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OSCILLATION CRITERIA FOR SECOND ORDER NEUTRAL
PARTIAL FUNCTIONAL DIFFERENTIAL EQUATIONS

RUN XU AND FANWEI MENG
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People’s Republic of China

ABSTRACT. Some new oscillation criteria are established for second order neutral partial func-

tional differential equation of the form

∂

∂t

[

r(t)
∂

∂t

(

u(x, t) +

l
∑

i=1

λi(t)u(x, t − τi)

)]

= a(t)△u(x, t) +

s
∑

k=1

ak(t)△u(x, t − ρk(t))

− q(x, t)u(x, t) −

m
∑

j=1

qj(x, t)fj(u(x, t − σj)), (x, t) ∈ Ω × [0,∞) ≡ G

under the conditions
∫

∞

t0
r−1(s)ds = ∞ and

∫

∞

t0
r−1(s)ds < ∞, respectively. where Ω is a bounded

domain in RN with a piecewise smooth boundary ∂Ω and △ is the laplacian in the Euclidean

N−space RN .

AMS (MOS) Subject Classification. 34C10

1. INTRODUCTION

In this paper, we are concerned with the oscillation problem of second order

neutral partial functional differential equation of the form

∂

∂t

[

r(t)
∂

∂t

(

u(x, t) +

l
∑

i=1

λi(t)u(x, t− τi)

)]

= a(t)△u(x, t) +

s
∑

k=1

ak(t)△u(x, t− ρk(t)) − q(x, t)u(x, t)

−

m
∑

j=1

qj(x, t)fj(u(x, t− σj)), (x, t) ∈ Ω × [0,∞) ≡ G.(1.1)

Where Ω is a bounded domain in RN with a piecewise smooth boundary ∂Ω, and

△u(x, t) =
∑N

r=1
∂2u(x,t)

∂x2
r

.

We assume throughout this paper that the following conditions hold.
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(A1) r(t) ∈ C1(R+; [0,∞)), λi ∈ C2([0,∞); [0,∞)), 0 ≤
∑l

i=1 λi(t) ≤ 1, τi are non-

negative constants, i ∈ Il = {1, 2, . . . , l};

(A2) a, ak, ρk ∈ C([0,∞); [0,∞)), limt→∞(t− ρk(t)) = ∞, k ∈ Is = {1, 2, . . . , s};

(A3) q, qj ∈ C(Ḡ, (0,∞)), q(t) = minx∈Ω̄ q(x, t), qj(t) = minx∈Ω̄ qj(x, t), σj are non-

negative constants, j ∈ Im = {1, 2, . . . , m};

(A4) fj ∈ C(R,R) are convex in [0,∞), ufj(u) > 0 and
fj(u)

u
≥ αj for u 6= 0, αj are

positive constants, j ∈ Im.

We consider two kinds of boundary conditions,

(1.2)
∂u(x, t)

∂γ
+ g(x, t)u(x, t) = 0, (x, t) ∈ ∂Ω × [0,∞),

where γ is the unit exterior normal vector to ∂Ω and g(x, t) is a nonnegative contin-

uous function on ∂Ω × [0,∞), and

u(x, t) = 0, (x, t) ∈ ∂Ω × [0,∞).(1.3)

As usual, a solution u(x, t) of the problem (1.1), (1.2) (or (1.1), (1.3)) is called

oscillatory in the domain G = Ω × [0,∞) if for any positive number µ there exists a

point (x0, t0) ∈ Ω × [µ,∞) such that u(x0, t0) = 0 holds.

Recently, the oscillation problem for the partial functional differential equation

has been studied by many authors. We refer the reader to [2, 5, 10] for parabolic

equations and to [1, 3, 4, 6–8, 11] for hyperbolic equations. We note that conditions

for the oscillation of the solutions for r(t) = 1, λi(t) = 0, fj(u) = u have been obtained

in the works of Cui et al. [3]. Very recently, Wang and Meng [11] have studied the

oscillation conditions for λi(t) = 0, fj(u) = u. Li and Cui [9] have observed some

oscillation properties of (1.1) under the following assumption

R(t) =

∫ t

t0

ds

r(s)
→ ∞ (t→ ∞).

