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ABSTRACT. In this paper we establish the existence or nonexistence of positive solutions for

singular third-order three-point nonhomogeneous boundary value problem. First, we give a new

form of the solution, and then, some useful properties of the Green’s function are obtained by a new

method. Finally, we employ a cone theoretic fixed-point index theorem to establish our results.
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1. INTRODUCTION

Third-order differential equations arise in a variety of different areas of applied

mathematics and physics, for example, in the deflection of a curved beam having

a constant and varying cross section, a three-layer beam, electromagnetic waves or

gravity driven flows and so on [6, 8, 15]. Recently, there is much attention being

paid to the questions of positive solutions of third order three-point boundary value

problem (BVP for short), see [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 16, 17] and the references

therein.

Motivated greatly by the above-mentioned excellent works, here, we consider the

existence and nonexistence of positive solutions for the following singular third order

three-point nonhomogeneous BVP

u′′′(t) + a(t)f(u(t)) = 0, 0 < t < 1,(1.1)

u(0) = u′′(0) = 0, u(1) − αu(η) = λ,(1.2)

where 0 < η < 1, 0 < α < 1/η, a(t) is allowed to be singular at t = 0 or t = 1,

λ ∈ (0, +∞) is a parameter. In order to get positive solutions for BVP (1.1) and

(1.2), it is assumed throughout that

(A1) a(t) ∈ C((0, 1), [0, +∞)), a(t) do not vanish identically on any subinterval of

(0, 1), and 0 <
∫ 1

0
g(s)a(s)ds < +∞ (g(s) will be given in Lemma 2.2);
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(A2) f ∈ C([0, +∞), [0, +∞)).

In this work we first give a new form of the solution, and then, some useful prop-

erties of the corresponding Green’s function are obtained by a new method. Finally,

by employing the fixed point index theorem and Schauder’s fixed point theorem, some

sufficient conditions guaranteeing the existence or nonexistence of positive solution if

the nonlinearity f is either superlinear or sublinear are established to BVP (1.1) and

(1.2).

The rest of the paper is organized as follows. In Section 2, we give some prelim-

inaries and lemmas which are needed later. Then the main results on the existence

or nonexistence of positive solution are presented in Section 3.

2. PRELIMINARIES

In this section, we present some preliminaries and lemmas which are useful to

the proof of the main results.

Lemma 2.1. For y ∈ C[0, 1], the BVP

u′′′(t) + y(t) = 0, 0 < t < 1,(2.1)

u(0) = u′′(0) = 0, u(1) − αu(η) = λ(2.2)

has a unique solution u(t) =
∫ 1

0
G(t, s)y(s)ds+ αt

2(1−αη)

∫ 1

0
G(η, s)y(s)ds+ λt

1−αη
, where

G(t, s) =
1

2







(1 − t)(t − s2), 0 ≤ s ≤ t ≤ 1,

t(1 − s)2, 0 ≤ t ≤ s ≤ 1.
(2.3)

Proof. In fact, if u(t) is a solution of the BVP (2.1) and (2.2), then we may suppose

that u(t) = −1
2

∫ t

0
(t − s)2y(s)ds + At2 + Bt + C. By the boundary conditions (2.2),

we have A = C = 0 and

B =
1

2(1 − αη)

∫ 1

0

(1 − s)2y(s)ds −
α

2(1 − αη)

∫ η

0

(η − s)2y(s)ds +
λ

1 − αη
.

