. Choose a T} > T and a § > 0 such that 0 < z(t) < § for t > T3 — M

and Fj, (s),G; (s) functions are nondecreasing for s € [0,0] for j = 1,...,m, k =
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u+1,...,n. Now define a set of functions
Q={weC(I'—Moo),RY):0<w(t)<z(t), t>T—-M}

and a mapping ¥ on 2 as the following

[ R(tyw(t—n)+ T umkf;’ik Fy (w(5)) ds

+2 i Zjel (% I L Gy(w(s))ds ; t=>1Th

8 I, G (w (s)) ds)
\(\Ifw)(Tl)jLz()—z(Tl), T-M<t<T.

(2.5) (Yw)(t) :=

It is obvious that ¥ is continuous. Also, for wy,wy € Q satisfying w; < wsy, satisfy
Vw; < Ywy. From (2.3), 2 > ¥z and so w € 2 implies 0 < Yw < ¥z < z. Thus,
U e C(92,0). Now define a sequence of functions {y,} on Q as follows:

z, n=>0

Yy,—1, n=12....

Yn =

By induction, we see that
0<yp<yp1<zfort>T— M.

Set y (t) := limy, o0 Y (t) for ¢t > T'— M. Then y (t) satisfies (2.4) by Lebesgue’s dom-
inant convergence theorem. From (2.5), y (¢) > 0 for T'— M <t < Tj. Consequently,
y(t) >0fort > T — M. It is clear that lim; ., y (f) = 0 holds. O

Theorem 2.3. Assume that (Hy)—(Hy) holds. If every solution of (1.3) is oscillatory

then every solution of (1.1) is also oscillatory.

Proof. Assume for the sake of contradiction that (1.1) has an eventually positive
solution x (t) and every solution of (1.3) oscillates. Then by the assumption, the

characteristic equation of (1.3)
) =X—rie ™+ Zpie_”" — Z gje 1 =
i=1 j=1

has no real roots. From (Hy;a) and (Hg;b), we have f(0) > 0 as in Lemma 2.1,
which implies f (A) > 0 holds for A € R. In the view of (Hy;b) set v; numbers for
J=1,2,...,m such

v; —q; > 0 and Zvj:piforlgigu
Jj€J;

Pick b;,c; > 0 for j =1,2,...,m arbitrary small such satisfies

(2.6) (vj —¢j) — (g5 +b;) >0
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and by considering (Hy; d)

(2.7) 1>r+ZZM (g + b)) (1 — o) .

i=1 jeJ;
Set
ai::ch>Ofor1§i§u

Jj€J;
and pick arbitrary small a; > 0 for u+1 <4 < n such that (p; — ;) > 0. By summing
(26)forje J, (i=1,2,..., u), we have
(pz — ai) — Z (q] + b]) > 0.
JE€J;

By (1.1), (H3) and (Hy; ¢), for sufficiently large ¢, we have

0> [z(t)— R(t)N (z(t — K)) +Z z(t =)

m

QJ+b t—aj))
7j=1

for ¢ > t;. Now set

(2.8) z(t):=x(t)—R({t)N (x(t —k)) Z Z (g; + b)) / %j G (z(s))ds.

i=1 jeJ;

By the assumption (Hy;c)

—ZZ (45 + ;) (G (2 (t = 7)) = G (¢ (t = 7)))

=[z(t)—=RE)N (z(t— k) 2; (g; +b;) G (z (t — 0}))
+2; g +0,)G; (z(t—7))

=[xt —RON(z(t—r)] - g@ﬁb)G( z (t—o0y))
+21; 4 +0,)G;(z(t—7)).

By (1.1) and (2.6)



NONLINEAR NEUTRAL DIFFERENTIAL EQUATIONS 205

z—sz—wE@ﬁ—nD—zX%+HG((“”m

n

= > (i a) Fi(z(t—m))

< —ZZ(% —¢;) Fi (v (t — 7)) —Z(Qj+bj)Gj (z(t—m))
- Z (pi —a;) Fi(x (t — 7))
< —ZZ(W —¢j) G (x(t—7)) — Z(% +0;) Gj (x (t — 7))
i=1 jeJ; jed;
- Z (pi —a;) Fi (x (t — 7))
so we have
2 ==Y (05— ¢) = (g + 1)) G (z (t — 7))
(2.9) e
— Z (pi —a;) F; (z(t—m;)) <0,

which implies that z (¢) is decreasing. Now we claim that z (¢) is bounded. Oth-
erwise there exits a sequence {t,} such lim, ., = 0o, z (t,) = max,<, = (s) and
lim,, . 2 (t,) = oco. Then by hypotheses (H,), (Hs), (Hy;c) and (2.7)