To the best of our knowledge, it seems to have few oscillation and asymptotic

behavior results for (1.1) in the case

lim
t→∞

R(t) = lim
t→∞

∫ t

t0

1

r(s)
ds <∞.

In the following two sections, by using a generalized Riccati transformation, we

will further the investigation and offer some new sufficient conditions for the oscillation

of the problem (1.1), (1.2) as well as for (1.1), (1.3) under the two conditions above,

and give some examples to illustrate the superiority of our main results at the end of

this paper.
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2. OSCILLATION OF THE PROBLEM (1.1) AND (1.2)

2.1. The case of limt→∞R(t) = limt→∞

∫ t

t0

ds
r(s)

= ∞.

Theorem 2.1. If there exist a j0 ∈ Im and a function ρ ∈ C1(I, R+) such that

∫

∞
[

ρ(t)ϕ(t) −
r(t− σj0)ρ

′2(t)

4ρ(t)

]

dt = ∞,(2.1)

where

ϕ(t) = q(t)

[

1 −

l
∑

i=1

λi(t)

]

+ αj0qj0(t)

[

1 −

l
∑

i=1

λi(t− σj0)

]

,(2.2)

then every solution u(x, t) of the problem (1.1), (1.2) is oscillatory in G.

Proof. Suppose to the contrary that there is a nonoscillatory solution u(x, t) of the

problem (1.1), (1.2) in Ω × [t0,∞) for some t0 > 0, without loss of generality we

assume that u(x, t) > 0, u(x, t − τi) > 0, u(x, t − ρk(t)) > 0 and u(x, t − σj) > 0 in

Ω × [t1,∞), t1 ≥ t0, i ∈ Il, k ∈ Is, j ∈ Im.

Integrating (1.1) with respect to x over the domain Ω, we have

d

dt

[

r(t)
d

dt

(

∫

Ω

u(x, t)dx+

l
∑

i=1

λi(t)

∫

Ω

u(x, t− τi)dx

)]

= a(t)

∫

Ω

△u(x, t)dx+

s
∑

k=1

ak(t)

∫

Ω

△u(x, t− ρk(t))dx−

∫

Ω

q(x, t)u(x, t)dx

−

m
∑

j=1

∫

Ω

qj(x, t)fj(u(x, t− σj))dx, t ≥ t1.(2.3)

From Green’s formula and boundary condition (1.2), it follows that

∫

Ω

△u(x, t)dx =

∫

∂Ω

∂u(x, t)

∂γ
dS = −

∫

∂Ω

g(x, t)u(x, t)dS ≤ 0, t ≥ t1,(2.4)

and
∫

Ω

△u(x, t− ρk(t))dx =

∫

∂Ω

∂u(x, t− ρk(t))

∂γ
dS

= −

∫

∂Ω

g(x, t− ρk(t))u(x, t− ρk(t))dS ≤ 0, t ≥ t1, k ∈ Is,(2.5)

where dS is the surface element on ∂Ω. Moreover, from (A3), (A4) and Jensen’s

inequality, it follows that

∫

Ω

q(x, t)u(x, t)dx ≥ q(t)

∫

Ω

u(x, t)dx, t ≥ t1,(2.6)
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and
∫

Ω

qj(x, t)fj(u(x, t− σj))dx ≥ qj(t)

∫

Ω

fj(u(x, t− σj))dx

≥ qj(t)

∫

Ω

dx · fj

(

∫

Ω

u(x, t− σj)dx

(
∫

Ω

dx

)

−1
)

, t ≥ t1.(2.7)

Let

V (t) =
1

|Ω|

∫

Ω

u(x, t)dx, t ≥ t1,(2.8)

where |Ω| =
∫

Ω
dx.