As a result, BVP (2.1) and (2.2) has a unique solution

u(t) = −
1

2

∫ t

0

(t − s)2y(s)ds +
t

2(1 − αη)

∫ 1

0

(1 − s)2y(s)ds

−
αt

2(1 − αη)

∫ η

0

(η − s)2y(s)ds +
λt

1 − αη

= −
1

2

∫ t

0

(t − s)2y(s)ds +
t

2

∫ 1

0

(1 − s)2y(s)ds +
tαη

2(1 − αη)

∫ 1

0

(1 − s)2y(s)ds

−
αt

2(1 − αη)

∫ η

0

(η − s)2y(s)ds +
λt

1 − αη

=
1

2

∫ t

0

(1 − t)(t − s2)y(s)ds +
1

2

∫ 1

t

t(1 − s)2y(s)ds
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+
αt

2(1 − αη)

∫ η

0

(1 − η)(η − s2)y(s)ds

+
αt

2(1 − αη)

∫ 1

η

η(1 − s)2y(s)ds +
λt

1 − αη

=

∫ 1

0

G(t, s)y(s)ds +
αt

2(1 − αη)

∫ 1

0

G(η, s)y(s)ds +
λt

1 − αη
.

The proof is complete.

Lemma 2.2. For the function G(t, s), we have the following results:

(i) 0 ≤ G(t, s) ≤ g(s) for (t, s) ∈ [0, 1] × [0, 1], where g(s) = (1−s2)2

8
;

(ii) G(t, s) ≥ 1
4
g(s) for (t, s) ∈ [1

4
, 3

4
] × [0, 1].

Proof. (i) G(t, s) ≥ 0 is obvious. Next we prove G(t, s) ≤ g(s).

In fact, if s ≤ t, we find G(t, s) = 1
2
(1− t)(t−s2) = 1

2
(−t2 + (1 + s2)t − s2) has a

maximum value (1−s2)2

8
, if t ≤ s, we know G(t, s) = 1

2
t(1− s)2 ≤ (1− s)2(1 + s)2/8 =

(1 − s2)2/8.

(ii) For any (t, s) ∈ [1
4
, 3

4
] × [0, 1], if s ≤ t, from (2.3) we have

G(t, s) =
1

2
(1 − t)(t − s2) =

t(1 − s2)2

8
+

1

2

[

(1 − t)(t − s2) −
t(1 − s2)2

4

]

,

since the quadratic function x(t) = −t2 +(1+ s2− (1−s2)2

4
)t−s2 ≥ 0 for t ∈ [1/4, 3/4],

so

G(t, s) =
1

2
(1 − t)(t − s2) ≥

t(1 − s2)2

8
≥

1

4
g(s).

If t ≤ s, then G(t, s) = 1
2
t(1 − s)2 ≥ t(1−s)2(1+s)2

8
≥ 1

4
g(s). The proof is complete.

Let E = C[0, 1] with the norm ‖u‖ = maxt∈[0,1] |u(t)|. Then, E is a Banach space.

If we let

K =

{

u ∈ E : u(t) ≥ 0, t ∈ [0, 1], min
1/4≤t≤3/4

u(t) ≥
1

4
‖u‖

}

,

then K is a cone of E. Denote Kr = {u ∈ K | ‖u‖ < r}, ∂Kr = {u ∈ K | ‖u‖ = r}

for r > 0.

For u ∈ E, we define the operator T by

Tu(t) =

∫ 1

0

G(t, s)a(s)f(u(s))ds +
αt

2(1 − αη)

∫ 1

0

G(η, s)a(s)f(u(s))ds +
λt

1 − αη
.

(2.4)

By Lemma 2.1, BVP (1.1) and (1.2) has a solution u = u(t) if and only if u is a fixed

point of T .
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Lemma 2.3 ([12]). Suppose that E ia a Banach space, Tn : E → E (n =, 1, 2, 3, . . . )

are completely continuous operators, T : E → E, and

lim
n→∞

max
‖u‖<r

‖Tnu − Tu‖ = 0 for r > 0,

then T is a completely continuous operator.

Lemma 2.4. The operator T : K → K is completely continuous.

Proof. It follows from (2.4) and Lemma 2.2, we know that for u ∈ K, t ∈ [0, 1],

0 ≤ Tu(t) ≤

∫ 1

0

g(s)a(s)f(u(s))ds +
α

2(1 − αη)

∫ 1

0

G(η, s)a(s)f(u(s))ds +
λ

1 − αη
,

thus,

‖Tu‖ ≤

∫ 1

0

g(s)a(s)f(u(s))ds +
α

2(1 − αη)

∫ 1

0

G(η, s)a(s)f(u(s))ds +
λ

1 − αη
.