2 (tn) = 2 (t) — R (t2) N (z (tn — r) ZZ (g; +b;) /n_ojGj(x(s))ds
=1 jeJ; bn—Ti
> o (t) ~ R(t) e, - )
: " G (o (5)
- (g; + b;) — L r(s)ds
;%q AM z(s)
(tn) (1 —T—ZZMj (Qj+bj)<7i_aj)> — 00 as n — 0o,
i=1 jcJ;

which contradicts (2.7). Therefore, x(¢) is bounded and so is z (t). Now define
0 :=lim;_, 2z (t) and by integrating (2.7), we have

0 — 2z (t) ZZ vj —¢j) q]—l—b))/ooGj(x(s—Ti))ds

i=1 jeJ; t1

Y /oo (2 (s — 7)) ds.

i=u+1 t
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We claim that liminf; .. z (¢) = 0 otherwise from (Hy;c) there would exist a ty > #;

and 1 > 0 such z (t —7;) > ey forallt > 5,9 =1,...,n. Then
z () >£+ZZ —(g; +1b)) / G (x(s—m))ds
i=1 j€J; a1
+ Z (pi—ai)/ Fi(z(s—m7))ds
t=u+1 1
>€+ZZ vj —¢;) q]+b))/ G, (e1)ds
= t
(2.10) . N 2
+ Z (pi — ai)/ Fi(e1)ds,
i=u+1 t2
which contradicts decreasing behavior of z(¢). Thus liminf, .2 () = 0 holds

and this means ¢ < 0 because from (2.8), z(t) < z(t) for t > ¢;. Now we claim
limy .o,z (t) = 0 and define p := limsup,_, . = (t). So there exists a sequence {t,}
such lim,, .o t, = oo and lim,_, « (f,) = . On the other hand, for arbitrary small
€9 >0

Letting n — oo we obtain

0> pu—(p+e2) <T+ZZM (g; + b)) —aj)>.

i=1 jeJ;

Since, in the view of b; (j = 1,2,...,m) numbers are arbitrary small, e, can be suffi-

ciently small. So we have

€>u<1—r—ZZM (gj +b;) —a])>,

=1 jeJ;

which together ¢ < 0 and (2.7), implies = ¢ = 0. Hence lim;_., z (t) = 0 and so
limy . 2 (t) = 0. Together with (2.9) and (2.10), we obtain

n

v ()= RON@E—nm)+ Y <pi—ai>/°° F (2 (s)) ds

i=u+1

+ZZ — (g + b)) / G (

i=1 jelJ;
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+ZZ+ (q; +b;) / | G, (z(s))ds

i=1 jeJ;

or equivalently

ez RO+ 3 e [ ey as

z(t — k) i=ut1 . 2 (s)
= G(x(s))
+ i —C5) i+ b)) —————"x(s)ds
;; & /t—'ri z (s)
Gy (2 (s)
+ i +bj) x(s)ds.
ZZ v |

Pick 0 < g5 < mminlﬁgm{ qib } Then by assumptions (Hs), (H3) and

(Hy; ¢) and for sufficiently large t3 > t;

n

P2 r—ea(t—r) + (-2 > i-a) [ (s

Flme) S (o)~ b)) [ @ dst () [ el ds

i=1 jeJ;

T <<pz—ai>—2<qj+bj>> | e
+Z(qj+bj)/t__ojx(s)ds
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(pi—ai)/t_ z(s)ds — (1 —e3) ZZ (g; +b;) / x(s)ds

S
—_
|
™
w
N—
.
Il M:
o

i=1 jeJ; 93
r=e)alt-n)+ (=) Y (i-a) [ a(s)ds
i=1 t—m;
—(1—83)Z(q]‘+bj)/ m(s)ds
j=1 t=0o;
for t > t3. By Lemma 2.2, the equation
y(t) = (r—e)yt—r)+(1—2) > (i —ay / y(s)ds
i=1 t—=T;
1—532(]j+bj)/ y(s)ds
=1 ~7%

has a solutiony € C ([T — M, o0) ,RT), where M := maxy<;<, {k,7;} and T' > t5+ M.

Thus, y is a positive solution of the neutral equation

() —(r—es)yt—r))
+(1—€3)<Z(pi— Dyt —m7)— Zq]+b t—aj)>:0.

i=1
By defining & = a; + e3(p; —a;) (i = 1,2,...,n) and (5 := b; —e3(q; + ;) (J =
1,2,...,m) which are arbitrary small positive numbers, we have

(y(t) — (r—e3)y (t — k) +Z y(t— 1) Zqﬁcj (t—o;) =0.

Hence by Lemma 2.1, (1.3) has a positive solution. This is the contradiction com-

pleting the proof. O
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