In view of (2.4)–(2.8), (2.3) yields

d

dt

[

r(t)
d

dt

(

V (t) +
l
∑

i=1

λi(t)V (t− τi)

)]

+ q(t)V (t) +
m
∑

j=1

qj(t)fj(V (t− σj)) ≤ 0, t ≥ t1.(2.9)

Let Z(t) = V (t) +
∑l

i=1 λi(t)V (t− τi), we have Z(t) > 0 and [r(t)Z ′(t)]′ ≤ 0 for

t ≥ t1. Hence r(t)Z ′(t) is a decreasing function in the interval [t1,∞). We can claim

that r(t)Z ′(t) > 0 for t ≥ t1. In fact, if there exist a T > t1 such that r(T )Z ′(T ) < 0,

this implies that

Z ′(t) ≤
r(T )Z ′(T )

r(t)
for t ≥ T,

and

Z(t) − Z(T ) ≤ r(T )Z ′(T )

∫ t

T

ds

r(s)
, t ≥ T.

Therefore lim
t→∞

Z(t) = −∞, which contradicts the fact that Z(t) > 0.

From (2.9), for the j0 in (2.1) we obtain

[r(t)Z ′(t)]′ + q(t)V (t) + αj0qj0(t)V (t− σj0) ≤ 0, t ≥ t1.(2.10)

or

[r(t)Z ′(t)]′ + q(t)

[

Z(t) −
l
∑

i=1

λi(t)V (t− τi)

]

+ αj0qj0(t)

[

Z(t− σj0) −

l
∑

i=1

λi(t− σj0)V (t− τi − σj0)

]

≤ 0, t ≥ t1.

Since Z(t) ≥ V (t), Z(t) is increasing, it follows that

[r(t)Z ′(t)]′ + q(t)

[

1 −

l
∑

i=1

λi(t)

]

Z(t)

+ αj0qj0(t)

[

1 −
l
∑

i=1

λi(t− σj0)

]

Z(t− σj0) ≤ 0, t ≥ t1.
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That is

[r(t)Z ′(t)]′ + ϕ(t)Z(t− σj0) ≤ 0, t ≥ t1,(2.11)

where ϕ(t) is defined by (2.2).

Define

w(t) = ρ(t)
r(t)Z ′(t)

Z(t− σj0)
, t ≥ t1.

Then w(t) > 0, and

w′(t) = ρ′(t)
r(t)Z ′(t)

Z(t− σj0)
+ ρ(t)

[r(t)Z ′(t)]′Z(t− σj0) − r(t)Z ′(t)Z ′(t− σj0)

Z2(t− σj0)

≤
ρ′(t)

ρ(t)
w(t) − ρ(t)ϕ(t) −

ρ(t)r(t)Z ′(t)Z ′(t− σj0)

Z2(t− σj0)
.

Using the fact that r(t)Z ′(t) is decreasing, we have

Z ′(t− σj0) ≥
r(t)Z ′(t)

r(t− σj0)
, t ≥ t1.(2.12)

Thus

w′(t) ≤
ρ′(t)

ρ(t)
w(t) − ρ(t)ϕ(t) −

w2(t)

ρ(t)r(t− σj0)
≤
r(t− σj0)ρ

′2(t)

4ρ(t)
− ρ(t)ϕ(t).

Integrating the above inequality from some T0 to t (T0 ≥ t1), we have

w(t) ≤ w(T0) −

∫ t

T0

[

ρ(s)ϕ(s) −
r(s− σj0)ρ

′2(s)

4ρ(s)

]

ds(2.13)

Letting t → ∞ in (2.13), from (2.1) we get contradiction. This completes the proof

of Theorem 2.1.

Corollary 2.2. If the inequality (2.9) has no eventually positive solutions, then every

solution u(x, t) of the problem (1.1), (1.2) is oscillatory in G.