On the other hand, Lemma 2.2 imply that, for any t ∈ [1
4
, 3

4
],

Tu(t) =

∫ 1

0

G(t, s)a(s)f(u(s))ds +
αt

2(1 − αη)

∫ 1

0

G(η, s)a(s)f(u(s))ds +
λt

1 − αη

≥
1

4

[
∫ 1

0

g(s)a(s)f(u(s))ds +
α

2(1 − αη)

∫ 1

0

G(η, s)a(s)f(u(s))ds +
λ

1 − αη

]

.

Therefore,

min
1/4≤t≤3/4

Tu(t) ≥
1

4
‖Tu‖.

Hence, operator T satisfies T (K) ⊆ K.

In the following we prove that T is a completely continuous operator. For any

natural number n (n ≥ 2), we define the function an(t) by

an(t) =



















inf{a(t), a( 1
n
)}, 0 < t ≤ 1

n
,

a(t), 1
n
≤ t ≤ 1 − 1

n
,

inf{a(t), a(1 − 1
n
)}, 1 − 1

n
≤ t < 1

and operator Tn : K → K by

Tnu(t) =

∫ 1

0

G(t, s)an(s)f(u(s))ds +
αt

2(1 − αη)

∫ 1

0

G(η, s)an(s)f(u(s))ds +
λt

1 − αη
.

Obviously, Tn is completely continuous on K for any n ≥ 2 by an application of

Ascoli-Arzela theorem. For a cone KR, then Tn converges uniformly to T as n → ∞.

In fact, for any t ∈ [0, 1], for each fixed R > 0 and u ∈ KR, when n → ∞, we get

|Tnu(t) − Tu(t)|

=
∣

∣

∣

∫ 1

0

G(t, s)[an(s) − a(s)]f(u(s))ds
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+
αt

2(1 − αη)

∫ 1

0

G(η, s)[an(s) − a(s)]f(u(s))ds
∣

∣

∣

≤

∫ 1/n

0

g(s)|an(s) − a(s)|f(u(s))ds +
αt

2(1 − αη)

∫ 1/n

0

g(s)|an(s) − a(s)|f(u(s))ds

+

∫ 1

1−1/n

g(s)|an(s) − a(s)|f(u(s))ds

+
αt

2(1 − αη)

∫ 1

1−1/n

g(s)|an(s) − a(s)|f(u(s))ds → 0,

where we have used the fact that G(t, s) ≤ g(s) for 0 ≤ t, s ≤ 1. Hence Tn converges

uniformly to T as n → ∞, and therefore T is completely continuous by Lemma 2.3.

To prove our main results, we need the following lemma.

Lemma 2.5 ([11]). Let ϕ : K → K be a completely continuous mapping and ϕu 6= u

for u ∈ ∂Kr. Then we have the following conclusions:

(1) if ‖ϕu‖ ≥ ‖u‖ for u ∈ ∂Kr, then i(ϕ, Kr, K) = 0;

(2) if ‖ϕu‖ ≤ ‖u‖ for u ∈ ∂Kr, then i(ϕ, Kr, K) = 1.

3. MAIN RESULTS

In this section, we will state and prove our main results. Throughout this section,

we shall use the following notation:

N1 =

(
∫ 1

0

g(s)a(s)ds +
α

2(1 − αη)

∫ 1

0

g(s)a(s)ds

)−1

,

N2 =

(

1

4

∫ 3/4

1/4

g(s)a(s)ds +
α

8(1 − αη)

∫ 3/4

1/4

G(η, s)a(s)ds

)−1

.

Then it is obvious that 0 < N1 < N2. We define

f0 = lim
u→0+

f(u)

u
, f∞ = lim

u→∞

f(u)

u
.