Choosing ρ(t) = R(t− σj0) in Theorem 2.1, we get

Corollary 2.3. If there exists a j0 ∈ Im such that for t1 ≥ t0,
∫

∞
[

R(t− σj0)ϕ(t) −
1

4R(t− σj0)r(t− σj0)

]

dt = ∞,(2.14)

where ϕ(t) is defined by (2.2). Then every solution u(x, t) of the problem (1.1), (1.2)

is oscillatory in G.

Corollary 2.4. If there exists a j0 ∈ Im such that for t1 ≥ t0,

lim inf
t→∞

1

lnR(t− σj0)

∫ t

t1

R(s− σj0)ϕ(s)ds >
1

4
,(2.15)

where ϕ(t) is defined by (2.2). Then every solution u(x, t) of the problem (1.1), (1.2)

is oscillatory in G.
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Proof. It is not hard to verify that (2.15) yields the existence ε > 0 such that for all

large t,

1

lnR(t− σj0)

∫ t

t1

R(s− σj0)ϕ(s)ds ≥
1

4
+ ε,

which follows that
∫ t

t1

R(s− σj0)ϕ(s)ds ≥
1

4
lnR(t− σj0) + ε lnR(t− σj0),

then (2.14) holds, hence the assertion of Corollary 2.4 follows from Corollary 2.3.

Corollary 2.5. Assume that there exists a j0 ∈ Im such that for t1 ≥ t0,

lim inf
t→∞

R2(t− σj0)ϕ(t)r(t− σj0) >
1

4
,(2.16)

where ϕ(t) is defined by (2.2). Then every solution u(x, t) of the problem (1.1), (1.2)

is oscillatory in G.

Proof. Obviously, (2.16) yields the existence ε > 0 such that for all large t,

R2(t− σj0)ϕ(t)r(t− σj0) ≥
1

4
+ ε,

that is

R(t− σj0)ϕ(t) −
1

4R(t− σj0)r(t− σj0)
≥

ε

R(t− σj0)r(t− σj0)
,

which implies (2.14) hold and Corollary 2.5 is evident by Corollary 2.3.

Theorem 2.6. Assume that there exist a j0 ∈ Im and a function h ∈ C1(I, R) such

that

∫

∞
(

ϕ(t) −
h2(t)

r(t− σj0)

)

exp

(

2

∫ t h(s)

r(s− σj0)
ds

)

dt = ∞,(2.17)

where ϕ(t) is defined by (2.2). Then every solution u(x, t) of Eqs. (1.1), (1.2) is

oscillatory in G.

Proof. Let u(x, t) be a nonoscillatory solution of Eqs. (1.1), (1.2), without loss of

generality, as in the proof of Theorem 2.1, we may assume that there exists a number

T0 ≥ t0 such that u(x, t) > 0, u(x, t−τi) > 0, u(x, t−ρk(t)) > 0, and u(x, t−σj) > 0 in

Ω×[T0,∞), i ∈ Il, k ∈ Is, j ∈ Im, and we get Z ′(t) > 0 holds for t ≥ T0. Furthermore,

(2.11) and (2.12) hold. Define

w(t) =
r(t)Z ′(t)

Z(t− σj0)
, t ≥ T0,(2.18)
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obviously, w(t) > 0 for t ≥ T0. Differentiating (2.18), in view of (2.11) and (2.12), we

have

w′(t) =
[r(t)Z ′(t)]′Z(t− σj0) − r(t)Z ′(t)Z ′(t− σj0)

Z2(t− σj0)
≤ −ϕ(t) −

1

r(t− σj0)
w2(t)

= −

[

ϕ(t) −
1

r(t− σj0)
h2(t)

]

−
1

r(t− σj0)
[w2(t) + h2(t)]

≤ −

[

ϕ(t) −
1

r(t− σj0)
h2(t)

]

−
2h(t)

r(t− σj0)
w(t),

which follows that
[

exp

(
∫ t

T0

2h(s)

r(s− σj0)
ds

)

w(t)

]′

≤ −

[

ϕ(t) −
1

r(t− σj0)
h2(t)

]

exp

(
∫ t

T0

2h(s)

r(s− σj0)
ds

)

.