Theorem 3.1. Assume that there is r1 > 0 such that f(u) < N1

2
r1 for u ∈ [0, r1].

If f∞ = ∞, then BVP (1.1) and (1.2) has at least one positive solution for λ small

enough and has no positive solution for λ large enough.

Proof. For r1, let λ satisfy

0 < λ <
(1 − αη)r1

2
.(3.1)
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Then for any u ∈ ∂Kr1
, it follows from Lemma 2.2, (2.4), (3.1) and the assumption

f(u) < N1

2
r1 for u ∈ [0, r1] that for t ∈ [0, 1],

Tu(t) =

∫ 1

0

G(t, s)a(s)f(u(s))ds +
αt

2(1 − αη)

∫ 1

0

G(η, s)a(s)f(u(s))ds +
λt

1 − αη

≤

∫ 1

0

g(s)a(s)f(u(s))ds +
α

2(1 − αη)

∫ 1

0

g(s)a(s)f(u(s))ds +
λ

1 − αη

<
N1r1

2

(
∫ 1

0

g(s)a(s)ds +
α

2(1 − αη)

∫ 1

0

g(s)a(s)ds

)

+
r1

2

=
r1

2
+

r1

2
= ‖u‖,

that is

‖Tu‖ < ‖u‖ for u ∈ ∂Kr1
.(3.2)

On the other hand, since f∞ = ∞, for N2, there exists R1 > r1 such that

f(u) ≥ 4N2u, u ∈ [R1/4,∞) .(3.3)

Then for u ∈ ∂KR1
, then u(t) ≥ ‖u‖

4
= R1

4
, t ∈ [1

4
, 3

4
], so in view of Lemma 2.2, (2.4)

and (3.3), we conclude that for t ∈ [1
4
, 3

4
],

Tu(t) =

∫ 1

0

G(t, s)a(s)f(u(s))ds +
αt

2(1 − αη)

∫ 1

0

G(η, s)a(s)f(u(s))ds +
λt

1 − αη

>
1

4

∫ 3/4

1/4

g(s)a(s)f(u(s))ds +
α

8(1 − αη)

∫ 3/4

1/4

G(η, s)a(s)f(u(s))ds

>
1

4

∫ 3/4

1/4

g(s)a(s)4N2u(s)ds +
α

8(1 − αη)

∫ 3/4

1/4

G(η, s)a(s)4N2u(s)ds

≥ N2

(

∫ 3/4

1/4

g(s)a(s)ds +
α

2(1 − αη)

∫ 3/4

1/4

G(η, s)a(s)ds

)

‖u‖

4

= ‖u‖,

which implies that

‖Tu‖ > ‖u‖ for u ∈ ∂KR1
.(3.4)

Therefore, by Lemma 2.5, (3.2), (3.4) and the property of fixed-point index, we obtain

i(T, KR1
\Kr1

, K) = i(T, KR1
, K) − i(T, Kr1

, K) = 0 − 1 = −1.

Thus the operator T has at least one fixed point u ∈ KR1
\K̄r1

, which is a positive

solution of BVP (1.1) and (1.2).

Next we prove that BVP (1.1) and (1.2) has no positive solution for λ large

enough. Otherwise, there exist 0 < λ1 < λ2 < · · · < λn < · · · , with limn→∞ λn = +∞,

for any positive integer n, the problem

u′′′(t) + a(t)f(u(t)) = 0, 0 < t < 1,(3.5)
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u(0) = u′′(0) = 0, u(1) − αu(η) = λn(3.6)

has a positive solution un. By (2.4), we get

un(1) =

∫ 1

0

G(1, s)a(s)f(un(s))ds +
α

2(1 − αη)

∫ 1

0

G(η, s)a(s)f(un(s))ds +
λn

1 − αη

≥
λn

1 − αη
→ ∞, (n → ∞).

Therefore, ‖un‖ → ∞ as n → ∞ .