Integrating the above inequality from T0 to t, we have

0 < exp

(
∫ t

T0

2h(s)

r(s− σj0)
ds

)

w(t)

≤ w(T0) −

∫ t

T0

(

ϕ(s) −
h2(s)

r(s− σj0)

)

exp

(
∫ s

T0

2h(τ)

r(τ − σj0)
dτ

)

ds.

Letting t→ ∞ in the above inequality, which contradicts (2.17). This completes

the proof of Theorem 2.6.

Since Theorems 2.1–2.6 are of a high degree of a generality, it is convenient for

application to derive a number of oscillation criteria with the appropriate choice of

the function h and ρ, here, we omit the details.

2.2. The case of limt→∞R(t) = limt→∞

∫ t

t0

ds
r(s)

<∞. For simplicity, we define

π(t) =

∫

∞

t

ds

r(s)
,

and we will consider the oscillation problem of (1.1), (1.2) under the condition

π(t0) =

∫

∞

t0

ds

r(s)
<∞.

Theorem 2.7. Suppose that there exists a continuously differentiable function ρ(t)

such that ρ(t) > 0, ρ′(t) ≥ 0, we also suppose that λ′i(t) ≥ 0 for t ≥ t0, i ∈ Il,

limt→∞

∑l

i=1 λi(t) = A. If for some j0 ∈ Im,

∫

∞

0

[

ϕ(t)π(t− σj0) −
1

4r(t− σj0)π(t− σj0)

]

dt = ∞,(2.19)

and
∫

∞ 1

ρ(t)r(t)

(
∫ t

ρ(s)(q(s) + αj0qj0(s))ds

)

dt = ∞,(2.20)
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then every solution u(x, t) of Eqs. (1.1), (1.2) is oscillates or

lim
t→∞

∫

Ω

u(x, t)dx = 0.

Proof. Suppose that (1.1), (1.2) has a nonoscillatory solution u(x, t) which may be

assumed to be positive in Ω× [T,∞) for some T > 0. As in the proof of Theorem 2.1,

we know that Z(t) > 0 and r(t)Z ′(t) is nonincreasing for t ≥ T , consequently, it

is easy to conclude that there exist two possible cases of the sign of Z ′(t), namely,

Z ′(t) > 0 or Z ′(t) < 0 for t ≥ T1 ≥ T .

Case (1): Suppose Z ′(t) > 0 for sufficiently large t, then we are back to the case

of Theorem 2.1 by choosing ρ(t) = π(t − σj0). Thus the proof of Theorem 2.1 goes

through, and we get contradiction by (2.19).

Case (2): Suppose Z ′(t) ≤ 0 for t ≥ T1, from the following conditions

λ′i(t) ≥ 0, Z ′(t) = V ′(t) +

l
∑

i=1

λ′i(t)V (t− τi) +

l
∑

i=1

λi(t)V
′(t− τi),

we have V ′(t) ≤ 0, it follows that limt→∞ Z(t) = a ≥ 0. Now we claim that a = 0.

Otherwise, limt→∞ Z(t) = a > 0, so limt→∞ V (t) = a
1+A

> 0, there exists a constant

M > 0 such that V (t) ≥ M , V (t− σj0) ≥ M for the j0 in (2.20) and all t ≥ t1 ≥ t0.

From (2.10) we get

[r(t)Z ′(t)]′ ≤ −q(t)V (t) − αj0qj0(t)V (t− σj0)

≤ −Mq(t) − αj0Mqj0(t) = −M(q(t) + αj0qj0(t)), t ≥ t1.(2.21)

Define Q(t) = ρ(t)r(t)Z ′(t), then Q(t) ≤ 0, from (2.21) we get

Q′(t) = ρ(t)[r(t)Z ′(t)]′ + ρ′(t)r(t)Z ′(t) ≤ ρ(t)[r(t)Z ′(t)]′

≤ −Mρ(t)(q(t) + αj0qj0(t)).