Since f∞ = ∞, for N2, there exists R > 0 such that

f(u) ≥ 8N2u for u ∈ [R/4,∞) .

Let n be large enough such that ‖un‖ ≥ R. Then for t ∈ [1
4
, 3

4
], un(t) ≥ R

4
and

‖un‖ ≥ un(t)

=

∫ 1

0

G(t, s)a(s)f(un(s))ds +
αt

2(1 − αη)

∫ 1

0

G(η, s)a(s)f(un(s))ds +
λnt

1 − αη

>
1

4

[

∫ 3/4

1/4

g(s)a(s)f(un(s))ds +
α

2(1 − αη)

∫ 3/4

1/4

G(η, s)a(s)f(un(s))ds

]

>
1

4

[

∫ 3/4

1/4

g(s)a(s)8N2un(s)ds +
α

2(1 − αη)

∫ 3/4

1/4

G(η, s)a(s)8N2un(s)ds

]

≥ 2N2

[

∫ 3/4

1/4

g(s)a(s)ds +
α

2(1 − αη)

∫ 3/4

1/4

G(η, s)a(s)ds

]

‖un‖

4

= 2‖un‖,

which is a contradiction. The proof is complete.

Corollary 3.2. If f0 = 0, f∞ = ∞, then BVP (1.1) and (1.2) has at least one

positive solution for λ small enough and has no positive solution for λ large enough.

Proof. The conclusion readily follows from Theorem 3.1.

Theorem 3.3. Suppose that the hypothesis of Theorem 3.1 hold. In addition, if f is

nondecreasing, then there is Λ > 0 such that BVP (1.1) and (1.2) has at least one

positive solution for λ ∈ (0, Λ) and has no positive solution for λ ∈ (Λ,∞).

Proof. Set F = {λ | BVP (1.1) and (1.2) has at least one positive solution}, let Λ =

sup F , it follows from Theorem 3.1 that 0 < Λ < ∞. From the definition of Λ, we

know for any λ ∈ (0, Λ), there is a λ∗ > λ such that BVP

u′′′(t) + a(t)f(u(t)) = 0, 0 < t < 1,

u(0) = u′′(0) = 0, u(1) − αu(η) = λ∗
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has a positive solution u∗(t). Next we will prove that for any λ ∈ (0, λ∗), BVP (1.1)

and (1.2) has a positive solution.

In fact, let Pu∗ = {u ∈ K | u(t) ≤ u∗(t), t ∈ [0, 1]}, for any λ ∈ (0, λ∗), u ∈ Pu∗ ,

it follows from (2.4) and the monotonicity of f we get

Tu(t) =

∫ 1

0

G(t, s)a(s)f(u(s))ds +
αt

2(1 − αη)

∫ 1

0

G(η, s)a(s)f(u(s))ds +
λt

1 − αη

≤

∫ 1

0

G(t, s)a(s)f(u∗(s))ds +
αt

2(1 − αη)

∫ 1

0

G(η, s)a(s)f(u∗(s))ds +
λ∗t

1 − αη

= u∗(t).

So T (Pu∗) ⊆ Pu∗ , by Schauder’s fixed point theorem we know that T has a fixed

point u ∈ Pu∗ , which is a positive solution of BVP (1.1) and (1.2). The proof is

complete.

Theorem 3.4. Assume that f0 = ∞, f∞ = 0, then BVP (1.1) and (1.2) has at least

one positive solution for λ ∈ (0,∞).

Proof. Since f0 = ∞, there exists r2 > 0 such that f(u) ≥ 4N2u for u ∈ [0, r2]. Let

u ∈ Kr2
, then for t ∈ [1

4
, 3

4
],

Tu(t) =

∫ 1

0

G(t, s)a(s)f(u(s))ds +
αt

2(1 − αη)

∫ 1

0

G(η, s)a(s)f(u(s))ds +
λt

1 − αη

> N2

[

∫ 3/4

1/4

g(s)a(s)u(s)ds +
α

2(1 − αη)

∫ 3/4

1/4

G(η, s)a(s)u(s)ds

]

≥ N2

[

1

4

∫ 3/4

1/4

g(s)a(s)ds +
α

8(1 − αη)

∫ 3/4

1/4

G(η, s)a(s)ds

]

‖u‖

= ‖u‖.

Thus we have

(3.7) ‖Tu‖ > ‖u‖, u ∈ ∂Kr2
.

Now, since f∞ = 0, there exists R̃ > 0 such that

f(u) ≤
N1

2
u, u ∈ [R̃,∞).

We consider two cases: f is bounded or f is unbounded.

Case 1 : Suppose that f is bounded, there exists M > 0 satisfy f(u) ≤ M for all

u ∈ [0,∞). We choose R2 > max{2r2,
2M
N1

, 2λ
1−αη

} and u ∈ ∂KR2
, then for t ∈ [0, 1],

we have

Tu(t) =

∫ 1

0

G(t, s)a(s)f(u(s))ds +
αt

2(1 − αη)

∫ 1

0

G(η, s)a(s)f(u(s))ds +
λt

1 − αη

≤ M

∫ 1

0

g(s)a(s)ds +
αM

2(1 − αη)

∫ 1

0

g(s)a(s)ds +
λ

1 − αη



POSITIVE SOLUTIONS FOR THIRD-ORDER 3-POINT NONHOMOGENEOUS BVP 233

<
M

N1
+

R2

2
< ‖u‖.

Case 2 : Suppose that f is unbounded. Let R2 > max{2r2, R̃, 2λ
1−αη

} such that

f(u) ≤ f(R2) for 0 < u ≤ R2.

(We are able to do this since f is unbounded.) Then for u ∈ ∂KR2
, t ∈ [0, 1], we have

Tu(t) =

∫ 1

0

G(t, s)a(s)f(u(s))ds +
αt

2(1 − αη)

∫ 1

0

G(η, s)a(s)f(u(s))ds +
λt

1 − αη

≤

∫ 1

0

g(s)a(s)f(R2)ds +
α

2(1 − αη)

∫ 1

0

g(s)a(s)f(R2)ds +
λ

1 − αη

<
N1

2

[
∫ 1

0

g(s)a(s)ds +
α

2(1 − αη)

∫ 1

0

g(s)a(s)ds

]

R2 +
R2

2

=
R2

2
+

R2

2
= ‖u‖.

Therefore, in either case we get

‖Tu‖ < ‖u‖ for u ∈ ∂KR2
.(3.8)

Therefore, by Lemma 2.5, (3.7), (3.8) and the property of fixed-point index, we obtain

i(T, KR2
\Kr2

, K) = 1.

That is the operator T has at least one fixed point u ∈ KR2
\K̄r2

, which is a positive

solution of BVP (1.1) and (1.2).

Corollary 3.5. Assume that λ = 0 hold, if the nonlinearity f is either superlinear

or sublinear, then BVP (1.1) and (1.2) has at least one positive solution.

Proof. The conclusion readily follows from Theorem 3.1 and Theorem 3.4.

Example 3.6. Consider the following singular third-order three-point nonhomoge-

neous BVP

(3.9)







u′′′(t) + 1
tq(1−t)

up(t) = 0, 0 < t < 1,

u(0) = u′′(0) = 0, u(1) − 3
2
u(1

2
) = λ,

where a(t) = 1
tq(1−t)

, f(u) = up, α = 3
2

and η = 1
2
, p and q are parameters which

are positive and λ are nonnegative. If p > 1, 0 < q < 1, then it is easy to verify

that all conditions of Theorem 3.3 are satisfied, thus, there is Λ > 0 such that BVP

(3.9) has at least one positive solution for λ ∈ (0, Λ) and has no positive solution for

λ ∈ (Λ,∞). If 0 < p, q < 1, all conditions of Theorem 3.4 hold, then BVP (3.9) has

at least one positive solution for λ ∈ (0,∞).
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