Integrating it from t1 to t, we get

Q(t) ≤ Q(t1) −M

∫ t

t1

ρ(s)(q(s) + αj0qj0(s))ds ≤ −M

∫ t

t1

ρ(s)(q(s) + αj0qj0(s))ds,

that is

ρ(t)r(t)Z ′(t) ≤ −M

∫ t

t1

ρ(s)(q(s) + αj0qj0(s))ds,

so that

Z ′(t) ≤ −
M

ρ(t)r(t)

∫ t

t1

ρ(s)(q(s) + αj0qj0(s))ds.

Integrating the above inequality from t1 to t, we obtain

Z(t) ≤ Z(t1) −M

∫ t

t1

1

ρ(s)r(s)

(
∫ s

t1

ρ(ξ)(q(ξ) + αj0qj0(ξ))dξ

)

ds.
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We can easily obtain a contradiction. So that limt→∞ Z(t) = 0, then limt→∞ V (t) =

0. This completes the proof of Theorem 2.7.

Corollary 2.8. If one of (2.14), (2.15), (2.16), (2.17) holds, and (2.20) holds, then

every solution u(x, t) of Eqs. (1.1), (1.2) is oscillatory or limt→∞

∫

Ω
u(x, t)dx = 0.

3. OSCILLATION OF THE PROBLEM (1.1) AND (1.3)

The following fact will be used.

The smallest eigenvalue β0 of the Dirichlet problem

(3.1)







△w(x) + βw(x) = 0 in Ω

w(x) = 0 on ∂Ω

is positive and the corresponding eigenfunction ψ(x) is positive in Ω.

3.1. The case of limt→∞R(t) = limt→∞

∫ t

t0

ds
r(s)

= ∞.

Theorem 3.1. If all conditions of Theorem 2.1 hold, then every solution u(x, t) of

problem (1.1), (1.3) oscillates in G.

Proof. To the contrary, if there is a nonoscillatory solution u(x, t) of the problem

(1.1), (1.3) in Ω × [t0,∞) for some t0 > 0, without loss of generality, we assume that

u(x, t) > 0, u(x, t − τi) > 0, u(x, t − ρk(t)) > 0 and u(x, t − σj) > 0 in Ω × [t1,∞),

t1 ≥ t0, i ∈ Il, k ∈ Is, j ∈ Im. Multiplying both side of (1.1) by ψ(x) > 0 and

integrating it with respect to x over the domain Ω, we have

d

dt

[

r(t)
d

dt

(

∫

Ω

u(x, t)ψ(x)dx+

l
∑

i=1

λi(t)

∫

Ω

u(x, t− τi)ψ(x)dx

)]

= a(t)

∫

Ω

△u(x, t)ψ(x)dx+
s
∑

k=1

ak(t)

∫

Ω

△u(x, t− ρk(t))ψ(x)dx

−

∫

Ω

q(x, t)u(x, t)ψ(x)dx

−

m
∑

j=1

∫

Ω

qj(x, t)fj(u(x, t− σj))ψ(x)dx, t ≥ t1.(3.2)

From Green’s formula and boundary condition (1.3), it follows that
∫

Ω

△u(x, t)ψ(x)dx =

∫

Ω

u(x, t)△ψ(x)dx

= −β0

∫

Ω

u(x, t)ψ(x)dx ≤ 0, t ≥ t1,(3.3)
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and
∫

Ω

△u(x, t− ρk(t))ψ(x)dx =

∫

Ω

u(x, t− ρk(t))△ψ(x)dx

= −β0

∫

Ω

u(x, t− ρk(t))ψ(x)dx ≤ 0, t ≥ t1, k ∈ Is.(3.4)

From (A3), (A4) and Jensen’s inequality, it follows that
∫

Ω

q(x, t)u(x, t)ψ(x)dx ≥ q(t)

∫

Ω

u(x, t)ψ(x)dx, t ≥ t1,(3.5)

and
∫

Ω

qj(x, t)fj(u(x, t− σj))ψ(x)dx ≥ qj(t)

∫

Ω

fj(u(x, t− σj))ψ(x)dx

≥ qj(t)

∫

Ω

ψ(x)dx · fj

(

∫

Ω

u(x, t− σj)ψ(x)dx

(
∫

Ω

ψ(x)dx

)

−1
)

, t ≥ t1.(3.6)

Set

V (t) =

∫

Ω

u(x, t)ψ(x)dx

(
∫

Ω

ψ(x)dx

)

−1

, t ≥ t1,(3.7)

combining (3.2)–(3.7) we obtain

d

dt

[

r(t)
d

dt

(

V (t) +

l
∑

i=1

λi(t)V (t− τi)

)]

+ q(t)V (t)

+

m
∑

j=1

qj(t)fj(V (t− σj)) ≤ 0, t ≥ t1.(3.8)

The remainder of the proof is similar to that of Theorem 2.1, we omit it.

Corollary 3.2. If the inequality (3.8) has no eventually positive solutions, then every

solution u(x, t) of the problem (1.1), (1.3) is oscillatory in G.

The following conclusions can be proved analogously.

Corollary 3.3. Let the conditions of Corollary 2.3 hold, then every solution u(x, t)

of the problem (1.1), (1.3) oscillates in G.

Corollary 3.4. Let the conditions of Corollary 2.4 hold, then every solution u(x, t)

of the problem (1.1), (1.3) oscillates in G.

Corollary 3.5. Let the conditions of Corollary 2.5 hold, then every solution u(x, t)

of the problem (1.1), (1.3) oscillates in G.

Theorem 3.6. Let the conditions of Theorem 2.6 hold, then every solution u(x, t) of

the problem (1.1), (1.3) oscillates in G.
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3.2. The case of limt→∞R(t) = limt→∞

∫ t

t0

ds
r(s)

<∞. As the case in 3.1, the follow-

ing conclusions can be proved analogously.

Theorem 3.7. If the conditions of Theorem 2.7 hold, then every solution u(x, t) of

the problem (1.1), (1.3) oscillates or limt→∞

∫

Ω
u(x, t)ψ(x)dx = 0 in G, where ψ(x) is

as in (3.1).

Corollary 3.8. If the conditions of Corollary 2.8 hold, then every solution u(x, t) of

the problem (1.1), (1.3) oscillates or limt→∞

∫

Ω
u(x, t)ψ(x)dx = 0 in G, where ψ(x) is

as in (3.1).

4. EXAMPLES

Example 4.1. Consider the equation

∂

∂t

[

1

t+ π

∂

∂t

(

u(x, t) +
1

t+ π
u(x, t− 2π)

)]

=

(

1

(t+ π)2
−

3

(t+ π)4

)

△u(x, t)

+

(

3

(t+ π)3
+

1

(t+ π)2

)

△u

(

x, t−
3π

2

)

+

(

1

2t3 ln t
+

1

t3
−

1

(t+ π)

)

△u(x, t− π)

−

(

1

2t3 ln t
+

2

t3

)

u(x, t) −
1

t3
u(x, t− π), (x, t) ∈ (0, π) × [0,∞)(4.1)

with the boundary condition

u(0, t) = u(π, t) = 0, t ≥ 0.(4.2)

Here, N = 1, r(t) = 1
t+π

, l = 1, λ1(t) = 1
t+π

, τ1 = 2π, a(t) = 1
(t+π)2

− 3
(t+π)4

,

s = 2, a1(t) = 3
(t+π)3

+ 1
(t+π)2

, ρ1(t) = 3π
2

, a2(t) = 1
2t3 ln t

+ 1
t3

− 1
t+π

, ρ2(t) = π,

q(x, t) = 1
2t3 ln t

+ 2
t3

, m = 1, q1(x, t) = 1
t3

, σ1 = π, f1(u) = u, it is easy to see that

qj0(t) = q1(t) = 1
t3

, αj0 = 1, λ1(t − σj0) = λ1(t− π) = 1
t
, q(t) = q(x, t) = 1

2t3 ln t
+ 2

t3
,

r(t− σj0) = 1
t
, R(t) =

∫ t

0
ds

r(s)
= t2

2
+ πt, then we have

ϕ(t) =
1

2t3 ln t
+

3

t3
−

1

2t3(t+ π) ln t
−

2

t3(t+ π)
−

1

t4
,

and

lim inf
t→∞

R2(t− σj0)ϕ(t)r(t− σj0) =
3

4
>

1

4
,

which shows that all conditions of Corollary 3.5 are verified. Thus every solutions of

problem (4.1), (4.2) oscillates in (0, π)× [0,∞). In fact, u(x, t) = sin x cos t is such a

solution.
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Example 4.2. Consider the equation

∂

∂t

[

(t+ π)2 ∂

∂t

(

u(x, t) +

(

1 −
1

t+ π

)

u(x, t− 2π)

)]

=

(

t3 +
1

t
+

1

(t+ π)2

)

△u(x, t)

+ 4(t+ π)△u(x, t−
3π

2
) +

(

π +
1

t

)

△u(x, t− π) −
(

t2 + t+ π
)

u(x, t)

−

(

t3 − t+
1

(t+ π)2

)

u(x, t− π), (x, t) ∈ (0, π) × [0,∞)(4.3)

with the boundary condition

u(0, t) = u(π, t) = 0, t ≥ 0.(4.4)

Here, N = 1, r(t) = (t+π)2, l = 1, λ1(t) = 1− 1
t+π

, τ1 = 2π, a(t) = t3 + 1
t
+ 1

(t+π)2
,

s = 2, a1(t) = 4(t+ π), ρ1(t) = 3π
2

, a2(t) = π + 1
t
, ρ2(t) = t− π, q(x, t) = t2 + t+ π,

q1(x, t) = t3 − t + 1
(t+π)2

, σ1 = π, f1(u) = u, it is easy to see that qj0(t) = q1(t) =

q1(x, t) = t3 − t + 1
(t+π)2

, αj0 = 1, λ1(t − σj0) = λ1(t − π) = 1 − 1
t
, q(t) = q(x, t) =

t2 + t+ π, r(t− σj0) = r(t− π) = t2, R(t) =
∫ t

0
ds

r(s)
=
∫ t

0
ds

(s+π)2
= 1

π
− 1

t+π
, π(t) = 1

t+π
,

π(t− σj0) = 1
t
, ϕ(t) = t2 + t2

t+π
+ 1

t(t+π)2
, let ρ(s) = 1, then we have

∫

∞

0

[

ϕ(t)π(t− σj0) −
1

4r(t− σj0)π(t− σj0)

]

dt

=

∫

∞

0

(

t+
t

t+ π
+

1

t2(t+ π)2
−

1

4t

)

dt = ∞,

and
∫

∞ 1

ρ(t)r(t)

(
∫ t

ρ(s)(q(s) + αj0qj0(s))ds

)

dt

=

∫

∞ 1

(t+ π)2

(
∫ t

(s2 + s + π + s3 − s+
1

(s+ π)2
)ds

)

dt = ∞,

which shows that (2.19), (2.20) hold, thus every solution of problem (4.3), (4.4)

oscillates or limt→∞

∫

Ω
u(x, t)ψ(x)dx = 0 in G from Theorem 3.7. However, the main

results of [11] fails to the problem (4.3), (4.4) since limt→∞R(t) <∞.
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